Psilocybe cubensis

Last updated

Psilocybe cubensis
Cubensis Xalapa.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Agaricales
Family: Hymenogastraceae
Genus: Psilocybe
Species:
P. cubensis
Binomial name
Psilocybe cubensis
Synonyms

Stropharia cubensisEarle
Stropharia cyanescensMurrill
Naematoloma caerulescensPat.
Hypholoma caerulescens(Pat.) Sacc. & Trotter

Contents

Psilocybe cubensis
Information icon.svg
Gills icon.png Gills on hymenium
Convex cap icon.svgFlat cap icon.svg Cap is convex or flat
Adnate gills icon2.svgAdnexed gills icon2.svg Hymenium is adnate or adnexed
Ring stipe icon.svg Stipe has a ring
Transparent spore print icon.svg
Spore print is purple
Saprotrophic fungus.svgEcology is saprotrophic
Mycomorphbox Psychoactive.pngEdibility is psychoactive

Psilocybe cubensis, commonly known as the magic mushroom, shroom, golden halo, cube, or gold cap, is a species of psilocybin mushroom of moderate potency whose principal active compounds are psilocybin and psilocin. It belongs to the fungus family Hymenogastraceae and was previously known as Stropharia cubensis. It is the best-known psilocybin mushroom due to its wide distribution and ease of cultivation. This mushroom being optimal for home cultivation specifically, as was suggested in the 1970s, is primarily what led to P. cubensis being the psilocybin mushroom species most common on the black market as a street drug.

Taxonomy

The species was first described in 1906 as Stropharia cubensis by American mycologist Franklin Sumner Earle in Cuba. [1] In 1907, it was identified as Naematoloma caerulescens in Tonkin (now northern Vietnam) by French pharmacist and mycologist Narcisse Théophile Patouillard, [2] while in 1941, it was called Stropharia cyanescens by William Alphonso Murrill near Gainesville in Florida. [3] German-born mycologist Rolf Singer moved the species into the genus Psilocybe in 1949, giving it the binomial name Psilocybe cubensis. [4] The synonyms were later also assigned to the species Psilocybe cubensis. [5] [6]

The name Psilocybe is derived from the Ancient Greek roots psilos (ψιλος) and kubê (κυβη), [7] and translates as "bare head". Cubensis means "coming from Cuba", and refers to the type locality published by Earle.

Singer divided P. cubensis into three varieties: the nominate, which usually had a brownish cap, Murrill's cyanescens from Florida, which generally had a pale cap, and var caerulascens from Indochina with a more yellowish cap. [8]

Psilocybe cubensis is commonly known as gold top, golden top or gold cap in Australia, sacred mushroom [9] or blue mushroom in Brazil, and San Ysidro or Palenque mushroom in the United States and Mexico, while the term "magic mushroom" has been applied to hallucinogenic mushrooms in general. [10] A common name in Thai is "Hed keequai", which translates as "mushroom which appears after water buffalo defecates". [11]

Description

Psilocybe cubensis Cubensis Xalapa 2.jpg
Psilocybe cubensis

The cap is 1.6–8 cm (0.6–3.1 in), conic to convex with a central papilla when young, becoming broadly convex to plane with age, retaining a slight umbo sometimes surrounded by a ring-shaped depression. The cap surface is smooth and sticky, sometimes with white universal veil remnants attached. The cap is brown becoming paler to almost white at the margin and fades to more golden-brown or yellowish with age. When bruised, all parts of the mushroom stain blue. The narrow grey gills are adnate to adnexed, sometimes seceding attachment, and darken to purplish-black and somewhat mottled with age. The gill edges remain whitish. The hollow white stipe is 4–15 cm (2–6 in) high by 0.4–1.4 cm (0.2–0.6 in) thick, becoming yellowish in age. [8] The well-developed veil leaves a persistent white membranous ring whose surface usually becomes the same color as the gills because of falling spores. [12] The fruiting bodies are 90% water. [13] The mushroom has no odor and has been described as tasting farinaceous, with an alkaline or metallic aftertaste. The spores are 11.517.3 x 811.5 µm, sub-ellipsoid, basidia 4-spored but sometimes 2- or 3-, pleurocystidia and cheilocystidia present. [8]

The related species Psilocybe subcubensis —found in tropical regions—is indistinguishable but has smaller spores. [11]

Psilocybe cubensis spores, 1000x Psilocybe.cubensis.spores-1000x.jpg
Psilocybe cubensis spores, 1000x

Distribution and habitat

Psilocybe cubensis is a pan-tropical species, [4] occurring in the Gulf Coast states and southeastern United States, Mexico, in the Central American countries of Belize, Costa Rica, Panamá, El Salvador and Guatemala, the Caribbean countries Cuba, the Dominican Republic, Guadalupe, Martinique, and Trinidad, in the South American countries of Argentina, Bolivia, Brazil, Colombia, French Guiana, Paraguay, Uruguay and Peru, Southeast Asia, [14] including Thailand, [11] Vietnam, Cambodia and Malaysia, India, Australia, Fiji, and possibly Nepal and Hawaii. [14]

Psilocybe cubensis is found on cow (and occasionally horse) dung, sugar cane mulch or rich pasture soil, with mushrooms appearing from February to December in the northern hemisphere, and November to April in the southern hemisphere. [8] In Asia, the species grows on water buffalo dung. [11] Along with other fungi that grow on cow dung, P. cubensis is thought to have colonized Australia with the introduction of cattle there, 1800 of which were on the Australian mainland by 1803—having been transported there from the Cape of Good Hope, Kolkata and the American west coast. In Australia, the species grows between northern Queensland to southern New South Wales. [10]

In March 2018, several Psilocybe cubensis specimens were collected in Zimbabwe in the Wedza District of Mashonaland East province, approx. 120 km  southeast of Harare. This was the first reported occurrence of a psilocybin mushroom in Zimbabwe. The mushrooms were collected on Imire Rhino & Wildlife Conservation - a nature reserve that is home to both wildlife and cattle, as well as cattle egrets. [15]

Relationship with cattle

Psilocybe cubensis, Zimbabwe Psilocybe Cubensis Imire.jpg
Psilocybe cubensis, Zimbabwe

Because Psilocybe cubensis is intimately associated with cattle ranching, [16] the fungus has found unique dispersal niches not available to most other members of the family Hymenogastraceae. Of particular interest is the cattle egret (Bubulcus ibis), a colonizer of Old World origin (via South America), whose range of distribution overlaps much of that of Psilocybe cubensis. Cattle egrets typically walk alongside cattle, preying on insects; they track through spore-laden vegetation and cow dung and transfer the spores to suitable habitats, often thousands of miles away during migration activities. This type of spore dispersal is known as zoochory, and it enables a parent species to propagate over a much greater range than it could achieve alone. The relationship between cattle, cattle egrets, and Psilocybe cubensis is an example of symbiosis—a situation in which dissimilar organisms live together in close association. [17]

Cultivation

Indoor cultivation of Psilocybe cubensis Indoor cultivation of Psilocybe cubensis.jpeg
Indoor cultivation of Psilocybe cubensis

Psilocybe cubensis grows naturally in tropical and subtropical conditions, often near cattle due to the ideal conditions they provide for the growth of the fungus. The cow usually consumes grains or grass covered with the spores of Psilocybe cubensis and the fungus will begin to germinate within the dung.

Mushrooms such as Psilocybe cubensis are relatively easy to cultivate indoors. First, spores are inoculated within sterilized jars or bags, colloquially known as grainspawn, containing a form of carbohydrate nutrient such as rye grains. [18] After approximately one month, the spores fully colonize the grain spawn forming dense mycelium, which is then planted within a substrate such as a coconut husk fiber and vermiculite mixture. [19] Given proper humidity, temperature, and fresh air exchange, the substrate will produce fruiting Psilocybe cubensis bodies within a month of planting. To preserve potency after harvesting, growers often dehydrate the fruit and store them in air-tight containers in cool environments.

A study conducted in 2009 showed that mushrooms grown in the dark had higher levels of psilocybin and psilocin compared to the mushrooms grown in bright, indirect light, which had minimum levels. [20]

Studies were conducted where an environmentally controlled wind tunnel and a computer program were used to determine the influence of humidity on the individual basidiocarps of Psilocybe cubensis which aided in mapping their growth and development. The transpiration and growth of the mushroom were heavily influenced due to the humidity of the air, and the transpiration was accelerated at higher humidities while light did not affect the growth. Faster growth was observed at higher humidities. It was also discovered that misting enhanced both the growth and transpiration rates in the growing process of Psilocybe cubensis. [21]

Mushrooms grown with PF TEK Mushrooms growed with PF Tek.jpg
Mushrooms grown with PF TEK

Personal-scale cultivation of Psilocybe cubensis mushrooms ranges from the relatively simple and small-scale PF Tek and other "cake" methods that produce a limited amount of mushrooms to advanced techniques utilizing methods of professional mushroom cultivators. These advanced methods require a greater investment of time, money, and knowledge but reward the diligent cultivator with far larger and much more consistent harvests. [22]

Terence and Dennis McKenna made Psilocybe cubensis particularly famous when they published Psilocybin: Magic Mushroom Grower's Guide in the 1970s upon their return from the Amazon rainforest, having deduced new methods (based on pre-existing techniques originally described by J.P. San Antonio [23] ) for growing psilocybin mushrooms and assuring their audience that Psilocybe cubensis were amongst the easiest psilocybin-containing mushrooms to cultivate. [24]

The potency of cultivated specimens can vary widely per each flush (harvest). In a classic paper published by Jeremy Bigwood and M.W. Beug, it was shown that with each flush, psilocybin levels varied somewhat unpredictably but were much the same on the first flush as they were on the last flush; however, psilocin was typically absent in the first two flushes but peaked by the fourth flush, making it the most potent. Two strains were also analyzed to determine potency in caps and stems: In one strain the caps contained generally twice as much psilocybin as the stems, but the small amount of psilocin present was entirely in the stems. In the other strain, a trace of psilocin was present in the cap but not in the stem; the cap and stem contained equal amounts of psilocybin. The study concluded that the levels of psilocybin and psilocin vary by over a factor of four in cultures of Psilocybe cubensis grown under controlled conditions. [25]

Psychedelic and entheogenic use

Psilocybe cubensis Pcubmazatapec.jpg
Psilocybe cubensis

Singer noted that Psilocybe cubensis had psychoactive properties in 1949. [4]

In Australia, the use of psychoactive mushrooms grew rapidly between 1969 and 1975. [10]

In a 1992 paper, locals and tourists in Thailand were reported to consume P. cubensis and related species in mushroom omelets—particularly in Ko Samui and Ko Pha-ngan. At times, omelets were adulterated with LSD, resulting in prolonged intoxication. A thriving subculture had developed in the region. Other localities, such as Hat Yai, Ko Samet, and Chiang Mai, also had some reported usage. [11]

In 1996, jars of honey containing Psilocybe cubensis were confiscated at the Dutch-German border. Upon examination, it was revealed that jars of honey containing psychedelic mushrooms were being sold at Dutch coffee shops. [26]

P. cubensis is probably the most widely known of the psilocybin-containing mushrooms used for triggering psychedelic experiences after ingestion. Its major psychoactive compounds are:

The concentrations of psilocin and psilocybin, as determined by high-performance liquid chromatography, are in the range of 0.14–0.42% (wet weight) and 0.37–1.30% (dry weight) in the whole mushroom 0.17–0.78% (wet weight) and 0.44–1.35% (dry weight) in the cap, and 0.09%–0.30% (wet weight) and 0.05–1.27% (dry weight) in the stem, respectively. [27] For quickly and practically measuring the psychoactive contents of most healthy Psilocybe cubensis varieties, it can generally be assumed that there is approximately 15 mg (+/- 5 mg) of psilocybin per gram of dried mushroom. [28] Furthermore, due to factors such as age and storage method, the psilocybin and psilocin content of a given sample of mushrooms will vary.

Individual body composition, brain chemistry and psychological predisposition play a significant role in determining appropriate doses. For a modest psychedelic effect, a minimum of one gram of dried Psilocybe cubensis mushrooms is ingested orally, 0.25–1 gram is usually sufficient to produce a mild effect, 1–2.5 grams usually provides a moderate effect and 2.5 grams and higher usually produces strong effects. [29] For most people, 3.5 dried grams (1/8 oz) would be considered a high dose and may produce an intense experience; this is, however, typically considered a standard dose among recreational users. Body composition (usually weight) should be taken into account when calculating dosage. For many individuals, doses above three grams may be overwhelming. For a few rare people, doses as small as 0.25 gram can produce full-blown effects normally associated with very high doses. For most people, however, that dose level would have virtually no effects.

There are many different ways to ingest Psilocybe cubensis. Users may prefer to take them raw, freshly harvested, or dried and preserved. It is also possible to prepare culinary dishes such as pasta or tea with the mushrooms. However, the psychoactive compounds begin to break down rapidly at temperatures exceeding 100 °C (212 °F). [30] Another method of ingestion known as "Lemon Tekking" involves combining pulverized Psilocybe cubensis with a concentrated citrus juice with a pH of ~2. Many users believe that a considerable amount of the psilocybin will have been dephosphorylated into psilocin, the psychoactive metabolite, by citric acid. However, this claim is not substantiated by the literature on the metabolism of psilocybin, as dephosphorylation is known to be mediated by the enzyme alkaline phosphatase in humans. [31] It is therefore more likely that citric acid mostly helps in breakdown of mushroom cells, aiding in digestion and psilocybin release.[ citation needed ] The "Lemon Tekk" method of consumption results in a more rapid onset and can offer easier digestion or reduced "come-up pressure" associated with raw consumption. [32] Psilocybe cubensis can also be taken in conjunction with other botanicals such as turmeric, ginger, and black pepper. A 2019 study observed turmeric to act as a mild MAOI, which, when combined with psilocin, potentiates the biochemical interactions between serotonin receptors and psilocin, creating an entourage effect. [33]

Upon ingestion, effects usually begin after approximately 20–60 minutes (depending on the method of ingestion and stomach contents) and may last from four to ten hours, depending on dosage and individual biochemistry. Visual distortions often occur, including walls that seem to breathe, a vivid enhancement of colors, and the animation of organic shapes.[ citation needed ]

The effects of high doses can be overwhelming depending on the particular phenotype of cubensis, grow method, and the individual. It is recommended not to eat wild mushrooms without properly identifying them as they may be poisonous. [34] In particular, similar species include mushrooms of the genus Galerina and Pholiotina rugosa —all potentially deadly—and Chlorophyllum molybdites . All of these grow in pastures, a similar habitat to that preferred by P. cubensis. [10]

Spore print of Psilocybe cubensis Psilocybe cubensis spore print.jpg
Spore print of Psilocybe cubensis

In 2019, a 15-year-old boy suffered from transient kidney failure after eating P. cubensis from a cultivation kit in Canada. No one else in the group suffered any ill effects. [35]

Legality

Psilocybin and psilocin are listed as Schedule I drugs under the United Nations 1971 Convention on Psychotropic Substances. [36] However, mushrooms containing psilocybin and psilocin are not illegal in some parts of the world. For example, in Brazil they are legal, but extractions from the mushroom containing psilocybin and psilocin remain illegal. In the United States, growing or possessing Psilocybe cubensis mushrooms is illegal in all states, but it is legal to possess and buy the spores for microscopy purposes. However, as of May 8, 2019 Denver, Colorado has decriminalized it for those 21 and up. On June 4, 2019, Oakland, California followed suit, decriminalizing psilocybin-containing mushrooms as well as the Peyote cactus. [37] On January 29, 2020, Santa Cruz, California decriminalized naturally-occurring psychedelics, including psilocybin mushrooms. [38] On November 3, 2020, the state of Oregon decriminalized possession of psilocybin mushrooms for recreational use and granted licensed practitioners permission to administer psilocybin mushrooms to individuals age 21 years and older. [39] [40]

In 1978, the Florida Supreme Court ruled in Fiske vs Florida that possession of psilocybin mushrooms is not illegal, in that the mushrooms cannot be considered a "container" for psilocybin based on how the law is written, i.e., it does not specifically state that psilocybin mushrooms themselves are illegal, but that the hallucinogenic constituents in them are. According to this decision, the applicable statute as framed imparts no information as to which plants may contain psilocybin in its natural state and does not advise a person of ordinary intelligence that this substance is contained in a particular variety of mushroom. The statute, therefore, can not constitutionally be applied to the appellant. [41] [42]

The production, sale and possession of magic mushrooms is illegal in Canada. [43]

See also

Related Research Articles

<span class="mw-page-title-main">Psilocybin</span> Chemical compound found in some species of mushrooms

Psilocybin is a naturally occurring psychedelic prodrug compound produced by more than 200 species of fungi. The most potent are members of genus Psilocybe, such as P. azurescens, P. semilanceata, and P. cyanescens, but psilocybin has also been isolated from about a dozen other genera. Psilocybin is itself biologically inactive but is quickly converted by the body to psilocin, which has mind-altering effects similar, in some aspects, to those of lysergic acid diethylamide (LSD), mescaline, and dimethyltryptamine (DMT). In general, the effects include euphoria, visual and mental hallucinations, changes in perception, distorted sense of time, and perceived spiritual experiences. It can also cause adverse reactions such as nausea and panic attacks.

<span class="mw-page-title-main">Psilocybin mushroom</span> Mushrooms containing psychoactive indole alkaloids

Psilocybin mushrooms, commonly known as magic mushrooms or shrooms, are a polyphyletic informal group of fungi that contain psilocybin, which turns into psilocin upon ingestion. Biological genera containing psilocybin mushrooms include Psilocybe, Panaeolus, Inocybe, Pluteus, Gymnopilus, and Pholiotina.

<i>Psilocybe</i> Genus of fungi

Psilocybe is a genus of gilled mushrooms, growing worldwide, in the family Hymenogastraceae. Most or nearly all species contain the psychedelic compounds psilocybin and psilocin.

<i>Psilocybe semilanceata</i> Species of fungus in the family Hymenogastraceae, native to Europe

Psilocybe semilanceata, commonly known as the liberty cap, is a species of fungus which produces the psychoactive compounds psilocybin, psilocin and baeocystin. It is both one of the most widely distributed psilocybin mushrooms in nature, and one of the most potent. The mushrooms have a distinctive conical to bell-shaped cap, up to 2.5 cm (1 in) in diameter, with a small nipple-like protrusion on the top. They are yellow to brown, covered with radial grooves when moist, and fade to a lighter color as they mature. Their stipes tend to be slender and long, and the same color or slightly lighter than the cap. The gill attachment to the stipe is adnexed, and they are initially cream-colored before tinting purple to black as the spores mature. The spores are dark purplish-brown in mass, ellipsoid in shape, and measure 10.5–15 by 6.5–8.5 micrometres.

<i>Psilocybe cyanescens</i> Species of fungus

Psilocybe cyanescens, commonly known as the wavy cap or potent psilocybe, is a species of potent psychedelic mushroom. The main compounds responsible for its psychedelic effects are psilocybin and psilocin. It belongs to the family Hymenogastraceae. A formal description of the species was published by Elsie Wakefield in 1946 in the Transactions of the British Mycological Society, based on a specimen she had recently collected at Kew Gardens. She had begun collecting the species as early as 1910. The mushroom is not generally regarded as being physically dangerous to adults. Since all the psychoactive compounds in P. cyanescens are water-soluble, the fruiting bodies can be rendered non-psychoactive through parboiling, allowing their culinary use. However, since most people find them overly bitter and they are too small to have great nutritive value, this is not frequently done.

<span class="mw-page-title-main">Baeocystin</span> Chemical compound

Baeocystin is a zwitterionic alkaloid and analog of psilocybin. It is found as a minor compound in most psilocybin mushrooms together with psilocybin, norbaeocystin, aeruginascin, and psilocin. Baeocystin is an N-demethylated derivative of psilocybin, and a phosphorylated derivative of 4-HO-NMT (4-hydroxy-N-methyltryptamine). The structures at right illustrate baeocystin in its zwitterionic form.

<i>Psilocybe tampanensis</i> Psychedelic mushroom in the family Hymenogastraceae

Psilocybe tampanensis is a very rare psychedelic mushroom in the family Hymenogastraceae. Originally collected in the wild in a sandy meadow near Tampa, Florida, in 1977, the fungus would not be found in Florida again until 44 years later. The original Florida specimen was cloned, and descendants remain in wide circulation. The fruit bodies (mushrooms) produced by the fungus are yellowish-brown in color with convex to conic caps up to 2.4 cm (0.9 in) in diameter atop a thin stem up to 6 cm (2.4 in) long. Psilocybe tampanensis forms psychoactive truffle-like sclerotia that are known and sold under the nickname "philosopher's stones". The fruit bodies and sclerotia are consumed by some for recreational or entheogenic purposes. In nature, sclerotia are produced by the fungus as a rare form of protection from wildfires and other natural disasters.

<i>Psilocybe baeocystis</i> Species of fungus

Psilocybe baeocystis is a psilocybin mushroom of the family Hymenogastraceae. It contains the hallucinogenic compounds psilocybin, psilocin and baeocystin. The species is commonly known by various names such as bottle caps, knobby tops, blue bells, olive caps.

<i>Pholiotina cyanopus</i> Species of fungus

Pholiotina cyanopus is a species of fungus that contains psychoactive compounds including psilocybin and the uncommon aeruginascin. Originally described as Galerula cyanopus by American mycologist George Francis Atkinson in 1918. It was transferred to Conocybe by Robert Kühner in 1935 before being transferred to Pholiotina by Rolf Singer in 1950. A 2013 molecular phylogenetics study found it to belong to a group of species currently assigned to Pholiotina that are more closely related to Galerella nigeriensis than to Pholiotina or Conocybe. It is likely that it will be moved to a different genus in the future, but this has not happened yet.

<i>Panaeolus cyanescens</i> Species of fungus

Panaeolus cyanescens is a mushroom in the Bolbitiaceae family. Panaeolus cyanescens is a common psychoactive mushroom and is similar to Panaeolus tropicalis.

<i>Gymnopilus aeruginosus</i> Species of fungus

Gymnopilus aeruginosus, also known as the magic blue gym, is a mushroom-forming fungus that grows in clusters on dead wood and wood chip mulch. It is widely distributed and common in the Pacific Northwest. It has a rusty orange spore print and a bitter taste and contains the psychedelic chemical psilocybin. It was given its current name by mycologist Rolf Singer in 1951.

<span class="mw-page-title-main">Aeruginascin</span> Chemical compound

Aeruginascin or N,N,N-trimethyl-4-phosphoryloxytryptamine is an indoleamine derivative which occurs naturally within the mushrooms Inocybe aeruginascens and Pholiotina cyanopus, and Psilocybe cubensis. Aeruginascin is the N-trimethyl analogue of psilocybin. It is closely related to the frog skin toxin bufotenidine (5-HTQ), a potent 5-HT3 receptor agonist, but the aeruginascin metabolite 4-HO-TMT shows strong binding at the 5-HT2 receptors similar to psilocin. The first scientific literature about the pharmacological effects of aeruginascin is from a study published by Gartz in 1989. Across 23 analyzed cases of accidental hallucinogenic mushroom poisonings, people who had ingested the mushroom Inocybe aeruginascens reported only euphoric experiences. This is in contrast to the slight and in some cases extremely dysphoric experiences reported from the accidental ingestion of non aeruginascin containing mushrooms (containing solely psilocybin and psilocin).

<i>Psilocybe samuiensis</i> Species of fungus in the family Hymenogastraceae

Psilocybe samuiensis is a psychedelic mushroom, which has psilocybin and psilocin as main active compounds. It was placed in the section Mexicanae of genus Psilocybe by Gastón Guzmán due to its rhomboid-shaped spores. It has been found in Koh Samui, a small tropical island in Thailand, where some psychoactive species are consumed by both natives and tourists. Chao Samui rarely consume psilocybian fungi. Such local use is usually restricted to local females who do so at the request of foreigners.

<i>Psilocybe aztecorum</i> Species of fungus

Psilocybe aztecorum is a species of psilocybin mushroom in the family Hymenogastraceae. Known from Arizona, Colorado, central Mexico, India and Costa Rica, the fungus grows on decomposing woody debris and is found in mountainous areas at elevations of 2,000 to 4,000 m, typically in meadows or open, grassy conifer forests. The mushrooms have convex to bell-shaped caps 1.5–2 cm (0.6–0.8 in) in diameter, atop slender cylindrical stems that are up to 7.5 cm (3.0 in) long. The color of the caps changes with variations in hydration, ranging from dark chestnut brown to straw yellow or whitish when dry. The base of the stem is densely covered with conspicuous white rhizomorphs, a characteristic uncommon amongst Psilocybe species.

<i>Psilocybe hoogshagenii</i> Species of fungus

Psilocybe hoogshagenii is a species of psilocybin mushroom in the family Hymenogastraceae. The mushroom has a brownish conical or bell-shaped cap up to 3 cm (1.2 in) wide that has an extended papilla up to 4 mm long. The stem is slender and 5 to 9 cm long. The variety P. hoogshagenii var. convexa lacks the long papilla.

Psilocybe subcaerulipes is a species of fungus in the family Hymenogastraceae. It is in the section Zapotecorum of the genus Psilocybe, other members of this section include Psilocybe muliercula, Psilocybe angustipleurocystidiata, Psilocybe aucklandii, Psilocybe collybioides, Psilocybe kumaenorum, Psilocybe zapotecorum, Psilocybe pintonii, Psilocybe graveolens, Psilocybe moseri, Psilocybe zapotecoantillarum, Psilocybe zapotecocaribaea, and Psilocybe antioquiensis. It is endemic to Japan. Fruit bodies grow on the ground in woody debris, and typically stand 6 to 8 cm tall with caps that are 2.5 to 5 cm in diameter. They are chestnut brown, and stain blue if bruised or handled. The species is a psychoactive mushroom, and contains the hallucinogenic compounds psilocybin and psilocin. There have been reports of poisoning caused by the accidental consumption of this mushroom. It has been used in research, specifically, to test the effects of its consumption of marble-burying in mice, an animal model of obsessive-compulsive disorder.

<i>Psilocybe pelliculosa</i> Species of fungus

Psilocybe pelliculosa is a species of fungus in the family Hymenogastraceae. The fruit bodies, or mushrooms, have a conical brownish cap up to 2 cm in diameter atop a slender stem up to 8 cm long. It has a white partial veil that does not leave a ring on the stem. American mycologist Alexander H. Smith first described the species in 1937 as a member of the genus known today as Psathyrella; it was transferred to Psilocybe by Rolf Singer in 1958.

<i>Psilocybe allenii</i> Species of fungus in the family Hymenogastraceae

Psilocybe allenii is a species of agaric fungus in the family Hymenogastraceae. Described as new to science in 2012, it is named after John W. Allen, who provided the type collection. It is found in the northwestern North America from British Columbia, Canada to Los Angeles, California, most commonly within 10 miles (16 km) of the Pacific coast.

<span class="mw-page-title-main">Magic truffle</span> Hallucinogenic mushroom preparation

Magic truffles are the sclerotia of psilocybin mushrooms that are not technically the same as "mushrooms". They are masses of mycelium that contain the fruiting body which contains the hallucinogenic chemicals psilocybin and psilocin.

<small>L</small>-Tryptophan decarboxylase Enzyme

L-Tryptophan decarboxylase is an enzyme distinguished by the substrate L-tryptophan.

References

  1. Earle, Franklin Summer (1906). "Algunos hongos cubanos". Información Anual Estación Central Agronomica Cuba (in Spanish). 1: 225–242 [240–241].
  2. Patouillard, Narcisse Théophile (1907). "Champignons nouveaux du Tonkin". Bulletin de la Société Mycologique de France (in French). 23 (1): 69–79.
  3. Murrill, William Alphonso (1941). "Some Florida Novelties". Mycologia. 33 (3): 279–287. doi:10.2307/3754763. JSTOR   3754763. Closed Access logo transparent.svg
  4. 1 2 3 Guzmán, Gastón (2009). "The Hallucinogenic Mushrooms: Diversity, Traditions, Use and Abuse with Special Reference to the Genus Psilocybe". Fungi from Different Environments (PDF). Enfield, New Hampshire: Science Publishers. pp. 269–290. ISBN   978-1-57808-578-1. Archived from the original (PDF) on 2021-05-13. Retrieved 2021-05-13.
  5. "Naematoloma caerulescens Pat. 1907". MycoBank. International Mycological Association. Retrieved 2010-10-18.
  6. "Stropharia cyanescens Murrill 1941". MycoBank. International Mycological Association. Retrieved 2010-10-18.
  7. Cornelis, Schrevel (1826). Schrevelius' Greek lexicon, tr. into Engl. with numerous corrections. p. 358. Retrieved 2011-10-04.
  8. 1 2 3 4 Singer, Rolf; Smith, Alexander H. (1958). "Mycological Investigations on Teonanácatl, the Mexican Hallucinogenic Mushroom. Part II. A Taxonomic Monograph of Psilocybe, Section Caerulescentes". Mycologia. 50 (2): 262–303. doi:10.2307/3756197. JSTOR   3756197.
  9. "Sacred Mushrooms". Natureza Divina. 1 March 2022. Retrieved 1 March 2022.
  10. 1 2 3 4 Allen, John W.; Merlin, Mark D.; Jansen, Karl L.R. (1991). "An Ethnomycological Review of Psychoactive Agarics in Australia and New Zealand". Journal of Psychoactive Drugs. 23 (1): 39–69. doi:10.1080/02791072.1991.10472573. PMID   1941366.
  11. 1 2 3 4 5 Allen, John W.; Merlin, Mark D. (1992). "Psychoactive mushroom use in Koh Samui and Koh Pha-Ngan, Thailand". Journal of Ethnopharmacology. 35 (3): 205–228. doi:10.1016/0378-8741(92)90020-R. PMID   1548895.
  12. Stamets, Paul (1996). Psilocybin Mushrooms of the World. Ten Speed Press. pp. g. 108. ISBN   0-89815-839-7.
  13. Borovicˇka, J; Konvalinková, T (2019). "Disentangling the factors of contrasting silver and copper accumulation in sporocarps of the ectomycorrhizal fungus Amanita strobiliformis from two sites". Sci Total Environ. 694: 133679. Bibcode:2019ScTEn.694m3679B. doi:10.1016/j.scitotenv.2019.133679. PMID   31400682. S2CID   199527535.
  14. 1 2 Guzmán, Gaston; Allen, John W.; Gartz, Jochen (1998). "A worldwide geographical distribution of the neurotropic fungi, an analysis and discussion" (PDF). Annali del Museo Civico di Rovereto. 14: 207.
  15. "Mushroom Observer". mushroomobserver.org. Retrieved 2021-02-23.
  16. O.T. Oss, O.N. Oeric. Psilocybin: Magic Mushroom Grower's Guide, page 20. Quick American Press (1991).
  17. Smith, D. "The cattle egret (Bubulcus ibis): colonizer of Old World origin and a vector of Psilocybe cubensis spores." Stain Blue Press, Spring, Texas (1996). http://www.stainblue.com/cubensis.html
  18. "Cultivating Psilocybe cubensis: Suitable Substrates". Psychedelic Science Review. 2020-10-14. Retrieved 2022-05-10.
  19. Nicholas, LG; Kerry, Ogame (2006). Psilocybin mushroom handbook: easy indoor & outdoor cultivation. Quick Trading. ISBN   978-0932-55171-9.
  20. "Cultivating P. cubensis: Light and Tryptamine Are Key for Controlling Psilocybin and Psilocin Levels". Psychedelic Science Review. 2020-08-25. Retrieved 2022-05-10.
  21. Badham, Edmond R. (1985). "The Influence of Humidity upon Transpiration and Growth in Psilocybe cubensis". Mycologia. 77 (6): 932–939. doi:10.2307/3793305. ISSN   0027-5514. JSTOR   3793305.
  22. Oss, O. T. (1991). Psilocybin : magic mushroom grower's guide: a handbook for psilocybin enthusiasts. O. N. Oeric. [San Francisco, Calif.?]: Quick American Pub. ISBN   0-932551-06-8. OCLC   27721523.
  23. Antonio, James P. San (January 1971). "A Laboratory Method to Obtain Fruit from Cased Grain Spawn of the Cultivated Mushroom, Agaricus Bisporus". Mycologia. 63 (1): 16–21. doi:10.1080/00275514.1971.12019077. PMID   5102274.
  24. "Terence McKenna's books in print" . Retrieved December 17, 2015.
  25. Bigwood, Jeremy; Beug, Michael W. (1 May 1982). "Variation of psilocybin and psilocin levels with repeated flushes (harvests) of mature sporocarps of Psilocybe cubensis (Earle) singer". Journal of Ethnopharmacology. 5 (3): 287–291. doi:10.1016/0378-8741(82)90014-9. PMID   7201054.
  26. Bogusz, M. J.; Maier, R. D.; Schäfer, A. T.; Erkens, M. (1998). "Honey with Psilocybe mushrooms: a revival of a very old preparation on the drug market?". International Journal of Legal Medicine. 111 (3): 147–150. doi:10.1007/s004140050135. ISSN   0937-9827. PMID   9587797. S2CID   34213721.
  27. Tsujikawa, Kenji; Kanamori, Tatsuyuki; Iwata, Yuko; Ohmae, Yoshihito; Sugita, Ritsuko; Inoue, Hiroyuki; Kishi, Tohru (December 2003). "Morphological and chemical analysis of magic mushrooms in Japan". Forensic Science International. 138 (1–3): 85–90. doi:10.1016/j.forsciint.2003.08.009. PMID   14642723.
  28. Laussmann, Tim; Meier-Giebing, Sigrid (2010). "Forensic analysis of hallucinogenic mushrooms and khat (Catha edulisForsk) using cation-exchange liquid chromatography". Forensic Science International. 1 (3): 160–164. doi:10.1016/j.forsciint.2009.12.013. PMID   20047807.
  29. Erowid (2006). "Erowid Psilocybin Mushroom Vault: Dosage" (shtml). Erowid. Retrieved 2006-11-26.
  30. Gotvaldová, Klára (2021). "Stability of psilocybin and its four analogs in the biomass of the psychotropic mushroom Psilocybe cubensis" (PDF). Drug Testing and Analysis. 13 (2): 439–446. doi:10.1002/dta.2950. PMID   33119971. S2CID   226205357.
  31. Dinis-Oliveira, Ricardo Jorge (2 January 2017). "Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance". Drug Metabolism Reviews. 49 (1). Informa UK Limited: 84–91. doi:10.1080/03602532.2016.1278228. ISSN   0360-2532. PMID   28074670. S2CID   7656157.
  32. Horita, A; Weber, L.J. (1961). "The Enzymatic Dephosphorylation and Oxidation of Psilocybin and Psilocin by Mammalian Tissue Homogenates". Biochemical Pharmacology. 7 (1): 47–54. doi:10.1016/0006-2952(61)90124-1. PMID   13715852.
  33. Blei, Felix (2019). "Blei, Felix, et al. "Simultaneous production of psilocybin and a cocktail of β-carboline monoamine oxidase inhibitors in "magic" mushrooms". Chemistry: A European Journal. 26 (3): 729–734. doi:10.1002/chem.201904363. PMC   7003923 . PMID   31729089.
  34. Phillips, Roger (2010). Mushrooms and Other Fungi of North America. Buffalo, NY: Firefly Books. p. 231. ISBN   978-1-55407-651-2.
  35. Austin, Emily; Myron, Hilary S.; Summerbell, Richard K.; MacKenzie, Constance A. (2019). "Acute renal injury caused by confirmed Psilocybe cubensis mushroom ingestion". Medical Mycology Case Reports. 23: 55–57. doi:10.1016/j.mmcr.2018.12.007. PMC   6322052 . PMID   30627509.
  36. List of psychotropic substances under international control (PDF) (Report) (29 ed.). International Narcotics Control Board. 2018.
  37. "Oakland second city in USA to allow 'magic mushrooms'". East Bay Times . California, USA. 2019-06-04. Retrieved 2023-02-04.
  38. "Breaking: Santa Cruz City Council Votes to Decriminalize Entheogenic Plants and Fungi". DoubleBlind Magazine. 2020-01-29. Retrieved 2020-01-30.
  39. "Oregon measure 109". Ballotpedia.org. Ballotpedia. Retrieved 10 November 2020.
  40. "Oregon measure 110". Ballotpedia.org. Ballotpedia. Retrieved 10 November 2020.
  41. "Fiske v. State". Justia Law. Archived from the original on 19 September 2017. Retrieved 21 August 2020.
  42. "Florida Court Rules Psilocybin Mushrooms Are Not a 'Container' for Psilocybin Based on How the Law is Written". Psychedelic Science Review. 2020. Archived from the original on 21 August 2020. Retrieved 21 August 2020.
  43. "Psilocybin and psilocin (Magic mushrooms)". 12 January 2012.

Further reading