Agaricomycetes

Last updated

Agaricomycetes
Temporal range: Barremian–present
AD2009Sep20 Amanita muscaria 02.jpg
Amanita muscaria (Agaricales)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Subdivision: Agaricomycotina
Class: Agaricomycetes
Doweld (2001) [1]
Subclasses/orders

Agaricomycetidae

Agaricales (32 fam., 410+ gen.)
Amylocorticiales (1 fam., 14 gen.)
Atheliales (1 fam., 22 gen.)
Boletales (16 fam., 95+ gen.)
Jaapiales (1 fam., 1 gen.)
Lepidostromatales (1 fam., 3 gen.)

Phallomycetidae

Geastrales (1 fam., 8 gen.)
Gomphales (3 fam., 18 gen.)
Hysterangiales (5 fam., 18 gen.)
Phallales (2 fam., 26 gen.)

incertae sedis (no subclass)

Auriculariales (6–7 fam., 30+ gen.)
Cantharellales (7 fam., 39 gen.)
Corticiales (3 fam., 30+ gen.)
Gloeophyllales (1 fam., 7 gen.)
Hymenochaetales (3 fam., 50+ gen.)
Polyporales (9 fam., ~200 gen.)
Russulales (12 fam., 80+ gen.)
Sebacinales (1 fam., 8 gen.)
Stereopsidales (1 fam., 2 gen.)
Thelephorales (2 fam., 18 gen.)
Trechisporales (1 fam., 15 gen.)
Tremellodendropsidales (1 fam., 1 gen.)

The Agaricomycetes are a class of fungi in the division Basidiomycota. The taxon is roughly identical to that defined for the Homobasidiomycetes (alternatively called holobasidiomycetes) by Hibbett & Thorn, [2] with the inclusion of Auriculariales and Sebacinales. It includes not only mushroom-forming fungi, but also most species placed in the deprecated taxa Gasteromycetes and Homobasidiomycetes. [3] Within the subdivision Agaricomycotina, which already excludes the smut and rust fungi, the Agaricomycetes can be further defined by the exclusion of the classes Tremellomycetes and Dacrymycetes, which are generally considered to be jelly fungi. However, a few former "jelly fungi", such as Auricularia , are classified in the Agaricomycetes. According to a 2008 estimate, Agaricomycetes include 17 orders, 100 families, 1147 genera, and about 21000 species. [4] Modern molecular phylogenetic analyses have been since used to help define several new orders in the Agaricomycetes: Amylocorticiales, Jaapiales, [5] Stereopsidales, [6] and Lepidostromatales. [7]

Contents

Classification

Although morphology of the mushroom or fruit body (basidiocarp) was the basis of early classification of the Agaricomycetes, [8] this is no longer the case. As an example, the distinction between the Gasteromycetes (including puffballs) and Agaricomycetes (most other agaric mushrooms) is no longer recognized as a natural one—various puffball species have apparently evolved independently from agaricomycete fungi. However, most mushroom guide books still group the puffballs or gasteroid forms separate from other mushrooms because the older Friesian classification is still convenient for categorizing fruit body forms. Similarly, modern classifications divide the gasteroid order Lycoperdales between Agaricales and Phallales.

Features

All members of the class produce basidiocarps which range in size from tiny cups a few millimeters across to a giant polypore ( Phellinus ellipsoideus ) greater than several meters across and weigh up to 500 kilograms (1,100 lb). [9] The group also includes what are arguably the largest and oldest individual organisms on earth: the mycelium of one individual Armillaria gallica has been estimated to extend over 15 hectares (37 acres) with a mass of 10,000 kilograms (22,000 pounds) and an age of 1,500 years. [10]

Ecology

Nearly all species are terrestrial (a few are aquatic), occurring in a wide range of environments where most function as decayers, especially of wood. However, some species are pathogenic or parasitic, and yet others are symbiotic (i.e., mutualistic), these including the important ectomycorrhizal symbionts of forest trees. General discussions on the forms and life cycles of these fungi are developed in the article on mushrooms, in the treatments of the various orders (links in table at right), and in individual species accounts.

Evolution

A study of 5,284 species with a backbone phylogeny based on 104 genomes [11] has suggested the following dates of evolution:

Agaricomycetidae ~ 185  million years ago ( 174  million years ago 192  million years ago)
Cantharellales 184  million years ago  ( 144  million years ago 261  million years ago)
Agaricales 173  million years ago  ( 160  million years ago- 182  million years ago)
Hymenochaetales 167  million years ago ( 130  million years ago 180  million years ago)
Boletales 142  million years ago ( 133  million years ago 153  million years ago)

Fossil record

The fruit bodies of Agaricomycetes are extremely rare in the fossil record, and the class does not yet pre-date the Early Cretaceous (146–100  Ma). [12] The oldest Agaricomycetes fossil, dating from the lower Cretaceous (130–125 Ma) is Quatsinoporites . It is a fragment of a poroid fruit body with features that suggest it could be a member of the family Hymenochaetaceae. [13] Based on molecular clock analysis, the Agaricomycetes are estimated to be about 290 million years old. [14]

Phylogeny

Modern molecular phylogenetics suggest the following relationships: [15]

other basidiomycetes  (outgroup)

Agaricomycetes

Cantharellales

Sebacinales

Auriculariales

Stereopsidales

Phallomycetidae

Geastrales

Hysterangiales

Gomphales

Phallales

Trechisporales

Hymenochaetales

Thelephorales

Polyporales

Corticiales

Jaapiales

Gloeophyllales

Russulales

Agaricomycetidae

Agaricales

Boletales

Amylocorticiales

Lepidostromatales

Atheliales

Genera incertae sedis

There are many genera in the Agaricomycetes that have not been classified in any order or family. These include:

Related Research Articles

<span class="mw-page-title-main">Basidiomycota</span> Division of fungi

Basidiomycota is one of two large divisions that, together with the Ascomycota, constitute the subkingdom Dikarya within the kingdom Fungi. Members are known as basidiomycetes. More specifically, Basidiomycota includes these groups: agarics, puffballs, stinkhorns, bracket fungi, other polypores, jelly fungi, boletes, chanterelles, earth stars, smuts, bunts, rusts, mirror yeasts, and Cryptococcus, the human pathogenic yeast. Basidiomycota are filamentous fungi composed of hyphae and reproduce sexually via the formation of specialized club-shaped end cells called basidia that normally bear external meiospores. These specialized spores are called basidiospores. However, some Basidiomycota are obligate asexual reproducers. Basidiomycota that reproduce asexually can typically be recognized as members of this division by gross similarity to others, by the formation of a distinctive anatomical feature, cell wall components, and definitively by phylogenetic molecular analysis of DNA sequence data.

<span class="mw-page-title-main">Polyporales</span> Order of fungi

The Polyporales are an order of about 1800 species of fungi in the division Basidiomycota. The order includes some polypores as well as many corticioid fungi and a few agarics. Many species within the order are saprotrophic, most of them wood-rotters. Some genera, such as Ganoderma and Fomes, contain species that attack living tissues and then continue to degrade the wood of their dead hosts. Those of economic importance include several important pathogens of trees and a few species that cause damage by rotting structural timber. Some of the Polyporales are commercially cultivated and marketed for use as food items or in traditional Chinese medicine.

<span class="mw-page-title-main">Agaricales</span> Order of mushrooms

The Agaricales are an order of fungi in the division Basidiomycota. As originally conceived, the order contained all the agarics, but subsequent research has shown that not all agarics are closely related and some belong in other orders, such as the Russulales and Boletales. Conversely, DNA research has also shown that many non-agarics, including some of the clavarioid fungi and gasteroid fungi belong within the Agaricales. The order has 46 extant families, more than 400 genera, and over 25,000 described species, along with six extinct genera known only from the fossil record. Species in the Agaricales range from the familiar Agaricus bisporus and the deadly Amanita virosa to the coral-like Clavaria zollingeri and bracket-like Fistulina hepatica.

<span class="mw-page-title-main">Hymenochaetales</span> Order of fungi

The Hymenochaetales are an order of fungi in the class Agaricomycetes. The order in its current sense is based on molecular research and not on any unifying morphological characteristics. According to one 2008 estimate, the Hymenochaetales contain around 600 species worldwide, mostly corticioid fungi and poroid fungi, but also including several clavarioid fungi and agarics. Species of economic importance include wood decay fungi in the genera Phellinus and Inonotus sensu lato, some of which may cause losses in forestry. Therapeutic properties are claimed for Inonotus obliquus ("chaga") and Phellinus linteus, both of which are now commercially marketed.

<span class="mw-page-title-main">Clavulinaceae</span> Family of fungi

The Clavulinaceae are a family of fungi in the order Cantharellales. The family is not well defined, but currently comprises species of clavarioid fungi as well as some corticioid fungi. These species are nutritionally diverse, some being ectomycorrhizal, others wood-rotting saprotrophs, others lichenized, and yet others lichenicolous.

<span class="mw-page-title-main">Thelephorales</span> Order of fungi

The Thelephorales are an order of fungi in the class Agaricomycetes. The order includes corticioid and hydnoid fungi, together with a few polypores and clavarioid species. Most fungi within the Thelephorales are ectomycorrhizal. None is of any great economic importance, though Sarcodon imbricatus is edible and commercially marketed, whilst several species have been used for craft dyeing.

<span class="mw-page-title-main">Sclerodermataceae</span> Family of fungi

The Sclerodermataceae are a family of fungi in the order Boletales, containing several genera of unusual fungi that little resemble boletes. Taxa, which include species commonly known as the ‘hard-skinned puffballs’, ‘earthballs’, or 'earthstars', are widespread in both temperate and tropical regions. The best known members include the earthball Scleroderma citrinum, the dye fungus Pisolithus tinctorius and the 'prettymouths' of the genus Calostoma.

<span class="mw-page-title-main">Agaricomycotina</span> Subdivision of fungi

Agaricomycotina is one of three subdivisions of the Basidiomycota, and represents all of the fungi which form macroscopic fruiting bodies. Agaricomycotina contains over 30,000 species, divided into three classes: Tremellomycetes, Dacrymycetes, and Agaricomycetes. Around 98% of the species are in the class Agaricomycetes, including all the agarics, bracket fungi, clavarioid fungi, corticioid fungi, and gasteroid fungi. Tremellomycetes contains many basidiomycete yeasts and some conspicuous jelly fungi. Dacrymycetes contains a further group of jelly fungi. These taxa are founded on molecular research, based on cladistic analysis of DNA sequences, and supersede earlier morphology-based classifications. Agaricomycotina contains nearly one third of all described species of fungi.

<i>Heliocybe</i> Genus of fungi

Heliocybe is an agaric genus closely allied to Neolentinus and the bracket fungus, Gloeophyllum, all of which cause brown rot of wood. Heliocybe sulcata, the type and sole species, is characterized by thumb-sized, tough, revivable, often dried, mushroom fruitbodies, with a tanned symmetric pileus that is radially cracked into a cartoon sun-like pattern of arranged scales and ridges, distant serrated lamellae, and a scaly central stipe. Microscopically it differs from Neolentinus by the absence of clamp connections. Like Neolentinus, it produces abundant, conspicuous pleurocystidia. Heliocybe sulcata typically fruits on decorticated, sun-dried and cracked wood, such as fence posts and rails, vineyard trellises in Europe, branches in slash areas, and semi-arid areas such on sagebrush or on naio branches in rain shadow areas of Hawaii, or in open pine forests.

<span class="mw-page-title-main">Evolution of fungi</span> Origin and diversification of fungi through geologic time

Fungi diverged from other life around 1.5 billion years ago, with the glomaleans branching from the "higher fungi" (dikaryans) at ~570 million years ago, according to DNA analysis. Fungi probably colonized the land during the Cambrian, over 500 million years ago,, and possibly 635 million years ago during the Ediacaran, but terrestrial fossils only become uncontroversial and common during the Devonian, 400 million years ago.

<span class="mw-page-title-main">Hydnaceae</span> Family of fungi

The Hydnaceae are a family of fungi in the order Cantharellales. Originally the family encompassed all species of fungi that produced basidiocarps having a hymenium consisting of slender, downward-hanging tapering extensions referred to as "spines" or "teeth", whether they were related or not. This artificial but often useful grouping is now more generally called the hydnoid or tooth fungi. In the strict, modern sense, the Hydnaceae are limited to the genus Hydnum and related genera, with basidiocarps having a toothed or poroid hymenium. Species in the family are ectomycorrhizal, forming a mutually beneficial relationship with the roots of trees and other plants. Hydnum repandum is an edible species, commercially collected in some countries and often marketed under the French name pied de mouton.

<span class="mw-page-title-main">Corticiaceae</span> Family of fungi

The Corticiaceae are a family of fungi in the order Corticiales. The family formerly included almost all the corticioid fungi, whether they were related or not, and as such was highly artificial. In its current sense, however, the name Corticiaceae is restricted to a comparatively small group of corticioid genera within the Corticiales.

<span class="mw-page-title-main">Phanerochaetaceae</span> Family of fungi

The Phanerochaetaceae are a family of mostly crust fungi in the order Polyporales.

<i>Datronia</i> Genus of fungi

Datronia is a genus of poroid crust fungi in the family Polyporaceae. The genus was circumscribed by Marinus Anton Donk in 1966, with Datronia mollis as the type species. Datronia fungi cause a white rot in hardwoods. Datronia contains six species found in northern temperate areas. The most recent addition, Datronia ustulatiligna, was described in 2015 from Himachal Pradesh in India.

<span class="mw-page-title-main">Corticioid fungi</span> Group of fungi

The corticioid fungi are a group of fungi in the Basidiomycota typically having effused, smooth basidiocarps that are formed on the undersides of dead tree trunks or branches. They are sometimes colloquially called crust fungi or patch fungi. Originally such fungi were referred to the genus Corticium and subsequently to the family Corticiaceae, but it is now known that all corticioid species are not necessarily closely related. The fact that they look similar is an example of convergent evolution. Since they are often studied as a group, it is convenient to retain the informal (non-taxonomic) name of "corticioid fungi" and this term is frequently used in research papers and other texts.

<span class="mw-page-title-main">Gasteroid fungi</span> Group of fungi

The gasteroid fungi are a group of fungi in the Basidiomycota. Species were formerly placed in the obsolete class Gasteromycetes Fr., or the equally obsolete order Gasteromycetales Rea, because they produce spores inside their basidiocarps rather than on an outer surface. However, the class is polyphyletic, as such species—which include puffballs, earthstars, stinkhorns, and false truffles—are not closely related to each other. Because they are often studied as a group, it has been convenient to retain the informal (non-taxonomic) name of "gasteroid fungi".

Aureofungus is an extinct monotypic genus of gilled fungus in the order Agaricales. At present it contains the single species Aureofungus yaniguaensis.

<span class="mw-page-title-main">Amylocorticiales</span> Order of fungi

Amylocorticiales is an order of fungi in the class Agaricomycetes. The order was circumscribed in 2010 to contain mostly resupinate (crust-like) forms that have been referred to genera Anomoporia, Amyloathelia, Amylocorticiellum, Amylocorticium, Amyloxenasma, Anomoloma, Athelia, Athelopsis, Ceraceomyces, Hypochniciellum, Leptosporomyces and Serpulomyces.

References

  1. Doweld A. (2001). Prosyllabus Tracheophytorum, Tentamen systematis plantarum vascularium (Tracheophyta)[An attempted system of the vascular plants]. Moscow, Russia: GEOS. pp. 1–111. ISBN   978-5-89118-283-7.
  2. Hibbett DS, Thorn RG (2001). McLaughlin DJ, et al. (eds.). The Mycota, Vol. VII. Part B., Systematics and Evolution. Berlin, Germany: Springer-Verlag. pp. 121–168.
  3. Hibbett DS; et al. (2007). "A higher level phylogenetic classification of the Fungi". Mycological Research. 111 (5): 509–547. CiteSeerX   10.1.1.626.9582 . doi:10.1016/j.mycres.2007.03.004. PMID   17572334. S2CID   4686378.
  4. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Dictionary of the Fungi (10th ed.). Wallingford, UK: CAB International. pp. 12–13. ISBN   978-0-85199-826-8.
  5. Binder M, Larsson KH, Matheny PB, Hibbett DS (2010). "Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of Agaricomycetidae dominated by corticioid forms". Mycologia. 102 (4): 865–880. doi:10.3852/09-288. PMID   20648753. S2CID   23931256.
  6. Sjökvist E, Pfeil BE, Larsson E, Larsson K-H (2014). "Stereopsidales – a new order of mushroom-forming fungi". PLOS ONE. 9 (8): e106204. Bibcode:2014PLoSO...995227S. doi: 10.1371/journal.pone.0095227 . PMC   4002437 . PMID   24777067. Open Access logo PLoS transparent.svg
  7. Hodkinson BP, Moncada B, Lücking R (2014). "Lepidostromatales, a new order of lichenized fungi (Basidiomycota, Agaricomycetes), with two new genera, Ertzia and Sulzbacheromyces, and one new species, Lepidostroma winklerianum". Fungal Diversity. 64 (1): 165–179. doi:10.1007/s13225-013-0267-0. S2CID   17382765.
  8. Fries EM (1874). Hymenomycetes Europaei (in Latin). Uppsala: Typis Descripsit Ed. Berling. p. 1.
  9. Cui B-K, Dai Y-C (2011). "Fomitiporia ellipsoidea has the largest fruiting body among the fungi". Fungal Biology . 115 (9): 813–814. doi:10.1016/j.funbio.2011.06.008. PMID   21872178.
  10. Smith M, Bruhn JH, Anderson JB (1992). "The fungus Armillaria bulbosa is among the largest and oldest living organisms". Nature. 356 (6368): 428–431. Bibcode:1992Natur.356..428S. doi:10.1038/356428a0. S2CID   4319556.
  11. Varga T, Krizsán K, Földi C, Dima B, Sánchez-García M, Sánchez-Ramírez S, Szöllősi GJ, Szarkándi JG, Papp V, Albert L, Andreopoulos W, Angelini C, Antonín V, Barry KW, Bougher NL, Buchanan P, Buyck B, Bense V, Catcheside P, Chovatia M, Cooper J, Dämon W, Desjardin D, Finy P, Geml J, Haridas S, Hughes K, Justo A, Karasiński D, Kautmanova I, Kiss B, Kocsubé S6, Kotiranta H, LaButti KM, Lechner BE, Liimatainen K, Lipzen A, Lukács Z, Mihaltcheva S, Morgado LN, Niskanen T, Noordeloos ME, Ohm RA, Ortiz-Santana B, Ovrebo C, Rácz N, Riley R, Savchenko A, Shiryaev A, Soop K, Spirin V, Szebenyi C, Tomšovský M, Tulloss RE, Uehling J, Grigoriev IV, Vágvölgyi C, Papp T, Martin FM, Miettinen O, Hibbett DS, Nagy LG (2019) Megaphylogeny resolves global patterns of mushroom evolution. Nat Ecol Evol
  12. Kiecksee, Anna Philie; Seyfullah, Leyla J.; Dörfelt, Heinrich; Heinrichs, Jochen; Süß, Herbert; Schmidt, Alexander R. (2012). "Pre-Cretaceous Agaricomycetes yet to be discovered: Reinvestigation of a putative Triassic bracket fungus from southern Germany". Fossil Record. 15 (2): 85–89. doi: 10.1002/mmng.201200006 .
  13. Smith, S.Y.; Currah, R.S.; Stockey, R.A. (2004). "Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia". Mycologia. 96 (1): 180–186. doi:10.2307/3762001. JSTOR   3762001. PMID   21148842.
  14. Floudas D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R.A.; Henrissat, B.; Martínez, AT.; Otillar, R.; Spatafora, J.W.; Yadav, J.S.; Aerts, A.; Benoit, I.; Boyd, A.; Carlson A.; Copeland, A.; Coutinho, P.M.; de Vries, R.P.; Ferreira, P.; Findley, K.; Foster, B.; Gaskell, J.; Glotzer, D.; Górecki, P.; Heitman, J.; Hesse, C.; Hori, C.; Igarashi, K.; Jurgens, J.A.; Kallen, N.; Kersten, P.; Kohler, A.; Kües, U.; Kumar, TK.; Kuo, A.; LaButti, K.; Larrondo, L.F.; Lindquist, E.; Ling, A.; Lombard, V.; Lucas, S.; Lundell, T.; Martin, R.; McLaughlin, D.J.; Morgenstern, I.; Morin, E.; Murat, C.; Nagy, L.G.; Nolan, M.; Ohm, R.A.; Patyshakuliyeva, A.; Rokas, A.; Ruiz-Dueñas, F.J.; Sabat, G.; Salamov, A.; Samejima, M.; Schmutz, J.; Slot, J.C.; St John, F.; Stenlid, J.; Sun, H.; Sun S.; Syed K.; Tsang, A.; Wiebenga A.; Young, D.; Pisabarro, A.; Eastwood, DC.; Martin, F.; Cullen, D.; Grigoriev I.V.; Hibbett, D.S. (2012). "The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes". Science. 336 (6089): 1715–1719. Bibcode:2012Sci...336.1715F. doi:10.1126/science.1221748. hdl: 10261/60626 . OSTI   1165864. PMID   22745431. S2CID   37121590.
  15. Hibbett D, Bauer R, Binder M, Giachini AJ, Hosaka K, Justo A, Larsson E, Larsson K-H, Lawrey JD, Miettinen O, Nagy LG, Nilsson RH, Weiss M, Thorn RG (2014). "Agaricomycetes". In McLaughlin DJ, Spatafora JW (eds.). Systematics and Evolution. The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research. Vol. 7A (2nd ed.). Berlin, Heidelberg: Springer-Verlag. pp. 373–429. doi:10.1007/978-3-642-55318-9_14. ISBN   978-3-642-55317-2.
  16. Berniccia, Annarosa; Gorjón, Sergio P.; Nakasone, Karen K. (2011). "Arrasia rostrata (Basidiomycota), a new corticioid genus and species from Italy" (PDF). Mycotaxon. 118: 257–264. doi:10.5248/118.257. Archived from the original (PDF) on 2021-03-29. Retrieved 2016-10-07.
  17. Tzean, S.S.; Estey, R.H. (1991). "Geotrichopsis mycoparasitica gen. et sp. nov. (Hyphomycetes), a new mycoparasite" (PDF). Mycological Research. 95 (12): 1350–1354. doi:10.1016/S0953-7562(09)80383-3.
  18. Hjortstam, Kurt; Ryvarden, Leif (2001). "Corticioid species (Basidiomycotina, Aphyllophorales) from Colombia III". Mycotaxon. 79: 189–200.
  19. Wu, Sheng-Hua; Wang, Dong-Me; Chen, Yu-Ping (2018). "Purpureocorticium microsporum (Basidiomycota) gen. et sp. nov. from East Asia". Mycological Progress. 17 (3): 357–364. doi:10.1007/s11557-017-1362-5. S2CID   3319380.
  20. Chang, TunTschu; Chou, Wen Neng (2003). "Taiwanoporia, a new aphyllophoralean genus". Mycologia. 95 (6): 1215–1218. doi:10.1080/15572536.2004.11833029. JSTOR   3761921. PMID   21149022. S2CID   49434.