Polyporales

Last updated

Polyporales
Ganoderma applanatum02.jpg
Ganoderma applanatum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Subclass: incertae sedis
Order: Polyporales
Gäum. (1926)
Families

    Cystostereaceae
    Fomitopsidaceae
    Fragiliporiaceae [1]
    Ganodermataceae
    Gelatoporiaceae
    Meripilaceae
    Meruliaceae
    Phanerochaetaceae
    Polyporaceae
    Sparassidaceae
    Steccherinaceae
    Xenasmataceae

Contents

Synonyms [2]
  • Aphyllophorales Rea [3]
  • Coriolales Jülich (1981)
  • Fomitopsidales Jülich (1981)
  • Ganodermatales Jülich (1981)
  • Grifolales Jülich (1981)
  • Perenniporiales Jülich (1981)
  • Phaeolales Jülich (1981)
  • Poriales Locquin (1981)
  • Trametales Boidin, Mugnier & Canales (1998) [4]

The Polyporales are an order of about 1800 species of fungi in the division Basidiomycota. The order includes some (but not all) polypores as well as many corticioid fungi and a few agarics (mainly in the genus Lentinus ). Many species within the order are saprotrophic, most of them wood-rotters. Some genera, such as Ganoderma and Fomes , contain species that attack living tissues and then continue to degrade the wood of their dead hosts. Those of economic importance include several important pathogens of trees and a few species that cause damage by rotting structural timber. Some of the Polyporales are commercially cultivated and marketed for use as food items or in traditional Chinese medicine.

Taxonomy

History

The order was originally proposed in 1926 by Swiss mycologist Ernst Albert Gäumann to accommodate species within the phylum Basidiomycota producing basidiocarps (fruit bodies) showing a gymnocapous mode of development (forming the spore-bearing surface externally). As such, the order included the ten families Brachybasidiaceae, Corticiaceae, Clavariaceae, Cyphellaceae, Dictyolaceae, Fistulinaceae, Polyporaceae, Radulaceae, Tulasnellaceae, and Vuilleminiaceae, representing a mix of poroid, corticioid, cyphelloid, and clavarioid fungi. [5]

In a series of publications in 1932, E.J.H. Corner explained the occurrence of different types of hyphae in the fruit bodies of polypore fungi. He introduced the concept of hyphal analysis, which later become a fundamental character in polypore taxonomy. [6] [7] [8]

The order Polyporales was not widely adopted by Gäumann's contemporaries; most mycologists and reference works preferring to use the catch-all, artificial order Aphyllophorales for polypores and other "non-gilled fungi". When an attempt was made to introduce a more natural, morphology-based classification of the fungi in the 1980s and 1990s, the order was still overlooked. A standard 1995 reference work placed most polypores and corticioid fungi in the Ganodermatales, Poriales, and Stereales. [9]

Current status

/residual
/phlebioid

Phanerochaetaceae

Irpicaceae

Meruliaceae

Candelabrochaete africana

Steccherinaceae

Cerrenaceae *

Panaceae *

Hyphodermataceae

Meripilaceae

Podoscyphaceae

/hypochnicium & /climacocystis

/core polyporoid

Polyporaceae

Grifolaceae

/gelatoporia

Gelatoporiaceae *

Mycoleptodonoides vassiljevae

Auriporia aurea

/antrodia

Fomitopsidaceae

Laetiporaceae

/fibroporia + amyloporia

Dacryobolaceae

Sparassidaceae

/skeletocutis-tyromyces

Incrustoporiaceae

Ischnodermataceae

Simplified phylogenetic overview of the families (bolded) and clades (preceded with "/") recognized in Justo et al. 2017. Families marked with (*) were newly created. [10]

Molecular research, based on cladistic analysis of DNA sequences, has resurrected and redefined the Polyporales (also known as the polyporoid clade). [11] [12] [13] Studies using a combination of rRNA gene sequences, single-copy protein-coding genes, [14] [15] and genome-based phylogenetic analyses have shown that the Polyporales are a monophyletic group. [13] [16] [10] They are a member of the class Agaricomycetes, but have not been assigned to a subclass. [17] Though the precise boundaries of the order and its constituent families are yet to be resolved, it retains the core group of polypores in the family Polyporaceae, with additional species in the Fomitopsidaceae and Meripilaceae. It also includes polypores in the Ganodermataceae, which were previously assigned to their own separate order, the Ganodermatales, based on their distinctive basidiospore morphology. Corticioid fungi belonging to the Cystostereaceae, Meruliaceae, Phanerochaetaceae, and Xenasmataceae are also included, as are the cauliflower fungi in the Sparassidaceae. [18]

In an extensive molecular analysis, Manfred Binder and colleagues analyzed 6 genes from 373 species and confirmed the existence of four previously recognized lineages of Polyporales: the antrodia, core polyporoid, phlebioid, and residual polyporoid clades. [13] Extending this work, Alfredo Justo and colleagues proposed a phylogenetic overview of the Polyporales that included a new family-level classification. They assigned family names to 18 clades and four informal unranked clades. The families are listed below, followed by their taxonomic authorities and year of publication: [10]

Other families that putatively belong to the Polyporales, but for which molecular confirmation is absent or lacking, include Diachanthodaceae Jülich, (1981); Fragiliporiaceae Y.C.Dai, B.K.Cui & C.L.Zhao (2015); Hymenogrammaceae Jülich (1981); and Phaeotrametaceae Popoff ex Piątek (2005). [10] The Nigrofomitaceae, formerly placed in the Polyporales, was shown to be nested as a distinct lineage within the Hymenochaetales. [19]

The family Steccherinaceae was redefined in 2012 to contain most species of the poroid and hydnoid genera Antrodiella , Junghuhnia , and Steccherinum , as well as members of 12 other hydnoid and poroid genera that had been traditionally classified in the families Phanerochaetaceae, Polyporaceae, and Meruliaceae. [15] Several new genera were added to the Steccherinaceae in 2016–17. [20] [21]

Ecology

The order is cosmopolitan and contains around 1800 species of fungi worldwide—about 1.5% of all known fungus species. [10] All species in the Polyporales are saprotrophs, most of them wood-rotters. Their fruit bodies are therefore typically found on living or moribund trees or on dead attached or fallen wood. Polyporales species that fruit on the ground are either root rot species–such as Laetiporus cincinnatus and Grifola frondosa , or are fruiting from buried pieces of substrate–such as Polyporus radicatus and P. melanopus . [22]

Wood-decay Polyporales reduce the volume of dead wood in the forest and are an important component of the carbon cycle. [13] Wood is composed of primarily three types of tissue: lignin, cellulose, and hemicelluloses. White rot species of Polyporales are efficient degraders of the decay-resistant polymer lignin, leaving partially degraded cellulose as a residue. [13] Brown rot species break down the cellulose fibres, leaving a brittle, brown lignin residue. Brown-rot residues such as humus can remain in the soil for hundreds of years, increasing aeration and water-holding capacity. [23]

Peroxidase enzymes that degrade lignin, such as lignin peroxidase, manganese peroxidase, or versatile peroxidase, are present in all white-rot members of the Polyporales, but absent in brown-rot species. [16] [24] [25] Oxidase enzymes, including members of the glucose-methanol-choline oxidoreductase family, play a key role in the breakdown of plant polymers because they generate hydrogen peroxide, which acts as the ultimate oxidizer in both white-rot and brown-rot decay. [26]

Two species of Polyporales, Daedalea quercina and Fomitopsis pinicola , use paralysing toxins to destroy and colonize nematodes that feed on their fruit bodies. [27]

Importance

Glucke Krause (3).jpg
2007-06-27 Laetiporus sulphureus crop.jpg
Sparassis crispa (left) and Laetiporus sulphureus are two edible Polyporales species

Many wood-decay fungi in the genera Fomes , Fomitopsis and Ganoderma are pathogenic, causing butt and root rot of living trees and consequent losses in forestry plantations. Several species, such as the mine fungus Fibroporia vaillantii , can rot and damage structural timber. [28]

Several of the Polyporales, notably Ganoderma lucidum (ling-zhi), Grifola frondosa (maitake), [29] Taiwanofungus camphoratus (niú zhāng zhī), [30] Lignosus rhinocerotis , [31] and Trametes versicolor (yun-zhi), [32] are commercially cultivated and marketed for use in traditional Chinese medicine. The polypores Laetiporus sulphureus , Fomes fomentarius , Fomitopsis pinicola , Fomitopsis betulina , and Laricifomes officinalis have been widely used in central European folk medicine for the treatment of various diseases. [33]

Some species, including several members of the genera Laetiporus and Sparassis , are used as food. [34] Blackfellow's bread, or Laccocephalum mylittae , is an edible that is prized by Aboriginal Australians. [35] Lentinus squarrosulus is collected and eaten in Asian and African communities. [36]

Fomitopsis betulina was formerly used in the manufacture of charcoal crayons. [37] Amadou, a spongy material derived from the fruit bodies of Fomes fomentarius, has been used since ancient times as a tinder. More recently, it has been used by dentists as a styptic, or as a felt-like material for making hats and other items. [38] The anise-scented fruit bodies of Haploporus odorus were used by some tribes of Plains Indians as a component of sacred objects. Laricifomes officinalis was used by nineteenth century Pacific northwest shamans for carving spirit figures. [39] Some species, including dyer's polypore (Phaeolus schweinitzii) and purple dye polypore (Hapalopilus nidulans) are used in mushroom dyeing. [40]

Sequenced genomes

Several member of the Polyporales have had their genomes sequenced to help understand the genetic basis for the production of enzymes involved in the synthesis of bioactive compounds, or to elucidate the metabolic pathways of wood decay, including Ganoderma lucidum, [41] Lignosus rhinocerotis , [42] Dichomitus squalens , [16] Fomitopsis pinicola , [16] Trametes versicolor, [16] and Wolfiporia cocos . [16] Two sequenced fungi, Phanerochaete chrysosporium , [43] and Postia placenta , [44] serve as model species for researchers investigating the mechanism of white rot and brown rot, respectively. [45] [46] As of 2017, there have been 46 Polyporales genomes sequenced, representing about 7% of all sequenced fungal genomes. [10]

Fossil record

Fossilized fruit bodies of a Fomes species dating back to the Tertiary (66–2.6  Ma) were reported in Idaho in 1940. [47] A fossil fruit body of Ganodermites libycus was reported from the Early Miocene (23–2.6 Ma) in the Libyan Desert. This specimen is the earliest convincing fossil evidence for the Polyporales. [48]

Molecular clock techniques have been used to estimate the age of the Polyporales, suggesting that the order evolved either during the late Jurassic, about 203–250 Ma, [14] or, in more recent study, about 114 Ma. [49]

Genera Incertae sedis

There are several genera classified in the Polyporales that for various reason have not been assigned to a specific family. They are incertae sedis with respect to familial placement. Some may be poorly known and/or not included in DNA phylogenetic studies, or when they have been, did not clearly group with any named family (In some cases a new family must be created rather than the placement clarified.). These include:

Related Research Articles

<span class="mw-page-title-main">Polypore</span> Group of fungi

Polypores are a group of fungi that form large fruiting bodies with pores or tubes on the underside. They are a morphological group of basidiomycetes-like gilled mushrooms and hydnoid fungi, and not all polypores are closely related to each other. Polypores are also called bracket fungi or shelf fungi, and they characteristically produce woody, shelf- or bracket-shaped or occasionally circular fruiting bodies that are called conks.

<i>Fomitopsis betulina</i> Common bracket fungus

Fomitopsis betulina, commonly known as the birch polypore, birch bracket, or razor strop, is a common bracket fungus and, as the name suggests, grows almost exclusively on birch trees. The brackets burst out from the bark of the tree, and these fruit bodies can last for more than a year.

<span class="mw-page-title-main">Polyporaceae</span> Family of fungi

The Polyporaceae are a family of poroid fungi belonging to the Basidiomycota. The flesh of their fruit bodies varies from soft to very tough. Most members of this family have their hymenium in vertical pores on the underside of the caps, but some of them have gills or gill-like structures. Many species are brackets, but others have a definite stipe – for example, Polyporus badius.

<i>Ganoderma</i> Genus of fungi

Ganoderma is a genus of polypore fungi in the family Ganodermataceae that includes about 80 species, many from tropical regions. They have a high genetic diversity and are used in traditional Asian medicines. Ganoderma can be differentiated from other polypores because they have a double-walled basidiospore. They may be called shelf mushrooms or bracket fungi.

<i>Phanerochaete</i> Genus of fungi

Phanerochaete is a genus of crust fungi in the family Phanerochaetaceae.

<span class="mw-page-title-main">Fomitopsidaceae</span> Family of fungi

The Fomitopsidaceae are a family of fungi in the order Polyporales. Most species are parasitic on woody plants, and tend to cause brown rots. The name comes from Fomitopsis + -aceae.

<span class="mw-page-title-main">Meruliaceae</span> Family of fungi

The Meruliaceae are a family of fungi in the order Polyporales. According to a 2008 estimate, the family contains 47 genera and 420 species. As of April 2018, Index Fungorum accepts 645 species in the family.

<span class="mw-page-title-main">Phanerochaetaceae</span> Family of fungi

The Phanerochaetaceae are a family of mostly crust fungi in the order Polyporales.

<span class="mw-page-title-main">Steccherinaceae</span> Family of fungi

The Steccherinaceae are a family of about 200 species of fungi in the order Polyporales. It includes crust-like, toothed, and poroid species that cause a white rot in dead wood.

<i>Fomitopsis</i> Genus of fungi

Fomitopsis is a genus of more than 40 species of bracket fungi in the family Fomitopsidaceae.

<i>Meruliopsis</i> Genus of fungi

Meruliopsis is a genus of poroid crust fungi. The genus was circumscribed by Russian mycologist Appollinaris Semenovich Bondartsev in 1959.

<i>Phlebiopsis</i> Genus of fungi

Phlebiopsis is a genus of poroid crust fungi in the family Phanerochaetaceae. The genus contains 11 species, which collectively have a widespread distribution. The genome sequence of the type species, Phlebiopsis gigantea, was published in 2014.

Hjortstamia is a genus of corticioid fungi in the family Phanerochaetaceae. It was circumscribed by French mycologists Jacques Boidin and Gérard Gilles in 2003.

<i>Ceriporia</i> Genus of fungi

Ceriporia is a widely distributed genus of crust fungi.

<i>Ischnoderma</i> Genus of fungi

Ischnoderma is a genus of polypore fungi. Species in the genus have dark brown and tomentose fruit bodies that become darker brown to black and smooth when mature. The genus, widespread in temperate regions, contains an estimated 10 species.

<i>Skeletocutis</i> Genus of fungi

Skeletocutis is a genus of about 40 species of poroid fungi in the family Polyporaceae. The genus has a cosmopolitan distribution, although most species are found in the Northern Hemisphere. It causes a white rot in a diverse array of woody substrates, and the fruit bodies grow as a crust on the surface of the decaying wood. Sometimes the edges of the crust are turned outward to form rudimentary bracket-like caps.

<i>Fibroporia</i> Genus of fungi

Fibroporia is a genus of ten species of poroid crust fungi in the family Fomitopsidaceae. The genus contains species similar to those in genus Antrodia, but they are phylogenetically distinct.

Obba is a genus of three species of poroid, white rot crust fungi in the family Gelatoporiaceae. The genome sequence of the type species, O. rivulosa, was reported in 2016.

<span class="mw-page-title-main">Gelatoporiaceae</span> Family of fungi

The Gelatoporiaceae are a small family of crust fungi in the order Polyporales. The family was circumscribed in 2017 by mycologists Otto Miettinen, Alfredo Justo and David Hibbett to contain the type genus Gelatoporia and three other related genera, Cinereomyces, Obba, and Sebipora.

<span class="mw-page-title-main">Irpicaceae</span> Family of fungi

The Irpicaceae are a family of mostly polypores and crust fungi in the order Polyporales.

References

  1. Zhao, Chang-Lin; Cui, Bao-Kai; Song, Jie; Dai, Yu-Cheng (2015). "Fragiliporiaceae, a new family of Polyporales (Basidiomycota)". Fungal Diversity. 70 (1): 115–126. doi:10.1007/s13225-014-0299-0. S2CID   7252657.
  2. "Trametales Boidin". MycoBank. International Mycological Association. Retrieved 2016-10-16.
  3. Rea, Carleton (1922). "British Basidiomycetae: A Handbook to the Larger British Fungi". Nature. 111 (2781): 574. Bibcode:1923Natur.111..213B. doi:10.1038/111213a0. S2CID   4123814.
  4. Boidin, J.; Mugnier, J.; Canales, R. (1998). "Taxonomie moleculaire des Aphyllophorales". Mycotaxon (in French). 66: 445–491 (see p. 487).
  5. Gäumann, E. (1926). "Vergleichende Morphologie der Pilze". Nature. 117 (2954): 820. Bibcode:1926Natur.117..820.. doi:10.1038/117820a0. S2CID   4096339.
  6. Corner E.J.H. (1932). "The fruit-body of Polystictus xanthopus, Fr". Annals of Botany. 46 (1): 71–111. doi:10.1093/oxfordjournals.aob.a090319. JSTOR   43237358.
  7. Corner E.J.H. (1932). "A Fomes with two systems of hyphae". Transactions of the British Mycological Society. 17 (1–2): 51–81. doi:10.1016/s0007-1536(32)80026-4.
  8. Corner E.J.H. (1932). "The identification of the brown-root fungus". The Gardens' Bulletin; Straits Settlements. 5: 317–350.
  9. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN, eds. (1995). Dictionary of the Fungi (8th ed.). Wallingford, Oxford: CAB International. ISBN   978-0-85198-885-6.
  10. 1 2 3 4 5 6 Justo, Alfredo; Miettinen, Otto; Floudas, Dimitrios; Ortiz-Santana, Beatriz; Sjökvist, Elisabet; Lindner, Daniel; Nakasone, Karen; Niemelä, Tuomo; Larsson, Karl-Henrik; Ryvarden, Leif; Hibbett, David S. (2017). "A revised family-level classification of the Polyporales (Basidiomycota)". Fungal Biology. 121 (9): 798–824. doi: 10.1016/j.funbio.2017.05.010 . PMID   28800851.
  11. Hibbett DS (2006). "A phylogenetic overview of the Agaricomycotina". Mycologia. 98 (6): 917–925. doi:10.3852/mycologia.98.6.917. PMID   17486968. "Archived copy" (PDF). Archived from the original (PDF) on 2011-07-06. Retrieved 2010-11-01.{{cite web}}: CS1 maint: archived copy as title (link)
  12. Binder M, et al. (2005). "The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes)". Systematics and Biodiversity. 3 (2): 113–157. doi:10.1017/s1477200005001623. S2CID   13102957.
  13. 1 2 3 4 5 Binder, Manfred; Justo, Alfredo; Riley, Robert; Salamov, Asaf; Lopez-Giraldez, Francesc; Sjökvist, Elisabet; Copeland, Alex; Foster, Brian; Sun, Hui; Larsson, Ellen; Larsson, Karl-Henrik; Townsend, Jeffrey; Grigoriev, Igor V.; Hibbett, David S. (2013). "Phylogenetic and phylogenomic overview of the Polyporales". Mycologia. 105 (6): 1350–1373. doi:10.3852/13-003. PMID   23935031. S2CID   20812924.
  14. 1 2 Garcia-Sandoval, R.; Wang, Z.; Binder, M.; Hibbett, D.S. (2011). "Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot". Mycologia. 103 (1): 510–524. doi:10.3852/10-209. PMID   21186327. S2CID   9801943.
  15. 1 2 Miettinen, Otto; Larsson, Ellen; Sjökvist, Elisabet; Larsson, Karl-Henrik (2012). "Comprehensive taxon sampling reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores (Polyporales, Basidiomycota)". Cladistics. 28 (3): 251–270. Bibcode:2002clad.book.....S. doi:10.1111/j.1096-0031.2011.00380.x. PMID   34872189. S2CID   84643554.
  16. 1 2 3 4 5 6 Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TK, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012). "The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes". Science. 336 (6089): 1715–1719. Bibcode:2012Sci...336.1715F. doi:10.1126/science.1221748. hdl: 10261/60626 . PMID   22745431. S2CID   37121590.
  17. Kendrick, Bryce (2017). The Fifth Kingdom. An Introduction to Mycology (4th ed.). Indianapolis: Hackett Publishing. pp. 124–125. ISBN   978-1-58510-459-8.
  18. "Index Fungorum - Search Page".
  19. Zhou, Li-Wei; Wang, Xue-Wei; Vlasák, Josef; Ren, Guang-Juan (2017). "Resolution of phylogenetic position of Nigrofomitaceae within Hymenochaetales (Basidiomycota) and Nigrofomes sinomelanoporus sp. nov. (Nigrofomitaceae) from China". MycoKeys. 29 (29): 1–13. doi: 10.3897/mycokeys.29.21250 . PMC   5804300 . PMID   29559823. Open Access logo PLoS transparent.svg
  20. Miettinen, Otto; Ryvarden, Leif (2016). "Polypore genera Antella, Austeria, Butyrea, Citripora, Metuloidea and Trulla (Steccherinaceae, Polyporales)". Annales Botanici Fennici. 53 (3–4): 157–172. doi:10.5735/085.053.0403. S2CID   84739655.
  21. Kotiranta, Heikki; Kulju, Matti; Miettinen, Otto (2017). "Caudicicola gracilis (Polyporales, Basidiomycota), a new polypore species and genus from Finland". Annales Botanici Fennici. 54 (1–3): 159–167. doi:10.5735/085.054.0325. hdl: 10138/234417 . S2CID   90050530.
  22. Volk, Tom (2000). "An introduction to the characters used to identify poroid wood decay fungi". McIlvainea. 14 (2): 74–82.
  23. Alexopoulos, C.J.; Mims, C.W.; Blackwell, M. (1996). Introductory Mycology. New York: Wiley. pp. 570–571. ISBN   978-0-471-52229-4.
  24. Ruiz-Dueñas, Francisco J.; Lundell, Taina; Floudas, Dimitrios; Nagy, Laszlo G.; Barrasa, José M.; Hibbett, David S.; Martínez, Angel T. (2013). "Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes" (PDF). Mycologia. 105 (6): 1428–1444. doi:10.3852/13-059. hdl: 10261/96105 . PMID   23921235. S2CID   14165783.
  25. 1 2 Floudas, D.; Hibbett, D.S. (2015). "Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling". Fungal Biology. 119 (8): 679–719. doi:10.1016/j.funbio.2015.04.003. PMID   26228559.
  26. Ferreira, Patricia; Carro, Juan; Serrano, Ana; Martínez, Angel T. (2015). "A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 Polyporales genomes". Mycologia (Submitted manuscript). 107 (6): 1105–1119. doi:10.3852/15-027. hdl:10261/132482. PMID   26297778. S2CID   25614887.
  27. de Freitas Soares, Filippe Elias; Sufiate, Bruna Leite; de Queiroz, José Humberto (2018). "Nematophagous fungi: Far beyond the endoparasite, predator and ovicidal groups". Agriculture and Natural Resources. 52: 1–8. doi: 10.1016/j.anres.2018.05.010 . Open Access logo PLoS transparent.svg
  28. Reinprecht, Ladislav (2016). Wood Deterioration, Protection and Maintenance. Wiley. p. 147. ISBN   978-1-119-10651-7.
  29. Ulbricht, C.; Weissner, W.; Basch, E.; Giese, N.; Hammerness, P.; Rusie-Seamon, E.; Varghese, M.; Woods, J. (2009). "Maitake mushroom (Grifola frondosa): systematic review by the natural standard research collaboration". J Soc Integr Oncol. 7 (2): 66–72. PMID   19476741.
  30. Lee, Kuo-Hsiung; Morris-Natschke, Susan L.; Yang, Xiaoming; Huang, Rong; Zhou, Ting; Wu, Shou-Fan; Shi, Qian; Itokawa, Hideji (2012). "Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine". Journal of Traditional and Complementary Medicine. 2 (2): 84–95. doi:10.1016/S2225-4110(16)30081-5. PMC   3942920 . PMID   24716120.
  31. Lau, B.F.; Abdullah, N.; Aminudin, N.; Lee, H.B.; Tan, P.J. (2015). "Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp. (tiger׳s milk mushrooms) in Malaysia – A review". Journal of Ethnopharmacology. 169: 441–458. doi:10.1016/j.jep.2015.04.042. PMID   25937256.
  32. Slaven, Zjalic; Adele, Fabbri Anna; Alessandra, Ricelli; Corrado, Fanelli; Massimo, Reverberi (2008). "Medicinal mushrooms". In Ray, Ramesh C.; Ward, Owen P. (eds.). Microbial Biotechnology in Horticulture. CRC Press. p. 308. ISBN   978-1-57808-520-0.
  33. Grienke, Ulrike; Zöll, Margit; Peintner, Ursula; Rollinger, Judith M. (2016). "European medicinal polypores—a modern view on traditional uses". Journal of Ethnopharmacology. 154 (3): 564–583. doi:10.1016/j.jep.2014.04.030. PMID   24786572.
  34. Kuo, Michael (2007). 100 Edible Mushrooms . Ann Arbor, Michigan: The University of Michigan Press. pp.  79–84, 108–110. ISBN   978-0-472-03126-9.
  35. Newton, John (2016). The Oldest Foods on Earth: A History of Australian Native Foods with Recipes. NewSouth. p. 29. ISBN   978-1-74224-226-2.
  36. Lau, Beng Fye; Abdullah, Noorlidah (2017). "Bioprospecting of Lentinus squarrosulus Mont., an underutilized wild edible mushroom, as a potential source of functional ingredients: A review". Trends in Food Science & Technology. 61: 116–131. doi:10.1016/j.tifs.2016.11.017.
  37. McLean, Robert Colquhoun; Cook, Walter Robert Ivimey (1951). Textbook of Theoretical Botany. Longmans, Green. p.  317. ISBN   9780470585580.
  38. Pegler D. (2001). "Useful fungi of the world: Amadou and Chaga". Mycologist. 15 (4): 153–154. doi:10.1016/S0269-915X(01)80004-5. In Germany, this soft, pliable 'felt' has been harvested for many years for a secondary function, namely in the manufacture of hats, dress adornments and purses.
  39. Blanchette, Robert A. (1997). "Haploporus odorus: a sacred fungus in traditional native American culture of the northern plains". Mycologia. 89 (2): 233–240. doi:10.2307/3761076. JSTOR   3761076.
  40. Bessette, Alan; Bessette, Arleen Rainis (2001). The Rainbow Beneath my Feet: A Mushroom Dyer's Field Guide. Syracuse, New York: Syracuse University Press. p. 96. ISBN   978-0-8156-0680-2.
  41. Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, Luo H, Li Y, Song J, Henrissat B, Levasseur A, Qian J, Li J, Luo X, Shi L, He L, Xiang L, Xu X, Niu Y, Li Q, Han MV, Yan H, Zhang J, Chen H, Lv A, Wang Z, Liu M, Schwartz DC, Sun C (2012). "Genome sequence of the model medicinal mushroom Ganoderma lucidum". Nature Communications. 3 (1): 913. Bibcode:2012NatCo...3..913C. doi:10.1038/ncomms1923. PMC   3621433 . PMID   22735441.
  42. Yap, H.Y.; Chooi, Y.H.; Firdaus-Raih, M.; Fung, S.Y.; Ng, S.T.; Tan, C.S.; Tan, N.H. (2014). "The genome of the Tiger Milk mushroom, Lignosus rhinocerotis, provides insights into the genetic basis of its medicinal properties". BMC Genomics. 15 (1): 635. doi: 10.1186/1471-2164-15-635 . PMC   4129116 . PMID   25073817.
  43. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004). "Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78". Nature Biotechnology. 22 (6): 695–700. doi: 10.1038/nbt967 . PMID   15122302.
  44. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009). "Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion". Proceedings of the National Academy of Sciences USA. 106 (6): 1954–1959. Bibcode:2009PNAS..106.1954M. doi: 10.1073/pnas.0809575106 . PMC   2644145 . PMID   19193860.
  45. Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng (2017). "Metadata Analysis of Phanerochaete chrysosporium gene expression data identified common CAZymes encoding gene expression profiles involved in cellulose and hemicellulose degradation". International Journal of Biological Sciences. 13 (1): 85–99. doi:10.7150/ijbs.17390. PMC   5264264 . PMID   28123349.
  46. Vanden Wymelenberg A.; Jill Gaskell; Michael Mozuch; Grzegorz Sabat; John Ralph; Oleksandr Skyba; Shawn D. Mansfield; Robert A. Blanchette; Diego Martinez; Igor Grigoriev; Philip J. Kersten; Dan Cullen (2010). "Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium". Applied and Environmental Microbiology. 76 (11): 3599–3610. Bibcode:2010ApEnM..76.3599V. doi:10.1128/AEM.00058-10. PMC   2876446 . PMID   20400566.
  47. Brown, Roland W. (1940). "A bracket fungus from the late Tertiary of southwestern Idaho". Journal of the Washington Academy of Sciences. 30 (10): 422–424. JSTOR   24529677.
  48. Fleischmann, Andreas; Krings, Michael; Mayr, Helmut; Agerer, Reinhard (2007). "Structurally preserved polypores from the Neogene of North Africa: Ganodermites libycus gen. et sp. nov. (Polyporales, Ganodermataceae)". Review of Palaeobotany and Palynology. 145 (1–2): 159–172. Bibcode:2007RPaPa.145..159F. doi:10.1016/j.revpalbo.2006.10.001.
  49. Zhao, Rui-Lin; Li, Guo-Jie; Sánchez-Ramírez, Santiago; Stata, Matt; Yang, Zhu-Liang; Wu, Gang; Dai, Yu-Cheng; He, Shuang-Hui; Cui, Bao-Kai; Zhou, Jun-Liang; Wu, Fang; He, Mao-Qiang; Moncalvo, Jean-Marc (2017). "A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective". Fungal Diversity. 84 (1): 43–74. doi:10.1007/s13225-017-0381-5. S2CID   1864841.
  50. Gómez-Montoya, N.; Rajchenberg, M.; Robledo, G.L. (2017). "Aegis boa (Polyporales, Basidiomycota) a new neotropical genus and species based on morphological data and phylogenetic evidences". Mycosphere. 8 (6): 1261–1269. doi: 10.5943/mycosphere/8/6/11 . hdl: 11336/45986 . Open Access logo PLoS transparent.svg
  51. Karasiński, Dariusz; Niemelä, Tuomo (2016). "Anthoporia, a new genus in the Polyporales (Agaricomycetes)" (PDF). Polish Botanical Journal. 61 (1): 7–14. doi: 10.1515/pbj-2016-0017 . Open Access logo PLoS transparent.svg
  52. Duhem, Bernard; Schultheis, Ben (2011). "Bourdotiella complicata gen. et sp. nov. de France". Cryptogamie, Mycologie (in French). 32 (4): 391–401. doi:10.7872/crym.v32.iss4.2011.391. S2CID   84992028.
  53. Hjortstam K, Ryvarden L (2005). "New taxa and new combinations in tropical corticioid fungi, (Basidiomycotina, Aphyllophorales)". Synopsis Fungorum. 20: 33–41.
  54. Qin, Wen-Min; Wu, Fang; Zhou, Li-Wei (2016). "Donkioporiella mellea gen. et sp. nov. (Polyporales, Basidiomycota) from Guangxi, China". Cryptogamie, Mycologie. 37 (4): 437–447. doi:10.7872/crym/v37.iss4.2016.437. S2CID   89715790.
  55. Jülich W. (1980). "Notulae et novitates Muluenses". Botanical Journal of the Linnean Society. 81: 43–6. doi:10.1111/j.1095-8339.1980.tb00940.x.
  56. Hjortstam K, Ryvarden L (2004). "Some new tropical genera and species of corticioid fungi (Basidiomycotina, Aphyllophorales)". Synopsis Fungorum. 18: 20–32.
  57. Rick, J. (1940). "Resupinati Riograndenses II". Annales Mycologici. 38 (1): 56–60.
  58. Duhem, Bernard; Buyck, Bart (2011). "Meruliophana mahorensis gen. et sp. nov. de l'île de Mayotte (France Outre-Mer)". Cryptogamie, Mycologie. 32 (2): 135–143. doi:10.7872/crym.v32.iss2.2011.135. S2CID   86045350.
  59. Ryvarden L. (1987). "New and noteworthy polypores from tropical America". Mycotaxon. 28 (2): 525–41 (see p. 532).
  60. Karsten, P.A. (1890). "Fragmenta mycologica XXXI". Hedwigia (in Latin). 29: 270–273.
  61. Dhingra, G.S.; Singh, Avneet P. (2008). "Validation of Repetobasidiopsis and Trimitiella (Basidiomycetes)". Mycotaxon. 105: 421–422.
  62. Westphalen, Mauro C.; Rajchenberg, Mario; Tomšovský, Michal; Gugliotta, Adriana M. (2016). "Extensive characterization of the new genus Rickiopora (Polyporales)". Fungal Biology. 120 (8): 1002–1009. doi:10.1016/j.funbio.2016.05.001. PMID   27521631.
  63. Wu SH, Yu ZH, Dai YC, Chen CT, Su CH, Chen LC, Hsu WC, Hwang GY (2004). "Taiwanofungus, a polypore new genus". Fungal Science (in Chinese). 19 (3–4): 109–116.

Commons-logo.svg Media related to Polyporales at Wikimedia Commons Wikispecies-logo.svg Data related to Polyporales at Wikispecies