Mycology

Last updated
Mushrooms are considered a kind of fungal reproductive organ. Mycena leaiana var. australis.jpg
Mushrooms are considered a kind of fungal reproductive organ.

Mycology is the branch of biology concerned with the study of fungi, including their taxonomy, genetics, biochemical properties, and use by humans. Fungi can be a source of tinder, food, traditional medicine, as well as entheogens, poison, and infection. Mycology branches into the field of phytopathology, the study of plant diseases. The two disciplines are closely related, because the vast majority of plant pathogens are fungi. A biologist specializing in mycology is called a mycologist.

Contents

Overview

Although mycology was historically considered a branch of botany, the 1969 discovery [1] of fungi's close evolutionary relationship to animals resulted in the study's reclassification as an independent field. [2] Pioneer mycologists included Elias Magnus Fries, Christiaan Hendrik Persoon, Heinrich Anton de Bary, Elizabeth Eaton Morse, and Lewis David de Schweinitz. Beatrix Potter, author of The Tale of Peter Rabbit , also made significant contributions to the field. [3]

Pier Andrea Saccardo developed a system for classifying the imperfect fungi by spore color and form, which became the primary system used before classification by DNA analysis. He is most famous for his Sylloge Fungorum, [4] which was a comprehensive list of all of the names that had been used for mushrooms. Sylloge is still the only work of this kind that was both comprehensive for the botanical kingdom Fungi and reasonably modern. [5]

Many fungi produce toxins, [6] antibiotics, [7] and other secondary metabolites. For example, the cosmopolitan genus Fusarium and their toxins associated with fatal outbreaks of alimentary toxic aleukia in humans were extensively studied by Abraham Z. Joffe. [8]

Fungi are fundamental for life on earth in their roles as symbionts, e.g. in the form of mycorrhizae, insect symbionts, and lichens. Many fungi are able to break down complex organic biomolecules such as lignin, the more durable component of wood, and pollutants such as xenobiotics, petroleum, and polycyclic aromatic hydrocarbons. By decomposing these molecules, fungi play a critical role in the global carbon cycle.

Fungi and other organisms traditionally recognized as fungi, such as oomycetes and myxomycetes (slime molds), often are economically and socially important, as some cause diseases of animals (including humans) and of plants. [9]

Apart from pathogenic fungi, many fungal species are very important in controlling the plant diseases caused by different pathogens. For example, species of the filamentous fungal genus Trichoderma are considered one of the most important biological control agents as an alternative to chemical-based products for effective crop diseases management. [10]

Field meetings to find interesting species of fungi are known as 'forays', after the first such meeting organized by the Woolhope Naturalists' Field Club in 1868 and entitled "A foray among the funguses[ sic ]". [11]

Some fungi can cause disease in humans and other animals; the study of pathogenic fungi that infect animals is referred to as medical mycology. [12]

History

It is believed that humans started collecting mushrooms as food in prehistoric times. Mushrooms were first written about in the works of Euripides (480–406 BC). The Greek philosopher Theophrastos of Eresos (371–288 BC) was perhaps the first to try to systematically classify plants; mushrooms were considered to be plants missing certain organs. It was later Pliny the Elder (23–79 AD), who wrote about truffles in his encyclopedia Natural History . [13] The word mycology comes from the Ancient Greek: μύκης (mukēs), meaning "fungus" and the suffix -λογία (-logia), meaning "study". [14]

Fungi and truffles are neither herbs, nor roots, nor flowers, nor seeds, but merely the superfluous moisture or earth, of trees, or rotten wood, and of other rotting things. This is plain from the fact that all fungi and truffles, especially those that are used for eating, grow most commonly in thundery and wet weather.

Jerome Bock (Hieronymus Tragus), 1552 [15]

The Middle Ages saw little advancement in the body of knowledge about fungi. However, the invention of the printing press allowed authors to dispel superstitions and misconceptions about the fungi that had been perpetuated by the classical authors. [16]

Group photograph taken at a meeting of the British Mycological Society in 1913 British Mycological Society 1913 a.jpg
Group photograph taken at a meeting of the British Mycological Society in 1913

The start of the modern age of mycology begins with Pier Antonio Micheli's 1737 publication of Nova plantarum genera. [17] Published in Florence, this seminal work laid the foundations for the systematic classification of grasses, mosses and fungi. He originated the still current genus names Polyporus [18] and Tuber, [19] both dated 1729 (though the descriptions were later amended as invalid by modern rules).

The founding nomenclaturist Carl Linnaeus included fungi in his binomial naming system in 1753, where each type of organism has a two-word name consisting of a genus and species (whereas up to then organisms were often designated with Latin phrases containing many words). [20] He originated the scientific names of numerous well-known mushroom taxa, such as Boletus [21] and Agaricus , [22] which are still in use today. During this period, fungi were still considered to belong to the plant kingdom, so they were categorized in his Species Plantarum . Linnaeus' fungal taxa were not nearly as comprehensive as his plant taxa, however, grouping together all gilled mushrooms with a stem in genus Agaricus. [23] [24] Thousands of gilled species exist, which were later divided into dozens of diverse genera; in its modern usage, Agaricus only refers to mushrooms closely related to the common shop mushroom, Agaricus bisporus . [25] For example, Linnaeus gave the name Agaricus deliciosus to the saffron milk-cap, but its current name is Lactarius deliciosus . [26] On the other hand, the field mushroom Agaricus campestris has kept the same name ever since Linnaeus's publication. [27] The English word "agaric" is still used for any gilled mushroom, which corresponds to Linnaeus's use of the word. [25]

The term mycology and the complementary term mycologist are traditionally attributed to M.J. Berkeley in 1836. [28] However, mycologist appeared in writings by English botanist Robert Kaye Greville as early as 1823 in reference to Schweinitz. [29]

Mycology and drug discovery

For centuries, certain mushrooms have been documented as a folk medicine in China, Japan, and Russia. [30] Although the use of mushrooms in folk medicine is centered largely on the Asian continent, people in other parts of the world like the Middle East, Poland, and Belarus have been documented using mushrooms for medicinal purposes. [31]

Mushrooms produce large amounts of vitamin D when exposed to ultraviolet (UV) light. [32] Penicillin, ciclosporin, griseofulvin, cephalosporin and psilocybin are examples of drugs that have been isolated from molds or other fungi.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Edible mushroom</span> Edible fungi fruit bodies

Edible mushrooms are the fleshy fruit bodies of several species of macrofungi. Edibility may be defined by criteria including the absence of poisonous effects on humans and desirable taste and aroma. Mushrooms that have a particularly desirable taste are described as "choice". Edible mushrooms are consumed for their nutritional and culinary value. Mushrooms, especially dried shiitake, are sources of umami flavor.

<i>Lactarius</i> Genus of fungi

Lactarius is a genus of mushroom-producing, ectomycorrhizal fungi, containing several edible species. The species of the genus, commonly known as milk-caps, are characterized by the milky fluid ("latex") they exude when cut or damaged. Like the closely related genus Russula, their flesh has a distinctive brittle consistency. It is a large genus with over 500 known species, mainly distributed in the Northern hemisphere. Recently, the genus Lactifluus has been separated from Lactarius based on molecular phylogenetic evidence.

<i>Lactarius deliciosus</i> Species of fungus

Lactarius deliciosus, commonly known as the delicious milk cap, saffron milk cap and red pine mushroom, is one of the best known members of the large milk-cap genus Lactarius in the order Russulales. It is native to Europe, but has been accidentally introduced to other countries along with pine trees, with which the fungus is symbiotic.

<i>Paxillus involutus</i> Species of fungus

Paxillus involutus, also known as the brown roll-rim or the common roll-rim, is a basidiomycete fungus that is widely distributed across the Northern Hemisphere. It has been inadvertently introduced to Australia, New Zealand, South Africa, and South America, probably transported in soil with European trees. Various shades of brown in colour, the fruit body grows up to 6 cm high and has a funnel-shaped cap up to 12 cm wide with a distinctive inrolled rim and decurrent gills that may be pore-like close to the stipe. Although it has gills, it is more closely related to the pored boletes than to typical gilled mushrooms. It was first described by Pierre Bulliard in 1785, and was given its current binomial name by Elias Magnus Fries in 1838. Genetic testing suggests that Paxillus involutus may be a species complex rather than a single species.

<span class="mw-page-title-main">Fungi of Australia</span>

The Fungi of Australia form an enormous and phenomenally diverse group, a huge range of freshwater, marine and terrestrial habitats with many ecological roles, for example as saprobes, parasites and mutualistic symbionts of algae, animals and plants, and as agents of biodeterioration. Where plants produce, and animals consume, the fungi recycle, and as such they ensure the sustainability of ecosystems.

<span class="mw-page-title-main">British Mycological Society</span> UK learned society

The British Mycological Society is a learned society established in 1896 to promote the study of fungi.

<span class="mw-page-title-main">Pier Andrea Saccardo</span> Italian botanist and mycologist (1845–1920)

Pier Andrea Saccardo was an Italian botanist and mycologist. He was also the author of a color classification system that he called Chromotaxia. He was elected to the Linnean Society in 1916 as a foreign member. His multi-volume Sylloge Fungorum was one of the first attempts to produce a comprehensive treatise on the fungi which made use of the spore-bearing structures for classification.

<i>Agaricus campestris</i> Species of fungus

Agaricus campestris is a widely eaten gilled mushroom closely related to the cultivated A. bisporus. A. campestris is commonly known as the field mushroom or, in North America, meadow mushroom.

<span class="mw-page-title-main">Fungivore</span> Organism that consumes fungi

Fungivory or mycophagy is the process of organisms consuming fungi. Many different organisms have been recorded to gain their energy from consuming fungi, including birds, mammals, insects, plants, amoebas, gastropods, nematodes, bacteria and other fungi. Some of these, which only eat fungi, are called fungivores whereas others eat fungi as only part of their diet, being omnivores.

<span class="mw-page-title-main">Fungus</span> Biological kingdom, separate from plants and animals

A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as one of the traditional eukaryotic kingdoms, along with Animalia, Plantae and either Protista or Protozoa and Chromista.

<span class="mw-page-title-main">Geoffrey Clough Ainsworth</span> Mycologist, historian (1905-1998)

Geoffrey Clough Ainsworth was a British mycologist and scientific historian. He was the older brother of Ruth Ainsworth.

<i>Rhodotus</i> Genus of fungus

Rhodotus is a genus in the fungus family Physalacriaceae. There are two species in the genus with the best known, Rhodotus palmatus, called the netted rhodotus, the rosy veincap, or the wrinkled peach. This uncommon species has a circumboreal distribution, and has been collected in eastern North America, northern Africa, Europe, and Asia; declining populations in Europe have led to its appearance in over half of the European fungal Red Lists of threatened species. Typically found growing on the stumps and logs of rotting hardwoods, mature specimens may usually be identified by the pinkish color and the distinctive ridged and veined surface of their rubbery caps; variations in the color and quantity of light received during development lead to variations in the size, shape, and cap color of fruit bodies.

Neonothopanus nambi is a poisonous and bioluminescent mushroom in the family Marasmiaceae. The genetic and molecular mechanisms underlying this species' bioluminescence were published in 2019, the first to be elucidated for a fungus. In 2020, genes from this fungus were used to create bioluminescent tobacco plants.

<i>Leucocoprinus fragilissimus</i> Species of fungus

Leucocoprinus fragilissimus, commonly known as the fragile dapperling, is a species of gilled mushroom in the family Agaricaceae.

Margit Babos was a Hungarian mycologist born on 28 October 1931 in Budapest. She became one of the most widely recognized mycologists in the second half of the 20th century in Eastern Europe, with contributions to mycological research, fungal taxonomy and recording the mycoflora of Hungary.

Heinrich Klebahn was a German mycologist and phytopathologist.

<i>Amanita ananiceps</i> Species of fungus

Amanita ananiceps is a species of agaric fungus in the family Amanitaceae native to Australia.

The following outline is provided as an overview of and topical guide to fungi and mycology:

<span class="mw-page-title-main">Lilian Hawker</span> British mycologist

Lilian Edith Hawker was a British mycologist, known for her work on fungal physiology, particularly spore production. She was an expert on British truffles, and also published in the fields of plant physiology and plant pathology. She was also known for her contributions to education in mycology. Most of her career was spent at the botany department of the Imperial College of Science and Technology (1932–45) and the University of Bristol (1945–73), where she held the chair in mycology (1965–73) and was dean of the science faculty (1970–73). She served as president of the British Mycological Society, and was elected an honorary member of that society and of the Mycological Society of America. She published an introduction to fungi and two books on fungal physiology, of which Physiology of Fungi (1950) was among the first to survey the field, and also co-edited two microbiology textbooks.

<i>Leucocoprinus ianthinus</i> Species of fungus

Leucocoprinus ianthinus is a species of mushroom producing fungus in the family Agaricaceae. Like several other Leucocoprinus species it may have originated in a tropical climate but now finds a home in plant pots, greenhouses and compost piles in many countries. It is not seen in plant pots with the same kind of regularity as the well known Leucocoprinus birnbaumii and not seen in the wild as frequently as Leucocoprinus brebissonii.

References

  1. Whittaker RH (10 January 1969). "New concepts of kingdoms of organisms: evolutionary relations are better represented by new classifications than by the traditional two kingdoms". Science. 163 (3863): 150–160. doi:10.1126/science.163.3863.150. PMID   5762760.
  2. Woese CR, Kandler O, Wheelis ML (June 1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya". Proceedings of the National Academy of Sciences of the United States of America. 87 (12): 4576–4579. Bibcode:1990PNAS...87.4576W. doi: 10.1073/pnas.87.12.4576 . PMC   54159 . PMID   2112744.
  3. Casadevall A, Kontoyiannis DP, Robert V (July 2019). "On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds". mBio. 10 (4): 1786–1787. doi:10.3201/eid2509.ac2509. PMC   6711238 . PMID   31337723.
  4. Saccardo, P. A.; Traverso, G. B.; Trotter, A. (1882). Sylloge fungorum omnium hucusque cognitorum. doi:10.5962/bhl.title.5371.[ page needed ]
  5. Bolman, Brad (September 2023). "What mysteries lay in spore: taxonomy, data, and the internationalization of mycology in Saccardo's Sylloge Fungorum". The British Journal for the History of Science. 56 (3): 369–390. doi:10.1017/S0007087423000158. PMID   37248705.
  6. Wilson BJ (1971). Ciegler A, Kadis S, Ajl SJ (eds.). Microbial Toxins, Vol. VI Fungal Toxins. New York: Academic Press. p. 251.
  7. Brian, P. W. (June 1951). "Antibiotics produced by fungi". The Botanical Review. 17 (6): 357–430. Bibcode:1951BotRv..17..357B. doi:10.1007/BF02879038.
  8. Joffe, Abraham Z.; Yagen, Boris (January 1978). "Intoxication produced by toxic fungi Fusarium poae and F. sporotrichioides on chicks". Toxicon. 16 (3): 263–273. Bibcode:1978Txcn...16..263J. doi:10.1016/0041-0101(78)90087-9. PMID   653754.
  9. De Lucca AJ (March 2007). "Harmful fungi in both agriculture and medicine". Revista Iberoamericana de Micologia. 24 (1): 3–13. PMID   17592884.
  10. Ruano-Rosa, David; Prieto, Pilar; Rincón, Ana María; Gómez-Rodríguez, María Victoria; Valderrama, Raquel; Barroso, Juan Bautista; Mercado-Blanco, Jesús (June 2016). "Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae". BioControl. 61 (3): 269–282. Bibcode:2016BioCo..61..269R. doi:10.1007/s10526-015-9706-z.
  11. Anon (1868). "A foray among the funguses". Transactions of the Woolhope Naturalists' Field Club. 1868. Woolhope Naturalists' Field Club.: 184–192. Archived from the original on 2018-11-06. Retrieved 2018-01-14.
  12. San-Blas, Gioconda; Calderone, Richard A. (2008). Pathogenic Fungi: Insights in Molecular Biology. Caister Academic Press. ISBN   978-1-913652-13-5.[ page needed ]
  13. Pliny the Elder. "Book 19, Chapter 11" [Natural History]. www.perseus.tufts.edu. Archived from the original on April 4, 2022. Retrieved February 28, 2021.
  14. Henry A (1861). A Glossary of Scientific Terms for general use. p. 131.
  15. De stirpium maxime earum quae in Germania nostra nascuntur, usitatis nomenclaturis. Strasbourg. In Ainsworth 1976, p. 13 quoting Buller AH (1915). "Micheli and the discovery of reproduction in fungi". Transactions of the Royal Society of Canada. 3. 9: 1–25.
  16. Ainsworth 1976, p. 13.
  17. Ainsworth 1976, p. 4.
  18. "the Polyporus P. Micheli page". www.indexfungorum.org. Archived from the original on 2023-10-04. Retrieved 2024-06-12.
  19. "the Tuber P. Micheli page". www.indexfungorum.org. Archived from the original on 2023-07-15. Retrieved 2024-06-12.
  20. Kibby, Geoffrey (2017). Mushrooms and Toadstools of Britain & Europe. Geoffrey Kibby. pp. 14–15. ISBN   978-0-9572094-2-8.
  21. "the Boletus L. page". www.indexfungorum.org. Archived from the original on 2023-11-11. Retrieved 2024-06-12.
  22. "the Agaricus L. page". www.indexfungorum.org. Retrieved 2024-06-12.
  23. "Home". fmhibd.library.cmu.edu. Archived from the original on 2018-07-12. Retrieved 2024-06-12.
  24. Linné, Carl von; Linné, Carl von; Salvius, Lars (1753). Caroli Linnaei ... Species plantarum :exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas... Vol. 2 (1st ed.). Holmiae: Impensis Laurentii Salvii. p. 1171. Archived from the original on 2020-05-06. Retrieved 2020-07-16.
  25. 1 2 Læssøe, Thomas; Petersen, Jens Henrik (2019). Fungi of Temperate Europe. Princeton University Press. pp. 8, 500. ISBN   978-0-691-18037-3.
  26. "the Agaricus deliciosus L. page". www.speciesfungorum.org. Archived from the original on 2023-12-01. Retrieved 2024-06-12.
  27. "the Agaricus campestris L. page". www.speciesfungorum.org. Archived from the original on 2023-11-16. Retrieved 2024-06-12.
  28. Ainsworth 1976, p. 2.
  29. Greville, Robert Kaye (April 1823). "Observations on a New Genus of Plants, belonging to the Natural Order Gastromyci". The Edinburgh Philosophical Journal. 8 (16): 257.
  30. Sullivan, Richard. Medicinal Mushrooms: Their therapeutic properties and current medical usage with special emphasis on cancer treatments. p. 5. Archived from the original on 2023-07-29. Retrieved 2024-06-12.
  31. Shashkina, M. Ya.; Shashkin, P. N.; Sergeev, A. V. (October 2006). "Chemical and medicobiological properties of chaga (review)". Pharmaceutical Chemistry Journal. 40 (10): 560–568. doi:10.1007/s11094-006-0194-4.
  32. Cardwell G, Bornman JF, James AP, Black LJ (October 2018). "A Review of Mushrooms as a Potential Source of Dietary Vitamin D". Nutrients. 10 (10): 1498. doi: 10.3390/nu10101498 . PMC   6213178 . PMID   30322118.

Cited literature