Evaporator

Last updated
An industrial evaporator used in a chemical plant in Turkey. Evaporator.jpg
An industrial evaporator used in a chemical plant in Turkey.

An evaporator is a type of heat exchanger device that facilitates evaporation by utilizing conductive and convective heat transfer, which provides the necessary thermal energy for phase transition from liquid to vapor. Within evaporators, a circulating liquid is exposed to an atmospheric or reduced pressure environment, causing it to boil at a lower temperature compared to normal atmospheric boiling.

Contents

The four main components of an evaporator assembly are:

  1. Tubes or channels where the refrigerant liquid is circulated
  2. Fins or other enhanced surfaces to increase heat transfer area
  3. A source of heat such as steam or combustion gases directed over the tubes
  4. Distillation of vapor into an outlet piping system

Heat is transferred to the liquid inside the tube walls via conduction, providing the thermal energy needed for evaporation. Convective currents inside also contribute to heat transfer efficiency.

There are various evaporator designs suitable for different applications, including shell and tube, plate, and flooded evaporators, commonly used in industrial processes such as desalination, power generation, and air conditioning. Plate-type evaporators offer compactness, while multi-stage designs enable enhanced evaporation rates at lower heat duties. The overall performance of evaporators depends on factors such as the heat transfer coefficient, tube/plate material properties, flow regime, and achieved vapor quality.

Advanced control techniques, such as online fouling detection, help maintain evaporator thermal performance over time. Additionally, computational fluid dynamics (CFD) modeling and advancements in surface coating technologies continue to enhance heat and mass transfer capabilities, leading to more energy-efficient vapor generation. Evaporators are essential to many industries because of their ability to separate phases through a controlled phase change process.

Uses

Air conditioning and refrigeration

Some air conditioners and refrigerators use compressed liquids with a low boiling point that vaporizes within the system to cool it, whilst emitting the thermal energy into its surroundings. [1] [2]

Food industry and synthetic chemistry

Evaporators are often used to concentrate a solution. One example is the climbing/falling film plate evaporator, which is used to make condensed milk.

Similarly, reduction (cooking) is a process of evaporating liquids from a solution to produce a "reduced" food product, such as wine reduction.

Evaporation is the main process behind distillation, which is used to concentrate alcohol, isolate liquid chemical products, or recover solvents in chemical reactions. The fragrance and essential oil industry uses distillation to purify compounds. Each application uses specialized devices.

Chemical engineering

In the case of desalination of seawater or in Zero Liquid Discharge plants, the reverse purpose applies; evaporation removes the desirable drinking water from the undesired solute/product, salt. [3]

Chemical engineering uses evaporation in many processes. For example, the multiple-effect evaporator is used in Kraft pulping, [4] the process of producing wood pulp from wood.

Marine

Morison's evaporator00.jpg

Large ships usually carry evaporating plants to produce fresh water, reducing their reliance on shore-based supplies. Steamships must produce high-quality distillate to maintain boiler-water levels. Diesel engine ships often utilize waste heat as an energy source for producing fresh water. In this system, the engine-cooling water is passed through a heat exchange, where it is cooled by concentrated seawater. Because the cooling water, which is chemically treated fresh water, is at a temperature of 70–80 °C (158–176 °F), it would not be possible to flash off any water vapor unless the pressure in the heat exchanger vessel is dropped.

A brine-air ejector venturi pump is then used to create a vacuum inside the vessel, achieving partial evaporation. The vapor then passes through a demister before reaching the condenser section. Seawater is pumped through the condenser section to cool the vapor sufficiently for condensation. The distillate gathers in a tray, from where it is pumped to the storage tanks. A salinometer monitors salt content and diverts the flow of distillate from the storage tanks if the salt content exceeds the alarm limit. Sterilization is carried out after the evaporator.

Evaporators are usually of the shell-and-tube type (known as an Atlas Plant) or of the plate type (such as the type designed by Alfa Laval). Temperature, production and vacuum are controlled by regulating the system valves. Seawater temperature can interfere with production, as can fluctuations in engine load. For this reason, the evaporator is adjusted as seawater temperature changes and shuts down altogether when the ship is maneuvering. An alternative in some vessels, such as naval ships and passenger ships, is the use of the reverse osmosis principle for fresh-water production instead of using evaporators.

Energetic

Evaporation, or vaporization, is an endothermic phase transition process that is thoroughly understood in the field of thermodynamics. It is intimately related to the vapor pressure of the liquid and surrounding pressure, in addition to the enthalpy of vaporization.

Types of evaporators

Evaporator with SBT to eliminate bumping. Centrifan PE.jpg
Evaporator with SBT to eliminate bumping.

Evaporators work using the same principle design. A heat source is in contact with the liquid causing it to evaporate. The vapor is removed entirely (like in cooking), or it is stored for reuse (like in a refrigerator) or a product for isolation (essential oil).

Rotary evaporator

Rotary evaporators use a vacuum pump to create a low pressure over a solvent while simultaneously rotating the liquid flask to increase surface area and decrease bubble size. Typically, the vapor is passed over a cold finger or coil so that the vaporized material does not damage the pump. The rotary evaporator is best used for removing solvent from solutions containing the desired product that will not vaporize at the operating pressure to separate the volatile components of a mixture from non-volatile materials.

Natural/forced circulation evaporator

Natural circulation evaporators are based on the natural circulation of the product caused by the density differences that arise from heating (convection). A chamber containing a solution is heated, and the vaporized liquid is collected in a receiving flask.

Falling film evaporator

This type of evaporator is generally made of 4–8 m (13–26 ft) tubes enclosed by steam jackets. The uniform distribution of the solution is important when using this type of evaporator. The solution enters and gains velocity as it flows downward. This gain in velocity is attributed to the vapor being evolved against the heating medium, which also flows downward. This evaporator is usually applied to highly viscous solutions, so it is frequently used in the chemical, sugar, food, and fermentation industries.

Rising film (long tube vertical) evaporator

A rising film evaporator. LTV Evaporator.JPG
A rising film evaporator.

This type of evaporator is useful in concentrating a solution. [5] The operation is very similar to that of a calandria where the liquid is boiled inside vertical tubes by applying heat to the outside of the tubes. The produced solvent vapor presses the liquid against the walls of the tubes forming a thin film that moves upwards with the vapor. The vapor may be released from the system while the liquid may be recirculated through the evaporator to further concentrate the solute. In many cases, the tubes of a rising film evaporator are usually between 3–10 metres (9.8–32.8 ft) in height with a diameter of between 25–50 millimetres (0.98–1.97 in). Sizing this type of evaporator requires a precise evaluation of the actual level of the liquid inside the tubes and the flow rates of the vapor and film.

Climbing and falling-film plate evaporator

Climbing and falling-film plate evaporators have a relatively large surface area. The plates are usually corrugated and are supported by the frame. During evaporation, steam flows through the channels formed by the free spaces between the plates. The steam alternately climbs and falls parallel to the concentrated liquid. The steam follows a co-current, counter-current path with the liquid. The concentrate and the vapor are fed into the separation stage, where the vapor is sent to a condenser. This type of plate evaporator is frequently applied in the dairy and fermentation industries since they have spatial flexibility. A negative point of this type of evaporator is its limited ability to treat viscous or solid-containing products. There are other types of plate evaporators that work with only climbing film.

Multiple-effect evaporators

Unlike single-stage evaporators, these evaporators can be composed of up to seven evaporator stages (effects). The energy consumption for single-effect evaporators is very high and is most of the cost for an evaporation system. Putting together evaporators saves heat and thus requires less energy. Adding one evaporator to the original decreases energy consumption by 50%. Adding another effect reduces it to 33% and so on. A heat-saving-percent equation can estimate how much one will save by adding a certain number of effects.

The number of effects in a multiple-effect evaporator is usually restricted to seven because, after that, the equipment cost approaches the cost savings of the energy-requirement drop.

Two types of feeding can be used when dealing with multiple-effect evaporators:

In recent years, multiple-effect vacuum evaporator (with heat pump) systems have come into use. These are well known to be energetically and technically more effective than systems with mechanical vapor recompression (MVR). Due to the lower boiling temperature, they can handle highly corrosive liquids or liquids which are prone to forming incrustations. [6]

Agitated Thin / Wiped Film Evaporator Diagram. Thin Film Evaporator.png
Agitated Thin / Wiped Film Evaporator Diagram.

Agitated thin film evaporators

Agitated thin-film evaporation has been very successful with difficult-to-handle products. Simply stated, the method quickly separates the volatile from the less volatile components using indirect heat transfer and mechanical agitation of the flowing product film under controlled conditions. The separation is normally made under vacuum conditions to maximize ∆T while maintaining the most favorable product temperature so that the product only sees equilibrium conditions inside the evaporator and can maximize volatile stripping and recovery. [7]

Problems

Technical problems can arise during evaporation, especially when the process is used in the food industry. Some evaporators are sensitive to differences in viscosity and consistency of the dilute solution. These evaporators could work inefficiently because of a loss of circulation. The pump of an evaporator may need to be changed if the evaporator needs to be used to concentrate a highly viscous solution.

Fouling also occurs when hard deposits form on the surfaces of the heating mediums in the evaporators. In foods, proteins and polysaccharides can create such deposits that reduce the efficiency of heat transfer. Foaming can also create a problem since dealing with excess foam can be costly in time and efficiency. Antifoam agents are used, but only a few can be used when food is being processed.

Corrosion can also occur when acidic solutions such as citrus juices are concentrated. The surface damage caused can shorten the long life of evaporators. The quality and flavor of food can also suffer during evaporation. Overall, when choosing an evaporator, the qualities of the product solution must be taken into careful consideration.

See also

Related Research Articles

<span class="mw-page-title-main">Boiling point</span> Temperature at which a substance changes from liquid into vapor

The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.

<span class="mw-page-title-main">Distillation</span> Method of separating mixtures

Distillation, also classical distillation, is the process of separating the component substances of a liquid mixture of two or more chemically discrete substances; the separation process is realized by way of the selective boiling of the mixture and the condensation of the vapors in a still.

<span class="mw-page-title-main">Evaporation</span> Type of vaporization of a liquid that occurs from its surface; surface phenomenon

Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. When the molecules of the liquid collide, they transfer energy to each other based on how they collide. When a molecule near the surface absorbs enough energy to overcome the vapor pressure, it will escape and enter the surrounding air as a gas. When evaporation occurs, the energy removed from the vaporized liquid will reduce the temperature of the liquid, resulting in evaporative cooling.

Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation to fractionate. Generally the component parts have boiling points that differ by less than 25 °C (45 °F) from each other under a pressure of one atmosphere. If the difference in boiling points is greater than 25 °C, a simple distillation is typically used.

<span class="mw-page-title-main">Sublimation (phase transition)</span> Transition from solid to gas

Sublimation is the transition of a substance directly from the solid to the gas state, without passing through the liquid state. The verb form of sublimation is sublime, or less preferably, sublimate. Sublimate also refers to the product obtained by sublimation. The point at which sublimation occurs rapidly is called critical sublimation point, or simply sublimation point. Notable examples include sublimation of dry ice at room temperature and atmospheric pressure, and that of solid iodine with heating.

<span class="mw-page-title-main">Heat pipe</span> Heat-transfer device that employs phase transition

A heat pipe is a heat-transfer device that employs phase transition to transfer heat between two solid interfaces.

<span class="mw-page-title-main">Chiller</span> Machine that removes heat from a liquid coolant via vapor compression

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, absorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

<span class="mw-page-title-main">Vacuum distillation</span> Low-pressure and low-temperature distillation method

Vacuum distillation or distillation under reduced pressure is a type of distillation performed under reduced pressure, which allows the purification of compounds not readily distilled at ambient pressures or simply to save time or energy. This technique separates compounds based on differences in their boiling points. This technique is used when the boiling point of the desired compound is difficult to achieve or will cause the compound to decompose. Reduced pressures decrease the boiling point of compounds. The reduction in boiling point can be calculated using a temperature-pressure nomograph using the Clausius–Clapeyron relation.

<span class="mw-page-title-main">Volatility (chemistry)</span> Tendency of a substance to vaporize

In chemistry, volatility is a material quality which describes how readily a substance vaporizes. At a given temperature and pressure, a substance with high volatility is more likely to exist as a vapour, while a substance with low volatility is more likely to be a liquid or solid. Volatility can also describe the tendency of a vapor to condense into a liquid or solid; less volatile substances will more readily condense from a vapor than highly volatile ones. Differences in volatility can be observed by comparing how fast substances within a group evaporate when exposed to the atmosphere. A highly volatile substance such as rubbing alcohol will quickly evaporate, while a substance with low volatility such as vegetable oil will remain condensed. In general, solids are much less volatile than liquids, but there are some exceptions. Solids that sublimate such as dry ice or iodine can vaporize at a similar rate as some liquids under standard conditions.

<span class="mw-page-title-main">Continuous distillation</span> Form of distillation

Continuous distillation, a form of distillation, is an ongoing separation in which a mixture is continuously fed into the process and separated fractions are removed continuously as output streams. Distillation is the separation or partial separation of a liquid feed mixture into components or fractions by selective boiling and condensation. The process produces at least two output fractions. These fractions include at least one volatile distillate fraction, which has boiled and been separately captured as a vapor condensed to a liquid, and practically always a bottoms fraction, which is the least volatile residue that has not been separately captured as a condensed vapor.

<span class="mw-page-title-main">Absorption refrigerator</span> Refrigerator that uses a heat source

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. Solar energy, burning a fossil fuel, waste heat from factories, and district heating systems are examples of convenient heat sources that can be used. An absorption refrigerator uses two coolants: the first coolant performs evaporative cooling and then is absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Absorption refrigerators can also be used to air-condition buildings using the waste heat from a gas turbine or water heater in the building. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration.

<span class="mw-page-title-main">Vacuum evaporation</span>

Vacuum evaporation is the process of causing the pressure in a liquid-filled container to be reduced below the vapor pressure of the liquid, causing the liquid to evaporate at a lower temperature than normal. Although the process can be applied to any type of liquid at any vapor pressure, it is generally used to describe the boiling of water by lowering the container's internal pressure below standard atmospheric pressure and causing the water to boil at room temperature.

<span class="mw-page-title-main">Vapor-compression refrigeration</span> Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

<span class="mw-page-title-main">Vapor-compression evaporation</span> Evaporation method

Vapor-compression evaporation is the evaporation method by which a blower, compressor or jet ejector is used to compress, and thus, increase the pressure of the vapor produced. Since the pressure increase of the vapor also generates an increase in the condensation temperature, the same vapor can serve as the heating medium for its "mother" liquid or solution being concentrated, from which the vapor was generated to begin with. If no compression was provided, the vapor would be at the same temperature as the boiling liquid/solution, and no heat transfer could take place.

<span class="mw-page-title-main">Pumpable ice technology</span> Type of technology to produce and use fluids or secondary refrigerants

Pumpable icetechnology (PIT) uses thin liquids, with the cooling capacity of ice. Pumpable ice is typically a slurry of ice crystals or particles ranging from 5 micrometers to 1 cm in diameter and transported in brine, seawater, food liquid, or gas bubbles of air, ozone, or carbon dioxide.

A climbing/falling film plate evaporator is a specialized type of evaporator in which a thin film of liquid is passed over a rising and falling plate to allow the evaporation process to occur. It is an extension of the falling film evaporator, and has application in any field where the liquid to be evaporated cannot withstand extended exposure to high temperatures, such as the concentration of fruit juices.

Circulation evaporators are a type of evaporating unit designed to separate mixtures unable to be evaporated by a conventional evaporating unit. Circulation evaporation incorporates the use of both heat exchangers and flash separation units in conjunction with circulation of the solvent in order to remove liquid mixtures without conventional boiling. There are two types of Circulation Evaporation; Natural Circulation Evaporators and Forced Circulation Evaporators, both of which are still currently used in industry today, although forced Circulation systems, which have a circulation pump as opposed to natural systems with no driving force, have a much wider range of appropriate uses.

A rising film or vertical long tube evaporator is a type of evaporator that is essentially a vertical shell and tube heat exchanger. The liquid being evaporated is fed from the bottom into long tubes and heated with steam condensing on the outside of the tube from the shell side. This is to produce steam and vapour within the tube bringing the liquid inside to a boil. The vapour produced then presses the liquid against the walls of the tubes and causes the ascending force of this liquid. As more vapour is formed, the centre of the tube will have a higher velocity which forces the remaining liquid against the tube wall forming a thin film which moves upwards. This phenomenon of the rising film gives the evaporator its name.

The low-temperature distillation (LTD) technology is the first implementation of the direct spray distillation (DSD) process. The first large-scale units are now in operation for desalination. The process was first developed by scientists at the University of Applied Sciences in Switzerland, focusing on low-temperature distillation in vacuum conditions, from 2000 to 2005.

Polymer devolatilization, also known as polymer degassing, is the process of removing low-molecular-weight components such as residual monomers, solvents, reaction by-products and water from polymers.

References

  1. Tomczyk, John; Silberstein, Eugene; Whitman, Bill; Johnson, Bill (2016). Refrigeration and Air Conditioning Technology (8 ed.). Cengage Learning. pp. 518–519. ISBN   9781305856622.
  2. "How Does an Air Conditioner Work?". Archived from the original on 20 June 2013. Retrieved 27 April 2012.
  3. Panagopoulos, Argyris; Haralambous, Katherine-Joanne; Loizidou, Maria (2019-11-25). "Desalination brine disposal methods and treatment technologies - A review". Science of the Total Environment. 693: 133545. Bibcode:2019ScTEn.693m3545P. doi:10.1016/j.scitotenv.2019.07.351. ISSN   0048-9697. PMID   31374511.
  4. Smook, G.A. (1990), Handbook of pulp and paper technology. Angus Wilde Publications.
  5. McCabe, Warren L., Julian C. Smith, and Peter Harriott. Unit Operations of Chemical Engineering. 5th ed. New York ; London: McGraw-Hill, 1993.
  6. multiple-effect evaporators with heat pump
  7. "Wiped Film". Vobis, LLC. Retrieved 2018-04-30.
  8. "Rotary Evaporators: An Innovative Approach to Their Design". AZoM.com. 2020-09-29. Retrieved 2022-05-18.