Centrifugation is a mechanical process which involves the use of the centrifugal force to separate particles from a solution according to their size, shape, density, medium viscosity and rotor speed. [1] The denser components of the mixture migrate away from the axis of the centrifuge, while the less dense components of the mixture migrate towards the axis. Chemists and biologists may increase the effective gravitational force of the test tube so that the precipitate (pellet) will travel quickly and fully to the bottom of the tube. The remaining liquid that lies above the precipitate is called a supernatant or supernate.
There is a correlation between the size and density of a particle and the rate that the particle separates from a heterogeneous mixture, when the only force applied is that of gravity. The larger the size and the larger the density of the particles, the faster they separate from the mixture. By applying a larger effective gravitational force to the mixture, like a centrifuge does, the separation of the particles is accelerated. This is ideal in industrial and lab settings because particles that would naturally separate over a long period of time can be separated in much less time. [2]
The rate of centrifugation is specified by the angular velocity usually expressed as revolutions per minute (RPM), or acceleration expressed as g. The conversion factor between RPM and g depends on the radius of the centrifuge rotor. The particles' settling velocity in centrifugation is a function of their size and shape, centrifugal acceleration, the volume fraction of solids present, the density difference between the particle and the liquid, and the viscosity. The most common application is the separation of solid from highly concentrated suspensions, which is used in the treatment of sewage sludges for dewatering where less consistent sediment is produced. [3]
The centrifugation method has a wide variety of industrial and laboratorial applications; not only is this process used to separate two miscible substances, but also to analyze the hydrodynamic properties of macromolecules. [4] It is one of the most important and commonly used research methods in biochemistry, cell and molecular biology. In the chemical and food industries, special centrifuges can process a continuous stream of particle turning into separated liquid like plasma. Centrifugation is also the most common method used for uranium enrichment, relying on the slight mass difference between atoms of U-238 and U-235 in uranium hexafluoride gas. [5]
In a liquid suspension, many particles or cells will gradually fall to the bottom of the container due to gravity; however, the amount of time taken for such separations is not feasible. Other particles, which are very small, can not be isolated at all in solution until they are exposed to a high centrifugal force. As the suspension is rotated at a certain speed or revolutions per minute (RPM), the centrifugal force allows the particles to travel radially away from the rotation axis. The general formula for calculating the revolutions per minute (RPM) of a centrifuge is:
,
where g represents the relative centrifugal force (RCF) and r the radius from the center of the rotor to a point in the sample. [6]
However, depending on the centrifuge model used, the respective angle of the rotor and the radius may vary, thus the formula gets modified. For example, the Sorvall #SS-34 rotor has a maximum radius of 10.8 cm, so the formula becomes , which can further simplify to . [6]
When compared to gravity, the particle force is called the 'Relative Centrifugal Force' (RCF). It is the perpendicular force exerted on the contents of the rotor as a result of the rotation, always relative to the gravity of the Earth, which measures the strength of rotors of different types and sizes. For instance, the RCF of 1000 x g means that the centrifugal force is 1000 times stronger than the Earth's gravitational force. RCF is dependent on the speed of rotation in rpm and the distance of the particles from the center of rotation. The most common formula used for calculating RCF is: [7]
,
where is a constant; r is the radius, expressed in centimetres, between the axis of rotation and a point in the sample; and rpm is the speed in revolutions per minute. [7]
Historically, many separations have been carried out at the speed of 3000 rpm; a rough guide to the ‘g’ force exerted at this speed is to multiply the centrifugation radius by a factor of 10, so a radius of 160 mm gives approximately 1600 x g. [8] This is a rather arbitrary approach, since the RCF applied is linearly dependent on the radius, so a 10% larger radius means that a 10% higher RCF is applied at the same speed. Roughly, the above formula can be simplified to , with an error of only 0.62%.
Microcentrifuges are specially designed table-top models with light, small-volume rotors capable of very fast acceleration up to approximately 17,000 rpm. They are lightweight devices which are primarily used for short-time centrifugation of samples up to around 0.2–2.0 mL. However, due to their small scale, they are readily transportable and, if necessary, can be operated in a cold room. [9] They can be refrigerated or not. The microcentrifuge is normally used in research laboratories where small samples of biological molecules, cells, or nuclei are required to be subjected to high RCF for relatively short time intervals. [9] Microcentrifuges designed for high-speed operation can reach up to 35,000 rpm, giving RCF up to 30000×g, and are called high-speed microcentrifuges. [10]
Low-speed centrifuges are used to harvest chemical precipitates, intact cells (animal, plant and some microorganisms), nuclei, chloroplasts, large mitochondria and the larger plasma-membrane fragments. Density gradients for purifying cells are also run in these centrifuges. Swinging-bucket rotors tend to be used very widely because of the huge flexibility of sample size through the use of adaptors. [9] These machines have maximum rotor speeds of less than 10 000 rpm and vary from small, bench-top to large, floor-standing centrifuges. [11]
High-speed centrifuges are typically used to harvest microorganisms, viruses, mitochondria, lysosomes, peroxisomes and intact tubular Golgi membranes. The majority of the simple pelleting tasks are carried out in fixed angle rotors. Some density-gradient work for purifying cells and organelles can be carried out in swinging-bucket rotors, or in the case of Percoll gradients in fixed-angle rotors. [9] High-speed or superspeed centrifuges can handle larger sample volumes, from a few tens of millilitres to several litres. Additionally, larger centrifuges can also reach higher angular velocities (around 30,000 rpm). The rotors may come with different adapters to hold various sizes of test tubes, bottles, or microtiter plates.
Ultracentrifugation makes use of high centrifugal force for studying properties of biological particles at exceptionally high speeds. Current ultracentrifuges can spin to as much as 150,000 rpm (equivalent to 1,000,000 x g). [12] They are used to harvest all membrane vesicles derived from the plasma membrane, endoplasmic reticulum (ER) and Golgi membrane, endosomes, ribosomes, ribosomal subunits, plasmids, DNA, RNA and proteins in fixed-angle rotors. [9] Compared to microcentrifuges or high-speed centrifuges, ultracentrifuges can isolate much smaller particles and, additionally, whilst microcentrifuges and supercentrifuges separate particles in batches (limited volumes of samples must be handled manually in test tubes or bottles), ultracentrifuges can separate molecules in batch or continuous flow systems.[ citation needed ]
Ultracentrifugation is employed for separation of macromolecules/ligand binding kinetic studies, separation of various lipoprotein fractions from plasma and deprotonisation of physiological fluids for amino acid analysis. [1]
They are the most commonly used centrifuge for the density-gradient purification of all particles except cells, and, whilst swinging buckets have been traditionally used for this purpose, fixed-angle rotors and vertical rotors are also used, particularly for self-generated gradients and can improve the efficiency of separation greatly. There are two kinds of ultracentrifuges: the analytical and the preparative.
Analytical ultracentrifugation (AUC) can be used for determination of the properties of macromolecules such as shape, mass, composition, and conformation. It is a commonly used biomolecular analysis technique used to evaluate sample purity, to characterize the assembly and disassembly mechanisms of biomolecular complexes, to determine subunit stoichiometries, to identify and characterize macromolecular conformational changes, and to calculate equilibrium constants and thermodynamic parameters for self-associating and hetero-associating systems. [13] Analytical ultracentrifuges incorporate a scanning visible/ultraviolet light-based optical detection system for real-time monitoring of the sample’s progress during a spin. [14]
Samples are centrifuged with a high-density solution such as sucrose, caesium chloride, or iodixanol. The high-density solution may be at a uniform concentration throughout the test tube ("cushion") or a varying concentration ("gradient"). Molecular properties can be modeled through sedimentation velocity analysis or sedimentation equilibrium analysis. During the run, the particle or molecules will migrate through the test tube at different speeds depending on their physical properties and the properties of the solution, and eventually form a pellet at the bottom of the tube, or bands at various heights.
Preparative ultracentrifuges are often used for separating particles according to their densities, isolating and/or harvesting denser particles for collection in the pellet, and clarifying suspensions containing particles. Sometimes researchers also use preparative ultracentrifuges if they need the flexibility to change the type of rotor in the instrument. Preparative ultracentrifuges can be equipped with a wide range of different rotor types, which can spin samples of different numbers, at different angles, and at different speeds. [14]
In biological research, cell fractionation typically includes the isolation of cellular components while retaining the individual roles of each component. Generally, the cell sample is stored in a suspension which is:
Centrifugation is the first step in most fractionations. Through low-speed centrifugation, cell debris may be removed, leaving a supernatant preserving the contents of the cell. Repeated centrifugation at progressively higher speeds will fractionate homogenates of cells into their components. In general, the smaller the subcellular component, the greater is the centrifugal force required to sediment it. [15] The soluble fraction of any lysate can then be further separated into its constituents using a variety of methods.
Differential centrifugation is the simplest method of fractionation by centrifugation, [9] commonly used to separate organelles and membranes found in cells. Organelles generally differ from each other in density and in size, making the use of differential centrifugation, and centrifugation in general, possible. The organelles can then be identified by testing for indicators that are unique to the specific organelles. [6] The most widely used application of this technique is to produce crude subcellular fractions from a tissue homogenate such as that from rat liver. [9] Particles of different densities or sizes in a suspension are sedimented at different rates, with the larger and denser particles sedimenting faster. These sedimentation rates can be increased by using centrifugal force. [16]
A suspension of cells is subjected to a series of increasing centrifugal force cycles to produce a series of pellets comprising cells with a declining sedimentation rate. Homogenate includes nuclei, mitochondria, lysosomes, peroxisomes, plasma membrane sheets and a broad range of vesicles derived from a number of intracellular membrane compartments and also from the plasma membrane, typically in a buffered medium. [9]
Density gradient centrifugation is known to be one of the most efficient methods for separating suspended particles, and is used both as a separation technique and as a method for measuring the density of particles or molecules in a mixture. [17]
It is used to separate particles on the basis of size, shape, and density by using a medium of graded densities. During a relatively short or slow centrifugation, the particles are separated by size, with larger particles sedimenting farther than smaller ones. Over a long or fast centrifugation, particles travel to locations in the gradient where the density of the medium is the same as that of the particle density; (ρp – ρm) → 0. Therefore, a small, dense particle initially sediments less readily than a large, low density particle. The large particles reach their equilibrium density position early, while the small particles slowly migrate across the large particle zone and ultimately take up an equilibrium position deeper into the gradient. [18]
A tube, after being centrifuged by this method, has particles in order of density based on height. The object or particle of interest will reside in the position within the tube corresponding to its density. [19] Nevertheless, some non-ideal sedimentations are still possible when using this method. The first potential issue is the unwanted aggregation of particles, but this can occur in any centrifugation. The second possibility occurs when droplets of solution that contain particles sediment. This is more likely to occur when working with a solution that has a layer of suspension floating on a dense liquid, which in fact have little to no density gradient. [17]
A centrifuge can be used to isolate small quantities of solids retained in suspension from liquids, such as in the separation of chalk powder from water. In biological research, it can be used in the purification of mammalian cells, fractionation of subcellular organelles, fractionation of membrane vesicles, fractionation of macromolecules and macromolecular complexes, etc. [9] Centrifugation is used in many different ways in the food industry. For example, in the dairy industry, it is typically used in the clarification and skimming of milk, extraction of cream, production and recovery of casein, cheese production, removing bacterial contaminants, etc. This processing technique is also used in the production of beverages, juices, coffee, tea, beer, wine, soy milk, oil and fat processing/recovery, cocoa butter, sugar production, etc. [20] It is also used in the clarification and stabilization of wine.
In forensic and research laboratories, it can be used in the separation of urine and blood components. It also aids in separation of proteins using purification techniques such as salting out, e.g. ammonium sulfate precipitation. [6] Centrifugation is also an important technique in waste treatment, being one of the most common processes used for sludge dewatering. [21] This process also plays a role in cyclonic separation, where particles are separated from an air-flow without the use of filters. In a cyclone collector, air moves in a helical path. Particles with high inertia are separated by the centrifugal force whilst smaller particles continue with the air-flow. [22]
Centrifuges have also been used to a small degree to isolate lighter-than-water compounds, such as oil. In such situations, the aqueous discharge is obtained at the opposite outlet from which solids with a specific gravity greater than one are the target substances for separation. [23]
By 1923 Theodor Svedberg and his student H. Rinde had successfully analyzed large-grained sols in terms of their gravitational sedimentation. [24] Sols consist of a substance evenly distributed in another substance, also known as a colloid. [25] However, smaller grained sols, such as those containing gold, could not be analyzed. [24] To investigate this problem Svedberg developed an analytical centrifuge, equipped with a photographic absorption system, which would exert a much greater centrifugal effect. [24] In addition, he developed the theory necessary to measure molecular weight. [25] During this time, Svedberg's attention shifted from gold to proteins. [24]
By 1900, it had been generally accepted that proteins were composed of amino acids; however, whether proteins were colloids or macromolecules was still under debate. [26] One protein being investigated at the time was hemoglobin. It was determined to have 712 carbon, 1,130 hydrogen, 243 oxygen, two sulfur atoms, and at least one iron atom. This gave hemoglobin a resulting weight of approximately 16,000 dalton (Da) but it was uncertain whether this value was a multiple of one or four (dependent upon the number of iron atoms present). [27]
Through a series of experiments utilizing the sedimentation equilibrium technique, two important observations were made: hemoglobin has a molecular weight of 68,000 Da, suggesting that there are four iron atoms present rather than one, and that, no matter where the hemoglobin was isolated from, it had exactly the same molecular weight. [24] [25] How something of such a large molecular mass could be consistently found, regardless of where it was sampled from in the body, was unprecedented and favored the idea that proteins are macromolecules rather than colloids. [26] In order to investigate this phenomenon, a centrifuge with even higher speeds was needed, and thus the ultracentrifuge was created to apply the theory of sedimentation-diffusion. [24] The same molecular mass was determined, and the presence of a spreading boundary suggested that it was a single compact particle. [24] Further application of centrifugation showed that under different conditions the large homogeneous particles could be broken down into discrete subunits. [24] The development of centrifugation was a great advance in experimental protein science.
Linderstorm-Lang, in 1937, discovered that density gradient tubes could be used for density measurements. He discovered this when working with potato yellow-dwarf virus. [17] This method was also used in Meselson and Stahl's famous experiment in which they proved that DNA replication is semi-conservative by using different isotopes of nitrogen. They used density gradient centrifugation to determine which isotope or isotopes of nitrogen were present in the DNA after cycles of replication. [19]
A centrifuge is a device that uses centrifugal force to subject a specimen to a specified constant force - for example, to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities or liquids from solids. It works by causing denser substances and particles to move outward in the radial direction. At the same time, objects that are less dense are displaced and moved to the centre. In a laboratory centrifuge that uses sample tubes, the radial acceleration causes denser particles to settle to the bottom of the tube, while low-density substances rise to the top. A centrifuge can be a very effective filter that separates contaminants from the main body of fluid.
An ultracentrifuge is a centrifuge optimized for spinning a rotor at very high speeds, capable of generating acceleration as high as 1 000 000 g. There are two kinds of ultracentrifuges, the preparative and the analytical ultracentrifuge. Both classes of instruments find important uses in molecular biology, biochemistry, and polymer science.
In chemistry, a Svedberg unit or svedberg is a non-SI metric unit for sedimentation coefficients. The Svedberg unit offers a measure of a particle's size indirectly based on its sedimentation rate under acceleration. The svedberg is a measure of time, defined as exactly 10−13 seconds (100 fs).
Sedimentation equilibrium in a suspension of different particles, such as molecules, exists when the rate of transport of each material in any one direction due to sedimentation equals the rate of transport in the opposite direction due to diffusion. Sedimentation is due to an external force, such as gravity or centrifugal force in a centrifuge.
In biochemistry and cell biology, differential centrifugation is a common procedure used to separate organelles and other sub-cellular particles based on their sedimentation rate. Although often applied in biological analysis, differential centrifugation is a general technique also suitable for crude purification of non-living suspended particles. In a typical case where differential centrifugation is used to analyze cell-biological phenomena, a tissue sample is first lysed to break the cell membranes and release the organelles and cytosol. The lysate is then subjected to repeated centrifugations, where particles that sediment sufficiently quickly at a given centrifugal force for a given time form a compact "pellet" at the bottom of the centrifugation tube.
Protein purification is a series of processes intended to isolate one or a few proteins from a complex mixture, usually cells, tissues or whole organisms. Protein purification is vital for the specification of the function, structure and interactions of the protein of interest. The purification process may separate the protein and non-protein parts of the mixture, and finally separate the desired protein from all other proteins. Ideally, to study a protein of interest, it must be separated from other components of the cell so that contaminants will not interfere in the examination of the protein of interest's structure and function. Separation of one protein from all others is typically the most laborious aspect of protein purification. Separation steps usually exploit differences in protein size, physico-chemical properties, binding affinity and biological activity. The pure result may be termed protein isolate.
A gas centrifuge is a device that performs isotope separation of gases. A centrifuge relies on the principles of centrifugal force accelerating molecules so that particles of different masses are physically separated in a gradient along the radius of a rotating container. A prominent use of gas centrifuges is for the separation of uranium-235 (235U) from uranium-238 (238U). The gas centrifuge was developed to replace the gaseous diffusion method of 235U extraction. High degrees of separation of these isotopes relies on using many individual centrifuges arranged in series that achieve successively higher concentrations. This process yields higher concentrations of 235U while using significantly less energy compared to the gaseous diffusion process.
Analytical ultracentrifugation is an analytical technique which combines an ultracentrifuge with optical monitoring systems.
In chemistry, the sedimentation coefficient of a particle characterizes its sedimentation during centrifugation. It is defined as the ratio of a particle's sedimentation velocity to the applied acceleration causing the sedimentation.
A laboratory centrifuge is a piece of laboratory equipment, driven by a motor, which spins liquid samples at high speed. There are various types of centrifuges, depending on the size and the sample capacity.
Percoll is a tool for efficient density separation in Cell biology that was first formulated by Pertoft and colleagues, and commercialized by Pharmacia Fine Chemicals. It is used for the isolation of cells, organelles, and/or viruses by density centrifugation. Percoll was developed from previously reported uses of colloidal silica nanoparticles coated with polysaccharides or polymers for rate zonal, isopycnic, or equilibrium centrifugal separations. Percoll itself specifically consists of polydisperse silica nanoparticles 15–30 nm diameter which have been coated with polyvinylpyrrolidone (PVP). Percoll is well suited for density gradient experiments because it possesses a low viscosity compared to alternatives, a low osmolarity, and no toxicity towards cells and their constituents.
Field-flow fractionation, abbreviated FFF, is a separation technique invented by J. Calvin Giddings. The technique is based on separation of colloidal or high molecular weight substances in liquid solutions, flowing through the separation platform, which does not have a stationary phase. It is similar to liquid chromatography, as it works on dilute solutions or suspensions of the solute, carried by a flowing eluent. Separation is achieved by applying a field or cross-flow, perpendicular to the direction of transport of the sample, which is pumped through a long and narrow laminar channel. The field exerts a force on the sample components, concentrating them towards one of the channel walls, which is called accumulation wall. The force interacts with a property of the sample, thereby the separation occurs, in other words, the components show differing "mobilities" under the force exerted by the crossing field. As an example, for the hydraulic, or cross-flow FFF method, the property driving separation is the translational diffusion coefficient or the hydrodynamic size. For a thermal field, it is the ratio of the thermal and the translational diffusion coefficient.
In centrifugation the clearing factor or k factor represents the relative pelleting efficiency of a given centrifuge rotor at maximum rotation speed. It can be used to estimate the time required for sedimentation of a fraction with a known sedimentation coefficient :
Counterflow centrifugal elutriation (CCE) is a liquid clarification technique. This method enables scientists to separate different cells with different sizes. Since cell size is correlated with cell cycle stages this method also allows the separation of cells at different stages of the cell cycle.
The Zippe-type centrifuge is a gas centrifuge designed to enrich the rare fissile isotope uranium-235 (235U) from the mixture of isotopes found in naturally occurring uranium compounds. The isotopic separation is based on the slight difference in mass of the isotopes. The Zippe design was originally developed in the Soviet Union by a team led by 60 Austrian and German scientists and engineers captured after World War II, working in detention. In the West the type is known by the name of the man who recreated the technology after his return to the West in 1956, based on his recollection of his work in the Soviet program, Gernot Zippe. To the extent that it might be referred to in Soviet/Russian usage by any one person's name, it was known as a Kamenev centrifuge.
A centrifugal extractor—also known as a centrifugal contactor or annular centrifugal contactor—uses the rotation of the rotor inside a centrifuge to mix two immiscible liquids outside the rotor and to separate the liquids in the field of gravity inside the rotor. This way, a centrifugal extractor generates a continuous extraction from one liquid phase into another liquid phase.
Free-flow electrophoresis (FFE), also known as carrier-free electrophoresis, is a matrix-free, high-voltage electrophoretic separation technique. FFE is an analogous technique to capillary electrophoresis, with a comparable resolution, that can be used for scientific questions, where semi-preparative and preparative amounts of samples are needed. It is used to quantitatively separate samples according to differences in charge or isoelectric point by forming a pH gradient. Because of the versatility of the technique, a wide range of protocols for the separation of samples like rare metal ions, protein isoforms, multiprotein complexes, peptides, organelles, cells, DNA origami, blood serum and nanoparticles exist. The advantage of FFE is the fast and gentle separation of samples dissolved in a liquid solvent without any need of a matrix, like polyacrylamide in gel electrophoresis. This ensures a very high recovery rate since analytes do not adhere to any carrier or matrix structure. Because of its continuous nature and high volume throughput, this technique allows a fast separation of preparative amounts of samples with a very high resolution. Furthermore, the separations can be conducted under native or denaturing conditions.
A centrifuge is a device that employs a high rotational speed to separate components of different densities. This becomes relevant in the majority of industrial jobs where solids, liquids and gases are merged into a single mixture and the separation of these different phases is necessary. A decanter centrifuge separates continuously solid materials from liquids in the slurry, and therefore plays an important role in the wastewater treatment, chemical, oil, and food processing industries. There are several factors that affect the performance of a decanter centrifuge, and some design heuristics are to be followed which are dependent upon given applications.
Analytical band centrifugation (ABC) (also known as analytical band ultracentrifugation, or band sedimentation-velocity), is a specialized ultracentrifugation procedure, where unlike the typical use of (boundary) sedimentation velocity analytical ultracentrifugation (SV-AUC) wherein a homogenous bulk solution is centrifuged, in ABC a thin (~15 μL, ~500 μm) sample is layered on top of a bulk solvent and then centrifuged. The method is distinguished from zone-sedimentation in that a stabilizing density gradient is self-generated during centrifugation, through the use of a higher density (than the sample) bulk "binary solvent", containing both a solvent (i.e. H2O), and a second component (small molecules, i.e. CsCl) that will sediment to form a stabilizing density gradient for the sample.
A centrifuge is a device that uses centrifugal force to separate its components.
{{cite book}}
: |first1=
has generic name (help)