Mycelium

Last updated
Mushroom's roots (mycelium).jpg
Oyster mushroom (Pleurotus ostreatus) mycelium in petri dish on coffee grounds.JPG
20100916 011605 Mycelium.jpg
Mycelium.JPG
Mycelium growth, Chapeltoun, North Ayrshire.jpg
Mycelium au devant de la scene.jpg
Micelio y carpoforos de champinon (cropped).JPG
Mycelium
Various examples of mycelium in different sizes, environments and species.

Mycelium (pl.: mycelia) is a root-like structure of a fungus consisting of a mass of branching, thread-like hyphae. [1] Fungal colonies composed of mycelium are found in and on soil and many other substrates. A typical single spore germinates into a monokaryotic mycelium, [1] which cannot reproduce sexually; when two compatible monokaryotic mycelia join and form a dikaryotic mycelium, that mycelium may form fruiting bodies such as mushrooms. [2] A mycelium may be minute, forming a colony that is too small to see, or may grow to span thousands of acres as in Armillaria . The network of mycelium acts similar to human brains, in the way that mycelium is used to send electrical signals to the fruiting bodies of mushrooms. These electrical signals can be used to convey information or warn about incoming danger.

Contents

Through the mycelium, a fungus absorbs nutrients from its environment. It does this in a two-stage process. First, the hyphae secrete enzymes onto or into the food source, which break down biological polymers into smaller units such as monomers. These monomers are then absorbed into the mycelium by facilitated diffusion and active transport.

Mycelia are vital in terrestrial and aquatic ecosystems for their role in the decomposition of plant material. They contribute to the organic fraction of soil, and their growth releases carbon dioxide back into the atmosphere (see carbon cycle). Ectomycorrhizal extramatrical mycelium, as well as the mycelium of arbuscular mycorrhizal fungi, increase the efficiency of water and nutrient absorption of most plants and confers resistance to some plant pathogens. Mycelium is an important food source for many soil invertebrates. They are vital to agriculture and are important to almost all species of plants, many species co-evolving with the fungi. Mycelium is a primary factor in some plants’ health, nutrient intake and growth, with mycelium being a major factor to plant fitness.

Networks of mycelia can transport water [3] and spikes of electrical potential. [4]

"Mycelium", like "fungus", can be considered a mass noun, a word that can be either singular or plural. The term "mycelia", though, like "fungi", is often used as the preferred plural form.

Sclerotia are compact or hard masses of mycelium.

Uses

Agriculture

One of the primary roles of fungi in an ecosystem is to decompose organic compounds. Petroleum products and some pesticides (typical soil contaminants) are organic molecules (i.e., they are built on a carbon structure), and thereby show a potential carbon source for fungi. Hence, fungi have the potential to eradicate such pollutants from their environment unless the chemicals prove toxic to the fungus. This biological degradation is a process known as bioremediation.

Mycelial mats have been suggested as having potential as biological filters, removing chemicals and microorganisms from soil and water. The use of fungal mycelium to accomplish this has been termed mycofiltration.

Knowledge of the relationship between mycorrhizal fungi and plants suggests new ways to improve crop yields. [5]

When spread on logging roads, mycelium can act as a binder, holding disturbed new soil in place preventing washouts until woody plants can establish roots.

Fungi are essential for converting biomass into compost, as they decompose feedstock components such as lignin, which many other composting microorganisms cannot. [6] Turning a backyard compost pile will commonly expose visible networks of mycelia that have formed on the decaying organic material within. Compost is an essential soil amendment and fertilizer for organic farming and gardening. Composting can divert a substantial fraction of municipal solid waste from landfills. [7]

Commercial

Alternatives to polystyrene and plastic packaging can be produced by growing mycelium in agricultural waste. [8]

Mycelium has also been used as a material in furniture, and artificial leather. [9]

Construction material

Mycelium is a strong candidate for sustainable construction primarily due to its lightweight biodegradable structure and its capacity to be grown from waste sources. In addition to this, mycelium has a relatively high strength-to-weight ratio and a much lower embodied energy compared to traditional building materials. Because mycelium takes the form of any mold it's grown in, it can also be advantageous for customization purposes, especially if it's employed as an architectural or aesthetic feature. Current research has also indicated that mycelium does not release toxic resins in the event of a fire because it has a charring effect similar to mass timber. Mycelium plays an interesting role in acoustic insulation, boasting of an absorbance of 70–75% for frequencies of 1500 Hz or less. [10]

Strengths and weaknesses

Mycelium bio-composites have shown strong potential for structural applications, with much higher strength-to-weight ratios than that of conventional materials due primarily to its low density. Compared to conventional building materials, mycelium also has a number of desirable properties that make it an attractive alternative. For example, it has low thermal conductivity and can provide high acoustic insulation. It is biodegradable, has much lower embodied energy, and can serve as a carbon sink, which makes mycelium bio-composites a possible solution to the emissions, energy, and waste associated with building construction.

While mycelium proposes interesting implications as a structural material, there are several significant disadvantages that make it difficult to be practically implemented in large-scale projects. For one, mycelium does not have particularly high compressive strength on its own, ranging from 0.1-0.2 MPa. [11] This is in stark comparison to traditional concrete, which typically has a compressive strength of 17-28 MPa. Even more, because mycelium is considered a living material, it holds specific requirements that make it susceptible to environmental conditions. For instance, it requires a constant source of air in order to stay alive, needs a relatively humid habitat to grow, and cannot be exposed to large amounts of water for fear of contamination and decay.

Mechanical properties

3 separate fungi species (Colorius versicolor, Trametes ochracea, and Ganoderma sessile) were mixed independently with 2 substrates (apple and vine) and tested under separate incubation conditions in order to quantify certain mechanical properties of mycelium. In order to do this, samples were grown in molds, incubated, and dried over the course of 12 days. Samples were tested for water absorption using ASTM C272 guidelines and compared against an EPS material. Tiles of uniform size were cut from the fabricated mold and put under an Instron 3345 machine going at 1 mm/min, up until 20% deformation. [12]

Throughout a 4 stage process, the impact of various substrate and fungal mixes was investigated along with properties of mycelium such as density, water absorption, and compressive strength. Samples were separated into two separate incubation methods and inspected for differences in color, texture, and growth. For the same fungi within each incubation method, minimal differences were recorded. However, across disparate substrate mixtures within the same fungi, colorization and external growth varied between the test samples. While loss of organic matter was calculated, no uniform correlation was found between substrate used and chemical properties of the material. For each of the substrate-fungi mixtures, average densities ranged from 174.1 kg/m3 to 244.9 kg/m3, with the Ganoderma sessile fungi and apple substrate combination being the most dense. Compression tests revealed the Ganoderma sessile fungi and vine substrate to have the highest strength of the samples tested, but no numerical value was provided. [12] For reference, surrounding literature has provided a ballpark estimate of 1-72 kPa. Beyond this, mycelium has a thermal conductivity of 0.05–0.07W/m·K which is less than that of typical concrete. [13]

Construction

The construction of mycelium structures is primarily categorized into three approaches. These include growing blocks in molds, growing in place monolithic structures, and bio-welded units. The first approach cultivates mycelium and its substrate in forms, after which it is dried in ovens and then transported and assembled on site. The second approach uses existing formwork and adapts cast-in-place concrete techniques to grow monolithic mycelium structures in place. The third approach is a hybrid of the previous two referred to as myco-welding, where individual pre-grown units are grown together into a larger monolithic structure. [11]

Studies using grow-in-place methods and myco-welding have explored how to cultivate mycelium and re-use formwork in construction and investigated post-tensioning and friction connections. Research in fabrication has revealed some common challenges faced in construction of mycelium structures, mostly related to the growth of the fungi. It can be difficult to cultivate living material into formwork and it is susceptible to contamination if not properly sterilized. The fungi needs to be kept refrigerated to prevent hardening and properly manage growth and substrate consumption. Additionally, the thickness of fungal growth is limited by the presence of oxygen; if there is no oxygen, the center of the growth can die or be contaminated. [11]

Environmental impact

Researchers have performed life-cycle assessments to evaluate the environmental impact of mycelium bio-composites. In one recent study, [10] mycelium bio-composite blocks were made using rapeseed straw and cellulose as substrate. A cradle-to-gate life cycle analysis was conducted focusing on the embodied energy and carbon of the manufacturing process. This accounted for the production of bags, molds, and raw material and the growth of the fungus and the composite. Metabolic CO2, or the CO2 that results from fungus growth, was calculated by relating the weight of the dry substrate with the burning carbon of cellulose during consumption. Within the manufacturing process, the emissions and energy associated with material cultivation, processing, inoculation, and incubation, and sterilization were also included in the analysis. Variations in incubation time, transportation distance, and processing energy were considered as well.

The embodied energy was found to be 860.3 MJ/m3 and the embodied carbon was -39.5 kg eqCO2 m3, which is lower than typical building materials. The fungal growth was identified as the largest contributor to energy consumption and CO2 emissions. [10] Even when accounting for the short lifetime of mycelium compared to conventional building materials and the CO2 emissions during fungal growth, life cycle analysis results still showed the viability of mycelium as a carbon sink material and as a sustainable alternative to conventional building materials.

Mycelial biology and memory

Several studies have documented the memory capacity of Mycelial networks and their adaptability to specific environmental conditions. Mycelia have been specialized for different functions in various climates and develop symbiotic or pathogenic relationships with other organisms, such as the human pathogen Candida auris , which has developed a unique approach of evading detection by human neutrophils through adaptive selection–a process of fungal learning and memory. [14] Additionally, these functions can change based on the scale of the mycelia and nature of the symbiotic relationship; commensal and mutual relationships between fungi and plants form through a separate process known as mycorrhizal association, which are called mycorrhiza. Additionally, hyphal organization into mycelial networks can be deterministic for a variety of functions including biomass retention, water recycling, expansion of future hyphae on a resource efficient approach towards desired nutrient gradients, and the subsequent distribution of these resources across the hyphal network. [15] On a macroscopic scale, many mycelia operate with a sort of hierarchy having a “trunk” or main mycelium, with smaller “branches” branching off.  Some saprotrophic basidiomycetes are able to remember past decisions about directional nutrition gradients and will build future mycelium in that direction. [16]

Mycelial memory and intelligence

Current research on collective mycelial intelligence is limited, and while many studies have observed memory and the exchange of electric charge across mycelial networks, this is insufficient evidence to make conclusions about how sensory data is processed in these networks. However, some examples of increased thermal resistance in filamentous fungi suggest a power-law relationship for memory and exposure to a stimulus. [17] Mycelia have also demonstrated the ability to edit their genetic structures within a lifetime due to antibiotic or other extracellular stressors, which can cause rapid acquisition of resistance genes, like those in C. auris . [14] Additionally, plasmodial slime molds demonstrate a similar method of information sharing, as both mycelia and slime molds make use of cAMP molecules for aggregation and signaling. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Ascomycota</span> Division or phylum of fungi

Ascomycota is a phylum of the kingdom Fungi that, together with the Basidiomycota, forms the subkingdom Dikarya. Its members are commonly known as the sac fungi or ascomycetes. It is the largest phylum of Fungi, with over 64,000 species. The defining feature of this fungal group is the "ascus", a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of the Ascomycota are asexual, meaning that they do not have a sexual cycle and thus do not form asci or ascospores. Familiar examples of sac fungi include morels, truffles, brewers' and bakers' yeast, dead man's fingers, and cup fungi. The fungal symbionts in the majority of lichens such as Cladonia belong to the Ascomycota.

<span class="mw-page-title-main">Hypha</span> Long, filamentous structure in fungi and Actinobacteria

A hypha is a long, branching, filamentous structure of a fungus, oomycete, or actinobacterium. In most fungi, hyphae are the main mode of vegetative growth, and are collectively called a mycelium.

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<span class="mw-page-title-main">Arbuscular mycorrhiza</span> Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza (AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules. Arbuscular mycorrhiza is a type of endomycorrhiza along with ericoid mycorrhiza and orchid mycorrhiza .They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered.

Fungiculture is the cultivation of fungi such as mushrooms. Cultivating fungi can yield foods, medicine, construction materials and other products. A mushroom farm is involved in the business of growing fungi.

<span class="mw-page-title-main">Soil biology</span> Study of living things in soil

Soil biology is the study of microbial and faunal activity and ecology in soil. Soil life, soil biota, soil fauna, or edaphon is a collective term that encompasses all organisms that spend a significant portion of their life cycle within a soil profile, or at the soil-litter interface. These organisms include earthworms, nematodes, protozoa, fungi, bacteria, different arthropods, as well as some reptiles, and species of burrowing mammals like gophers, moles and prairie dogs. Soil biology plays a vital role in determining many soil characteristics. The decomposition of organic matter by soil organisms has an immense influence on soil fertility, plant growth, soil structure, and carbon storage. As a relatively new science, much remains unknown about soil biology and its effect on soil ecosystems.

<span class="mw-page-title-main">Saprotrophic nutrition</span> Type of heterotrophic nutrition

Saprotrophic nutrition or lysotrophic nutrition is a process of chemoheterotrophic extracellular digestion involved in the processing of decayed organic matter. It occurs in saprotrophs, and is most often associated with fungi and soil bacteria. Saprotrophic microscopic fungi are sometimes called saprobes. Saprotrophic plants or bacterial flora are called saprophytes, although it is now believed that all plants previously thought to be saprotrophic are in fact parasites of microscopic fungi or other plants. The process is most often facilitated through the active transport of such materials through endocytosis within the internal mycelium and its constituent hyphae.

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

<span class="mw-page-title-main">Hartig net</span> Network of inward-growing hyphae

The Hartig net is the network of inward-growing hyphae, that extends into the plant host root, penetrating between plant cells in the root epidermis and cortex in ectomycorrhizal symbiosis. This network is the internal component of fungal morphology in ectomycorrhizal symbiotic structures formed with host plant roots, in addition to a hyphal mantle or sheath on the root surface, and extramatrical mycelium extending from the mantle into the surrounding soil. The Hartig net is the site of mutualistic resource exchange between the fungus and the host plant. Essential nutrients for plant growth are acquired from the soil by exploration and foraging of the extramatrical mycelium, then transported through the hyphal network across the mantle and into the Hartig net, where they are released by the fungi into the root apoplastic space for uptake by the plant. The hyphae in the Hartig net acquire sugars from the plant root, which are transported to the external mycelium to provide a carbon source to sustain fungal growth.

<span class="mw-page-title-main">Mycoforestry</span>

Mycoforestry is an ecological forest management system implemented to enhance forest ecosystems and plant communities through the introduction of mycorrhizal and saprotrophic fungi. Mycoforestry is considered a type of permaculture and can be implemented as a beneficial component of an agroforestry system. Mycoforestry can enhance the yields of tree crops and produce edible mushrooms, an economically valuable product. By integrating plant-fungal associations into a forestry management system, native forests can be preserved, wood waste can be recycled back into the ecosystem, carbon sequestration can be increased, planted restoration sites are enhanced, and the sustainability of forest ecosystems are improved. Mycoforestry is an alternative to the practice of clearcutting, which removes dead wood from forests, thereby diminishing nutrient availability and reducing soil depth.

Nitrogen nutrition in the arbuscular mycorrhizal system refers to...

<span class="mw-page-title-main">Mycorrhizal network</span> Underground fungal networks that connect individual plants together

A mycorrhizal network is an underground network found in forests and other plant communities, created by the hyphae of mycorrhizal fungi joining with plant roots. This network connects individual plants together. Mycorrhizal relationships are most commonly mutualistic, with both partners benefiting, but can be commensal or parasitic, and a single partnership may change between any of the three types of symbiosis at different times.

<span class="mw-page-title-main">Mycorrhizal fungi and soil carbon storage</span>

Soil carbon storage is an important function of terrestrial ecosystems. Soil contains more carbon than plants and the atmosphere combined. Understanding what maintains the soil carbon pool is important to understand the current distribution of carbon on Earth, and how it will respond to environmental change. While much research has been done on how plants, free-living microbial decomposers, and soil minerals affect this pool of carbon, it is recently coming to light that mycorrhizal fungi—symbiotic fungi that associate with roots of almost all living plants—may play an important role in maintaining this pool as well. Measurements of plant carbon allocation to mycorrhizal fungi have been estimated to be 5 to 20% of total plant carbon uptake, and in some ecosystems the biomass of mycorrhizal fungi can be comparable to the biomass of fine roots. Recent research has shown that mycorrhizal fungi hold 50 to 70 percent of the total carbon stored in leaf litter and soil on forested islands in Sweden. Turnover of mycorrhizal biomass into the soil carbon pool is thought to be rapid and has been shown in some ecosystems to be the dominant pathway by which living carbon enters the soil carbon pool.

<span class="mw-page-title-main">Ectomycorrhiza</span> Non-penetrative symbiotic association between a fungus and the roots of a vascular plant

An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.

<span class="mw-page-title-main">Ectomycorrhizal extramatrical mycelium</span>

Ectomycorrhizal extramatrical mycelium is the collection of filamentous fungal hyphae emanating from ectomycorrhizas. It may be composed of fine, hydrophilic hypha which branches frequently to explore and exploit the soil matrix or may aggregate to form rhizomorphs; highly differentiated, hydrophobic, enduring, transport structures.

<i>Rhizopus stolonifer</i> Species of fungus

Rhizopus stolonifer is commonly known as black bread mold. It is a member of Zygomycota and considered the most important species in the genus Rhizopus. It is one of the most common fungi in the world and has a global distribution although it is most commonly found in tropical and subtropical regions. It is a common agent of decomposition of stored foods. Like other members of the genus Rhizopus, R. stolonifer grows rapidly, mostly in indoor environments.

Orchid mycorrhizae are endomycorrhizal fungi which develop symbiotic relationships with the roots and seeds of plants of the family Orchidaceae. Nearly all orchids are myco-heterotrophic at some point in their life cycle. Orchid mycorrhizae are critically important during orchid germination, as an orchid seed has virtually no energy reserve and obtains its carbon from the fungal symbiont.

A living building material (LBM) is a material used in construction or industrial design that behaves in a way resembling a living organism. Examples include: self-mending biocement, self-replicating concrete replacement, and mycelium-based composites for construction and packaging. Artistic projects include building components and household items.

<span class="mw-page-title-main">Mucoromycota</span> Diverse group of molds

Mucoromycota is a division within the kingdom fungi. It includes a diverse group of various molds, including the common bread molds Mucor and Rhizopus. It is a sister phylum to Dikarya.

<span class="mw-page-title-main">Mycelium-based materials</span>

Mycelium, the fungal equivalent of roots in plants, has been identified as an ecologically friendly substitute to a litany of materials throughout different industries, including but not limited to packaging, fashion and building materials. Such substitutes present a biodegradable alternative to conventional materials.

References

  1. 1 2 Fricker M, Boddy L, Bebber D (2007). Biology of the fungal cell. Springer. pp. 309–330.
  2. "Mycelium". Microbiology from A to Z. Micropia . Retrieved 30 November 2021.
  3. Worrich A, Stryhanyuk H, Musat N, König S, Banitz T, Centler F, et al. (June 2017). "Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments". Nature Communications. 8: 15472. Bibcode:2017NatCo...815472W. doi:10.1038/ncomms15472. PMC   5467244 . PMID   28589950.
  4. Adamatzky A (April 2022). "Language of fungi derived from their electrical spiking activity". Royal Society Open Science. 9 (4): 211926. arXiv: 2112.09907 . Bibcode:2022RSOS....911926A. doi:10.1098/rsos.211926. PMC   8984380 . PMID   35425630.
  5. Wu S, Shi Z, Chen X, Gao J, Wang X (February 2022). "Arbuscular mycorrhizal fungi increase crop yields by improving biomass under rainfed condition: a meta-analysis". PeerJ. 10: e12861. doi: 10.7717/peerj.12861 . PMC   8815364 . PMID   35178300.
  6. "Composting - Compost Microorganisms". Cornell University . Retrieved 17 April 2014.
  7. Epstein E (2011). Industrial Composting: Environmental Engineering and Facilities Management. CRC Press. ISBN   978-1439845318.
  8. Kile M (13 September 2013). "How to replace foam and plastic packaging with mushroom experiments". Al Jazeera America.
  9. Lawrie E (10 September 2019). "The bizarre fabrics that fashion is betting on". BBC.
  10. 1 2 3 Livne A, Wösten HA, Pearlmutter D, Gal E (2022-09-19). "Fungal Mycelium Bio-Composite Acts as a CO 2 -Sink Building Material with Low Embodied Energy". ACS Sustainable Chemistry & Engineering. 10 (37): 12099–12106. doi:10.1021/acssuschemeng.2c01314. hdl: 1874/423146 . ISSN   2168-0485. S2CID   252020516.
  11. 1 2 3 Dessi-Olive J (September 2022). "Strategies for Growing Large-Scale Mycelium Structures". Biomimetics. 7 (3): 129. doi: 10.3390/biomimetics7030129 . PMC   9496270 . PMID   36134933.
  12. 1 2 Attias N, Danai O, Abitbol T, Tarazi E, Ezov N, Pereman I, Grobman YJ (2020-02-10). "Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis". Journal of Cleaner Production. 246: 119037. doi:10.1016/j.jclepro.2019.119037. ISSN   0959-6526. S2CID   210283849.
  13. Yang Z, Zhang F, Still B, White M, Amstislavski P (2017-07-01). "Physical and Mechanical Properties of Fungal Mycelium-Based Biofoam". Journal of Materials in Civil Engineering. 29 (7): 04017030. doi:10.1061/(ASCE)MT.1943-5533.0001866. ISSN   0899-1561.
  14. 1 2 Brown, Alistair J. P.; Gow, Neil A. R.; Warris, Adilia; Brown, Gordon D. (March 2019). "Memory in Fungal Pathogens Promotes Immune Evasion, Colonisation, and Infection". Trends in Microbiology. 27 (3): 219–230. doi:10.1016/j.tim.2018.11.001. hdl: 2164/13333 . ISSN   1878-4380. PMID   30509563. S2CID   54524381.
  15. 1 2 Fricker, Mark D.; Heaton, Luke L. M.; Jones, Nick S.; Boddy, Lynne (May 2017). "The Mycelium as a Network". Microbiology Spectrum. 5 (3). doi:10.1128/microbiolspec.FUNK-0033-2017. ISSN   2165-0497. PMID   28524023.
  16. Fukasawa, Yu; Savoury, Melanie; Boddy, Lynne (February 2020). "Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources". The ISME Journal. 14 (2): 380–388. doi:10.1038/s41396-019-0536-3. ISSN   1751-7370. PMC   6976561 . PMID   31628441.
  17. Andrade-Linares, Diana R.; Veresoglou, Stavros D.; Rillig, Matthias C. (2016-06-01). "Temperature priming and memory in soil filamentous fungi". Fungal Ecology. 21: 10–15. doi:10.1016/j.funeco.2016.02.002. ISSN   1754-5048.