Programmable thermostat

Last updated
Next Generation Lux Products TX9600TS Universal 7-Day Programmable Touch Screen Thermostat. Lux Products TX9600TS Thermostat.jpg
Next Generation Lux Products TX9600TS Universal 7-Day Programmable Touch Screen Thermostat.
Lux Products' Model TX9000TS Touch Screen Thermostat . Lux Products Touch Screen Thermostat.jpg
Lux Products' Model TX9000TS Touch Screen Thermostat .
Vaillant digital room thermostat Room Thermostat Vaillant.jpg
Vaillant digital room thermostat

A programmable thermostat is a thermostat which is designed to adjust the temperature according to a series of programmed settings that take effect at different times of the day. Programmable thermostats are also known as setback thermostats or clock thermostats.

Contents

Benefits

Honeywell electronic thermostat in a store ThermostatinBurkesOutlet.jpg
Honeywell electronic thermostat in a store

Heating and cooling losses from a building (or any other container) become greater as the difference in temperature increases. A programmable thermostat allows reduction of these losses by allowing the temperature difference to be reduced at times when the reduced amount of heating or cooling would not be objectionable.

For example, during cooling season, a programmable thermostat used in a home may be set to allow the temperature in the house to rise during the workday when no one will be at home. It may then be set to turn on the air conditioning before the arrival of occupants, allowing the house to be cool upon the arrival of the occupants while still having saved air conditioning energy during the peak outdoor temperatures. The reduced cooling required during the day also decreases the demands placed upon the electrical supply grid.

Conversely, during the heating season, the programmable thermostat may be set to allow the temperature in the house to drop when the house is unoccupied during the day and also at night after all occupants have gone to bed, re-heating the house prior to the occupants arriving home in the evening or waking up in the morning. Since (as a matter of sleep hygiene) people sleep better when the bedroom is cool, and furthermore the temperature differential between the interior and exterior of a building is the greatest on a cold winter night, this reduces energy loss.

Similar scenarios are available in commercial buildings, with due consideration of the building's occupancy patterns.

According to Consumer Reports magazine, programmable thermostats can reduce energy bills by about $180 a year. [2]

Controversy

While programmable thermostats may be able to save energy when used correctly, little or no average energy savings has been demonstrated in residential field studies. Difficulty with usability in residential environments appears to lead to lack of persistence of energy savings in homes. According to the US EPA regarding residential programmable thermostat, "Available studies indicate no savings from programmable thermostat (PT) installation. Some studies indicate slight increased consumption." [3] This is supported with studies by Nevius and Pigg, [4] Cross and Judd [5] and others and Peffer et al. [6] has a recent review of the topic.

In addition to potential increased energy consumption, digital programmable thermostats have been criticised for their poor usability. Several studies have found that digital programmable thermostats are difficult for users to programme [7] and older people in particular can struggle to use them (see Combe et al. [8] ).

It has been noted that the use of programmable thermostats is hampered by misconception about the setback feature, reducing the amount of heating or cooling in a building needs for a short time (e.g. at night or when it is unoccupied). The belief is that if the building is allowed to change temperature, its heating or cooling system has to "work harder" to bring it back to a comfortable temperature, counteracting or even exceeding the energy saved during reduced heating or cooling. If set up correctly [9] [10] the setback and recovery feature can result in energy savings of five to fifteen percent as the heat transfer between a structure and its environment is proportional to the temperature difference between the inside and outside of the structure. [11] [12]

Construction and features

Clock thermostats

Honeywell office thermostat OfficeThermostat.jpg
Honeywell office thermostat

The most basic clock thermostats may only implement one program with two periods (a hotter period and a colder period), and the same program is run day after day. More sophisticated clock thermostats may allow four or more hot and cold periods to be set per day. Usually, only two distinct temperatures (a hotter temperature and a colder temperature) can be set, even if multiple periods are permitted. The hotter and colder temperatures are usually established simply by sliding two levers along an analogue temperature scale, much the same as in a conventional (non-clock) thermostat.

This design, while simple to manufacture and relatively easy to program, sacrifices comfort on weekends since the program is repeated each of the seven days of the week with no variation. To overcome this deficit, a push-button is sometimes provided to allow the user to explicitly switch (once) the current period from hot period to a cold period or vice versa; the usual use of this button is to over-ride a "set back" that takes place during the workday when the home is normally unoccupied.

The clock mechanism is electrical. Two methods have commonly been used to operate it:

[1] A separate, continuous source of 24 volts alternating current (24 VAC) is provided to the thermostat.

[2] A rechargeable battery in the thermostat operates the clock. This battery charges when the thermostat is not calling for heat and 24 VAC is available to it. It discharges to operate the clock when the thermostat is set for heating or cooling.

Digital thermostats

A touch-screen programmable thermostat in programming mode. A touch-screen programmable thermostat.jpg
A touch-screen programmable thermostat in programming mode.

Digital thermostats may implement the same functions, but most provide more versatility. For example, they commonly allow setting temperatures for two, four, or six periods each day, and rather than being limited to a single "hotter" temperature and a single "colder" temperature, digital thermostats usually allow each period to be set to a unique temperature. The periods are commonly labeled "Morning", "Day", "Evening", and "Night", although nothing constrains the time intervals involved. Digital thermostats usually allow the user to override the programmed temperature for the period, automatically resuming programmed temperatures when the next period begins. A function to "hold" (lock-in) the current temperature is usually provided as well; in this case, the override temperature is maintained until the user cancels the hold or a programmed event occurs to resume the normal program. More-sophisticated models will allow for the release of the hold to take place at a set time in the future.

As with clock thermostats, basic digital thermostats may have just one cycle that is run every day of the week. More-sophisticated thermostats may have a weekday schedule and a separate weekend schedule (so-called "5-2" setting) or separate Saturday and Sunday schedules (so-called "5-1-1" settings), while other thermostats will offer a separate schedule for each day of the week ("7 day" settings). The selection of which days are defined as the "weekend" is arbitrary, depending on the user's heating and cooling schedule requirements. Often, a manufacturer will sell three similar thermostats offering each of those levels of functionality, and there is no obvious difference in the thermostats other than the factory programming and the price. [13]

Most digital thermostats have separate programs for heating and cooling, and may feature a digital or manual switch to turn on the furnace blower for air circulation, even when the system isn't heating or cooling. More-sophisticated models may be programmed to run the circulating fan for a brief 5- to 10-minute period in the event a heating or cooling cycle has not taken place during the previous hour. This is particularly useful in buildings subject to stratification where without frequent air circulation, hot air rises and separates from the cooler air that falls.

Digital thermostats may also have a user-programmable air filter change reminder; this counts the accumulated run-time of the heating/cooling system and reminds the user when it is time to change the filter. The feature often displays the accumulated run-time either as an aggregate of both heating and cooling or displaying each time separately.

Some digital thermostats have the capability of being programmed using a touch-tone telephone or over the Internet, such as the Nest Learning Thermostat.

Digital thermostats are usually powered one of three ways:

Digital thermostats with PID controller

More expensive models have a built-in PID controller, so that the thermostat "learns" via a feedback loop how the overall system (including the room itself) will react to its commands. Programming the morning temperature to be 21° C at 7:00 a.m., for instance, ensures that the temperature would then be 21 °C, whereas less sophisticated programmable thermostat would simply start working toward 21° at 7:00 a.m. Thus a PID controller sets the time at which the system should be activated in order to reach the desired temperature at the desired time, having processed the data of the room temperature regimen by comparing the past temperature status of the room and its current temperature for an optimal start.

Process control or industrial thermostat also makes sure that the temperature is very stable [14] (for instance, by reducing first overshoot and fluctuation [15] at the end of the heating cycle) such that the comfort level is increased.

Commercial thermostats

In commercial applications, the thermostat may not contain any clock mechanism. Instead, another means may be used to select between the "hotter" and "colder" settings. For example, if the thermostat uses pneumatic controls, a change in the air pressure supplied to the thermostat may select between the "hotter" and "colder" settings, and this air pressure is determined by a central regulator. With electronic controls, a specific signal may indicate whether to operate at the "hotter" or "colder" setting. [16]

Terminal codes and colors

ColorTerminal CodeDescription
RedR24 volt
RedRH / RC24 volt HEAT / COOL load
C / X24 volt Common
WhiteW / W1Heat
WhiteW2Backup Heat
YellowY / Y1Cool
GreenG Fan
OrangeO / OB Reversing valve (Heat Pump)
EEmergency Heat (Heat Pump)

See also

Related Research Articles

<span class="mw-page-title-main">Thermostat</span> Component which maintains a setpoint temperature

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

<span class="mw-page-title-main">Clothes iron</span> Tool or appliance for smoothing cloth using heat and pressure

A clothes iron is a small appliance that, when heated, is used to press clothes to remove wrinkles and unwanted creases. Domestic irons generally range in operating temperature from between 121 °C (250 °F) to 182 °C (360 °F). It is named for the metal (iron) of which the device was historically made, and the use of it is generally called ironing, the final step in the process of laundering clothes.

<span class="mw-page-title-main">Water heating</span> Thermodynamic process that uses energy sources to heat water

Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.

<span class="mw-page-title-main">Refrigerator</span> Appliance for cold food storage

A refrigerator, commonly fridge, is a commercial and home appliance consisting of a thermally insulated compartment and a heat pump that transfers heat from its inside to its external environment so that its inside is cooled to a temperature below the room temperature. Refrigeration is an essential food storage technique around the world. The low temperature reduces the reproduction rate of bacteria, so the refrigerator lowers the rate of spoilage. A refrigerator maintains a temperature a few degrees above the freezing point of water. The optimal temperature range for perishable food storage is 3 to 5 °C. A freezer is a specialized refrigerator, or portion of a refrigerator, that maintains its contents’ temperature below the freezing point of water. The refrigerator replaced the icebox, which had been a common household appliance for almost a century and a half. The United States Food and Drug Administration recommends that the refrigerator be kept at or below 4 °C (40 °F) and that the freezer be regulated at −18 °C (0 °F).

<span class="mw-page-title-main">Storage heater</span>

A storage heater or heat bank (Australia) is an electrical heater which stores thermal energy during the evening, or at night when electricity is available at lower cost, and releases the heat during the day as required. Alternatively, solar storage heaters are designed to store solar energy as heat, to be released during the night or other periods where it is required, often making it more cost effective than selling surplus electricity to the grid and buying it back at night.

<span class="mw-page-title-main">Thermostatic radiator valve</span> Self-regulating valve to control hot water flow

A thermostatic radiator valve (TRV) is a self-regulating valve fitted to hot water heating system radiator, to control the temperature of a room by changing the flow of hot water to the radiator.

<span class="mw-page-title-main">Electric heating</span> Process in which electrical energy is converted to heat

Electric heating is a process in which electrical energy is converted directly to heat energy. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical device that converts an electric current into heat. The heating element inside every electric heater is an electrical resistor, and works on the principle of Joule heating: an electric current passing through a resistor will convert that electrical energy into heat energy. Most modern electric heating devices use nichrome wire as the active element; the heating element, depicted on the right, uses nichrome wire supported by ceramic insulators.

<span class="mw-page-title-main">Forced-air</span> HVAC system

A forced-air central heating system is one which uses air as its heat transfer medium. These systems rely on ductwork, vents, and plenums as means of air distribution, separate from the actual heating and air conditioning systems. The return plenum carries the air from several large return grills (vents) to a central air handler for re-heating. The supply plenum directs air from the central unit to the rooms which the system is designed to heat. Regardless of type, all air handlers consist of an air filter, blower, heat exchanger/element/coil, and various controls. Like any other kind of central heating system, thermostats are used to control forced air heating systems.

<span class="mw-page-title-main">Circulator pump</span> Pump for circulating fluid around a closed circuit for hydronic purposes

A circulator pump or circulating pump is a specific type of pump used to circulate gases, liquids, or slurries in a closed circuit with small elevation changes. They are commonly found circulating water in a hydronic heating or cooling system. They are specialized in providing a large flow rate rather than providing much head, as they are supposed to only overcome the friction of a piping system, as opposed to a regular centrifugal pump which may need to lift a fluid significantly.

Renewable heat is an application of renewable energy referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented.

<span class="mw-page-title-main">Forced-air gas</span>

Forced-air gas heating systems are used in central air heating/cooling systems for houses. Sometimes the system is referred to as "forced hot air".

<span class="mw-page-title-main">Fan coil unit</span> HVAC device

A fan coil unit (FCU), also known as a Vertical Fan Coil Unit (VFCU), is a device consisting of a heat exchanger (coil) and a fan. FCUs are commonly used in HVAC systems of residential, commercial, and industrial buildings that use ducted split air conditioning or central plant cooling. FCUs are typically connected to ductwork and a thermostat to regulate the temperature of one or more spaces and to assist the main air handling unit for each space if used with chillers. The thermostat controls the fan speed and/or the flow of water or refrigerant to the heat exchanger using a control valve.

<span class="mw-page-title-main">Time switch</span>

A time switch is a device that operates an electric switch controlled by a timer.

HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

<span class="mw-page-title-main">Laboratory water bath</span> Apparatus for incubating samples

A water bath is laboratory equipment made from a container filled with heated water. It is used to incubate samples in water at a constant temperature over a long period of time. Most water baths have a digital or an analogue interface to allow users to set a desired temperature, but some water baths have their temperature controlled by a current passing through a reader.

<span class="mw-page-title-main">Thermal destratification</span> Method of stirring a confined fluid to achieve equal temperatures

Thermal destratification is the process of mixing the internal air in a building to eliminate stratified layers and achieve temperature equalization throughout the building envelope.

<span class="mw-page-title-main">Smart thermostat</span>

Smart thermostats are Wi-Fi thermostats that can be used with home automation and are responsible for controlling a home's heating, ventilation, and air conditioning. They perform similar functions as a Programmable thermostat as they allow the user to control the temperature of their home throughout the day using a schedule, but also contain additional features, such as sensors and Wi-Fi connectivity, that improve upon the issues with programming.

<span class="mw-page-title-main">Hot water storage tank</span> Tank used for storing hot water for heating or domestic use

A hot water storage tank is a water tank used for storing hot water for space heating or domestic use.

<span class="mw-page-title-main">Tankless water heating</span> Water heaters that instantly heat water as it flows through the device

Tankless water heaters — also called instantaneous, continuous flow, inline, flash, on-demand, or instant-on water heaters — are water heaters that instantly heat water as it flows through the device, and do not retain any water internally except for what is in the heat exchanger coil unless the unit is equipped with an internal buffer tank. Copper heat exchangers are preferred in these units because of their high thermal conductivity and ease of fabrication. However, copper heat exchangers are more susceptible to scale buildup than stainless steel heat exchangers.

<span class="mw-page-title-main">Nest Thermostat</span> Smart thermostat

The Nest Thermostat is a smart thermostat developed by Google Nest and designed by Tony Fadell, Ben Filson, and Fred Bould. It is an electronic, programmable, and self-learning Wi-Fi-enabled thermostat that optimizes heating and cooling of homes and businesses to conserve energy.

References

  1. "Lux TX9000TS Manuals and Instructions" . Retrieved 2020-11-19.
  2. "Best Thermostat Buying Guide – Consumer Reports". consumerreports.org. 19 July 2022.
  3. Shiller, David (1 June 2010). "Programmable Thermostat Program Proposal" (PDF).
  4. "Energy and Housing in Wisconsin(A Study of Single-Family Owner-Occupied Homes)" (PDF). Archived from the original (PDF) on 2 April 2012. Retrieved 23 September 2011.
  5. "Automatic Setback Thermostats: Measure Persistence and Customer Behavior". cee1.org.
  6. "UC Davis Grad Student Researcher and EEC Analyst Marco Pritoni Quoted in Washington Post on Consumer Misuse of Thermostats" (PDF). 2015-07-14.
  7. Combe, Nicola (2011). "Assessing the number of users who are excluded by domestic heating controls". International Journal of Sustainable Engineering. 4: 84–92. doi:10.1080/19397038.2010.491563. S2CID   60586192.
  8. Combe, Nicola (2012). "An investigation into usability and exclusivity issues of digital programmable thermostats". Journal of Engineering Design. 23 (5): 401–417. doi:10.1080/09544828.2011.599027. S2CID   62154056.
  9. | If You Think Thermostat Setbacks Don't Save Energy, You're Wrong!
  10. | Program schedule and proposed energy saving
  11. U.S. Department of Energy/energy.gov, Home » Thermostats
  12. Programmable thermostat myths: Know the facts and boost your profits, The Air Conditioning, Heating and Refrigeration NEWS/achrnews.com
  13. Operation as a 5-2, 5-1-1 or 7-day thermostat is fixed by design and cannot be altered by the end user.
  14. "Smart PID controller". 19 September 2016.
  15. "Temperature Controllers Using Hysteresis". 18 October 2011.
  16. Thermostat With Adjustable Differential