Part of a series on |
Sustainable energy |
---|
A heat pump is a device that consumes energy (usually electricity) to transfer heat from a cold heat sink to a hot heat sink. Specifically, the heat pump transfers thermal energy using a refrigeration cycle, cooling the cool space and warming the warm space. [1] In cold weather, a heat pump can move heat from the cool outdoors to warm a house (e.g. winter); the pump may also be designed to move heat from the house to the warmer outdoors in warm weather (e.g. summer). As they transfer heat rather than generating heat, they are more energy-efficient than other ways of heating or cooling a home. [2]
A gaseous refrigerant is compressed so its pressure and temperature rise. When operating as a heater in cold weather, the warmed gas flows to a heat exchanger in the indoor space where some of its thermal energy is transferred to that indoor space, causing the gas to condense to its liquid state. The liquified refrigerant flows to a heat exchanger in the outdoor space where the pressure falls, the liquid evaporates and the temperature of the gas falls. It is now colder than the temperature of the outdoor space being used as a heat source. It can again take up energy from the heat source, be compressed and repeat the cycle.
Air source heat pumps are the most common models, while other types include ground source heat pumps, water source heat pumps and Heat recovery ventilation. [3] Large-scale heat pumps are also used in district heating systems. [4]
The efficiency of a heat pump is expressed as a coefficient of performance (COP), or seasonal coefficient of performance (SCOP). The higher the number, the more efficient a heat pump is. For example, an air-to-water heat pump that produces 6kW at a SCOP of 4.62 will give over 4kW of energy into a heating system for every kilowatt of energy that the heat pump uses itself to operate. When used for space heating, heat pumps are typically more energy-efficient than electric resistance and other heaters.
Because of their high efficiency and the increasing share of fossil-free sources in electrical grids, heat pumps are playing a role in climate change mitigation. [5] [6] Consuming 1 kWh of electricity, they can transfer 1 [7] to 4.5 kWh of thermal energy into a building. The carbon footprint of heat pumps depends on how electricity is generated, but they usually reduce emissions. [8] Heat pumps could satisfy over 80% of global space and water heating needs with a lower carbon footprint than gas-fired condensing boilers: however, in 2021 they only met 10%. [4]
Heat flows spontaneously from a region of higher temperature to a region of lower temperature. Heat does not flow spontaneously from lower temperature to higher, but it can be made to flow in this direction if work is performed. The work required to transfer a given amount of heat is usually much less than the amount of heat; this is the motivation for using heat pumps in applications such as the heating of water and the interior of buildings. [9]
The amount of work required to drive an amount of heat Q from a lower-temperature reservoir such as ambient air to a higher-temperature reservoir such as the interior of a building is: where
The coefficient of performance of a heat pump is greater than one so the work required is less than the heat transferred, making a heat pump a more efficient form of heating than electrical resistance heating. As the temperature of the higher-temperature reservoir increases in response to the heat flowing into it, the coefficient of performance decreases, causing an increasing amount of work to be required for each unit of heat being transferred. [9]
The coefficient of performance, and the work required by a heat pump can be calculated easily by considering an ideal heat pump operating on the reversed Carnot cycle:
This is the theoretical amount of heat pumped but in practice it will be less for various reasons, for example if the outside unit has been installed where there is not enough airflow. More data sharing with owners and academics—perhaps from heat meters—could improve efficiency in the long run. [11]
Milestones:
An air source heat pump (ASHP) is a heat pump that can absorb heat from air outside a building and release it inside; it uses the same vapor-compression refrigeration process and much the same equipment as an air conditioner, but in the opposite direction. ASHPs are the most common type of heat pump and, usually being smaller, tend to be used to heat individual houses or flats rather than blocks, districts or industrial processes. [20] [21]
Air-to-air heat pumps provide hot or cold air directly to rooms, but do not usually provide hot water. Air-to-water heat pumps use radiators or underfloor heating to heat a whole house and are often also used to provide domestic hot water.
An ASHP can typically gain 4 kWh thermal energy from 1 kWh electric energy. They are optimized for flow temperatures between 30 and 40 °C (86 and 104 °F), suitable for buildings with heat emitters sized for low flow temperatures. With losses in efficiency, an ASHP can even provide full central heating with a flow temperature up to 80 °C (176 °F). [22]
As of 2023 [update] about 10% of building heating worldwide is from ASHPs. They are the main way to phase out gas boilers (also known as "furnaces") from houses, to avoid their greenhouse gas emissions. [23]
Air-source heat pumps are used to move heat between two heat exchangers, one outside the building which is fitted with fins through which air is forced using a fan and the other which either directly heats the air inside the building or heats water which is then circulated around the building through radiators or underfloor heating which releases the heat to the building. These devices can also operate in a cooling mode where they extract heat via the internal heat exchanger and eject it into the ambient air using the external heat exchanger. Some can be used to heat water for washing which is stored in a domestic hot water tank. [24]
Air-source heat pumps are relatively easy and inexpensive to install, so are the most widely used type. In mild weather, coefficient of performance (COP) may be between 2 and 5, while at temperatures below around −8 °C (18 °F) an air-source heat pump may still achieve a COP of 1 to 4. [25]
While older air-source heat pumps performed relatively poorly at low temperatures and were better suited for warm climates, newer models with variable-speed compressors remain highly efficient in freezing conditions allowing for wide adoption and cost savings in places like Minnesota and Maine in the United States. [26]A ground source heat pump (also geothermal heat pump) is a heating/cooling system for buildings that use a type of heat pump to transfer heat to or from the ground, taking advantage of the relative constancy of temperatures of the earth through the seasons. Ground-source heat pumps (GSHPs) – or geothermal heat pumps (GHP), as they are commonly termed in North America – are among the most energy-efficient technologies for providing HVAC and water heating, using far less energy than can be achieved by burning a fuel in a boiler/furnace or by use of resistive electric heaters.
Efficiency is given as a coefficient of performance (CoP) which is typically in the range 3 – 6, meaning that the devices provide 3 – 6 units of heat for each unit of electricity used. Setup costs are higher than for other heating systems, due to the requirement to install ground loops over large areas or to drill bore holes, and for this reason, ground source is often suitable when new blocks of flats are built. [27] Otherwise air-source heat pumps are often used instead.Exhaust air heat pumps extract heat from the exhaust air of a building and require mechanical ventilation. Two classes exist:
A solar-assisted heat pump (SAHP) is a machine that combines a heat pump and thermal solar panels and/or PV solar panels in a single integrated system. [28] Typically these two technologies are used separately (or only placing them in parallel) to produce hot water. [29] In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator. [30] The goal of this system is to get high coefficient of performance (COP) and then produce energy in a more efficient and less expensive way.
It is possible to use any type of solar thermal panel (sheet and tubes, roll-bond, heat pipe, thermal plates) or hybrid (mono/polycrystalline, thin film) in combination with the heat pump. The use of a hybrid panel is preferable because it allows covering a part of the electricity demand of the heat pump and reduce the power consumption and consequently the variable costs of the system.A water-source heat pump works in a similar manner to a ground-source heat pump, except that it takes heat from a body of water rather than the ground. The body of water does, however, need to be large enough to be able to withstand the cooling effect of the unit without freezing or creating an adverse effect for wildlife. [31] The largest water-source heat pump was installed in the Danish town of Esbjerg in 2023. [32] [33]
A thermoacoustic heat pump operates as a thermoacoustic heat engine without refrigerant but instead uses a standing wave in a sealed chamber driven by a loudspeaker to achieve a temperature difference across the chamber. [34]
Electrocaloric heat pumps are solid state. [35]
The International Energy Agency estimated that, as of 2021, heat pumps installed in buildings have a combined capacity of more than 1000 GW. [4] They are used for heating, ventilation, and air conditioning (HVAC) and may also provide domestic hot water and tumble clothes drying. [36] The purchase costs are supported in various countries by consumer rebates. [37]
In HVAC applications, a heat pump is typically a vapor-compression refrigeration device that includes a reversing valve and optimized heat exchangers so that the direction of heat flow (thermal energy movement) may be reversed. The reversing valve switches the direction of refrigerant through the cycle and therefore the heat pump may deliver either heating or cooling to a building.
Because the two heat exchangers, the condenser and evaporator, must swap functions, they are optimized to perform adequately in both modes. Therefore, the Seasonal Energy Efficiency Rating (SEER in the US) or European seasonal energy efficiency ratio of a reversible heat pump is typically slightly less than those of two separately optimized machines. For equipment to receive the US Energy Star rating, it must have a rating of at least 14 SEER. Pumps with ratings of 18 SEER or above are considered highly efficient. The highest efficiency heat pumps manufactured are up to 24 SEER. [38]
Heating seasonal performance factor (in the US) or Seasonal Performance Factor (in Europe) are ratings of heating performance. The SPF is Total heat output per annum / Total electricity consumed per annum in other words the average heating COP over the year. [39]
Window mounted heat pumps run on standard 120v AC outlets and provide heating, cooling, and humidity control. They are more efficient with lower noise levels, condensation management, and a smaller footprint than window mounted air conditioners that just do cooling. [40]
In water heating applications, heat pumps may be used to heat or preheat water for swimming pools, homes or industry. Usually heat is extracted from outdoor air and transferred to an indoor water tank. [41] [42]
Large (megawatt-scale) heat pumps are used for district heating. [43] However as of 2022 [update] about 90% of district heat is from fossil fuels. [44] In Europe, heat pumps account for a mere 1% of heat supply in district heating networks but several countries have targets to decarbonise their networks between 2030 and 2040. [4] Possible sources of heat for such applications are sewage water, ambient water (e.g. sea, lake and river water), industrial waste heat, geothermal energy, flue gas, waste heat from district cooling and heat from solar seasonal thermal energy storage. [45] Large-scale heat pumps for district heating combined with thermal energy storage offer high flexibility for the integration of variable renewable energy. Therefore, they are regarded as a key technology for limiting climate change by phasing out fossil fuels. [45] [46] They are also a crucial element of systems which can both heat and cool districts. [47]
There is great potential to reduce the energy consumption and related greenhouse gas emissions in industry by application of industrial heat pumps, for example for process heat. [48] [49] Short payback periods of less than 2 years are possible, while achieving a high reduction of CO2 emissions (in some cases more than 50%). [50] [51] Industrial heat pumps can heat up to 200 °C, and can meet the heating demands of many light industries. [52] [53] In Europe alone, 15 GW of heat pumps could be installed in 3,000 facilities in the paper, food and chemicals industries. [4]
The performance of a heat pump is determined by the ability of the pump to extract heat from a low temperature environment (the source) and deliver it to a higher temperature environment (the sink). [54] Performance varies, depending on installation details, temperature differences, site elevation, location on site, pipe runs, flow rates, and maintenance.
In general, heat pumps work most efficiently (that is, the heat output produced for a given energy input) when the difference between the heat source and the heat sink is small. When using a heat pump for space or water heating, therefore, the heat pump will be most efficient in mild conditions, and decline in efficiency on very cold days. Performance metrics supplied to consumers attempt to take this variation into account.
Common performance metrics are the SEER (in cooling mode) and seasonal coefficient of performance (SCOP) (commonly used just for heating), although SCOP can be used for both modes of operation. [54] Larger values of either metric indicate better performance. [54] When comparing the performance of heat pumps, the term performance is preferred to efficiency, with coefficient of performance (COP) being used to describe the ratio of useful heat movement per work input. [54] An electrical resistance heater has a COP of 1.0, which is considerably lower than a well-designed heat pump which will typically have a COP of 3 to 5 with an external temperature of 10 °C and an internal temperature of 20 °C. Because the ground is a constant temperature source, a ground-source heat pump is not subjected to large temperature fluctuations, and therefore is the most energy-efficient type of heat pump. [54]
The "seasonal coefficient of performance" (SCOP) is a measure of the aggregate energy efficiency measure over a period of one year which is dependent on regional climate. [54] One framework for this calculation is given by the Commission Regulation (EU) No. 813/2013. [55]
A heat pump's operating performance in cooling mode is characterized in the US by either its energy efficiency ratio (EER) or seasonal energy efficiency ratio (SEER), both of which have units of BTU/(h·W) (note that 1 BTU/(h·W) = 0.293 W/W) and larger values indicate better performance.
Pump type and source | Typical use | 35 °C (e.g. heated screed floor) | 45 °C (e.g. heated screed floor) | 55 °C (e.g. heated timber floor) | 65 °C (e.g. radiator or DHW) | 75 °C (e.g. radiator and DHW) | 85 °C (e.g. radiator and DHW) |
---|---|---|---|---|---|---|---|
High-efficiency air-source heat pump (ASHP), air at −20 °C [56] | 2.2 | 2.0 | ‐ | ‐ | ‐ | ‐ | |
Two-stage ASHP, air at −20 °C [57] | Low source temperature | 2.4 | 2.2 | 1.9 | ‐ | ‐ | ‐ |
High-efficiency ASHP, air at 0 °C [56] | Low output temperature | 3.8 | 2.8 | 2.2 | 2.0 | ‐ | ‐ |
Prototype transcritical CO 2 (R744) heat pump with tripartite gas cooler, source at 0 °C [58] | High output temperature | 3.3 | ‐ | ‐ | 4.2 | ‐ | 3.0 |
Ground-source heat pump (GSHP), water at 0 °C [56] | 5.0 | 3.7 | 2.9 | 2.4 | ‐ | ‐ | |
GSHP, ground at 10 °C [56] | Low output temperature | 7.2 | 5.0 | 3.7 | 2.9 | 2.4 | ‐ |
Theoretical Carnot cycle limit, source −20 °C | 5.6 | 4.9 | 4.4 | 4.0 | 3.7 | 3.4 | |
Theoretical Carnot cycle limit, source 0 °C | 8.8 | 7.1 | 6.0 | 5.2 | 4.6 | 4.2 | |
Theoretical Lorentzen cycle limit (CO 2 pump), return fluid 25 °C, source 0 °C [58] | 10.1 | 8.8 | 7.9 | 7.1 | 6.5 | 6.1 | |
Theoretical Carnot cycle limit, source 10 °C | 12.3 | 9.1 | 7.3 | 6.1 | 5.4 | 4.8 |
The carbon footprint of heat pumps depends on their individual efficiency and how electricity is produced. An increasing share of low-carbon energy sources such as wind and solar will lower the impact on the climate.
heating system | emissions of energy source | efficiency | resulting emissions for thermal energy |
---|---|---|---|
heat pump with onshore wind power | 11 gCO2/kWh [59] | 400% (COP=4) | 3 gCO2/kWh |
heat pump with global electricity mix | 436 gCO2/kWh [60] (2022) | 400% (COP=4) | 109 gCO2/kWh |
natural-gas thermal (high efficiency) | 201 gCO2/kWh [61] | 90%[ citation needed ] | 223 gCO2/kWh |
heat pump electricity by lignite (old power plant) and low performance | 1221 gCO2/kWh [61] | 300% (COP=3) | 407 gCO2/kWh |
In most settings, heat pumps will reduce CO2 emissions compared to heating systems powered by fossil fuels. [62] In regions accounting for 70% of world energy consumption, the emissions savings of heat pumps compared with a high-efficiency gas boiler are on average above 45% and reach 80% in countries with cleaner electricity mixes. [4] These values can be improved by 10 percentage points, respectively, with alternative refrigerants. In the United States, 70% of houses could reduce emissions by installing a heat pump. [63] [4] The rising share of renewable electricity generation in many countries is set to increase the emissions savings from heat pumps over time. [4]
Heating systems powered by green hydrogen are also low-carbon and may become competitors, but are much less efficient due to the energy loss associated with hydrogen conversion, transport and use. In addition, not enough green hydrogen is expected to be available before the 2030s or 2040s. [64] [65]
This section needs additional citations for verification .(May 2021) |
Vapor-compression uses a circulating refrigerant as the medium which absorbs heat from one space, compresses it thereby increasing its temperature before releasing it in another space. The system normally has eight main components: a compressor, a reservoir, a reversing valve which selects between heating and cooling mode, two thermal expansion valves (one used when in heating mode and the other when used in cooling mode) and two heat exchangers, one associated with the external heat source/sink and the other with the interior. In heating mode the external heat exchanger is the evaporator and the internal one being the condenser; in cooling mode the roles are reversed.
Circulating refrigerant enters the compressor in the thermodynamic state known as a saturated vapor [66] and is compressed to a higher pressure, resulting in a higher temperature as well. The hot, compressed vapor is then in the thermodynamic state known as a superheated vapor and it is at a temperature and pressure at which it can be condensed with either cooling water or cooling air flowing across the coil or tubes. In heating mode this heat is used to heat the building using the internal heat exchanger, and in cooling mode this heat is rejected via the external heat exchanger.
The condensed, liquid refrigerant, in the thermodynamic state known as a saturated liquid, is next routed through an expansion valve where it undergoes an abrupt reduction in pressure. That pressure reduction results in the adiabatic flash evaporation of a part of the liquid refrigerant. The auto-refrigeration effect of the adiabatic flash evaporation lowers the temperature of the liquid and-vapor refrigerant mixture to where it is colder than the temperature of the enclosed space to be refrigerated.
The cold mixture is then routed through the coil or tubes in the evaporator. A fan circulates the warm air in the enclosed space across the coil or tubes carrying the cold refrigerant liquid and vapor mixture. That warm air evaporates the liquid part of the cold refrigerant mixture. At the same time, the circulating air is cooled and thus lowers the temperature of the enclosed space to the desired temperature. The evaporator is where the circulating refrigerant absorbs and removes heat which is subsequently rejected in the condenser and transferred elsewhere by the water or air used in the condenser.
To complete the refrigeration cycle, the refrigerant vapor from the evaporator is again a saturated vapor and is routed back into the compressor.
Over time, the evaporator may collect ice or water from ambient humidity. The ice is melted through defrosting cycle. An internal heat exchanger is either used to heat/cool the interior air directly or to heat water that is then circulated through radiators or underfloor heating circuit to either heat or cool the buildings.
Heat input can be improved if the refrigerant enters the evaporator with a lower vapor content. This can be achieved by cooling the liquid refrigerant after condensation. The gaseous refrigerant condenses on the heat exchange surface of the condenser. To achieve a heat flow from the gaseous flow center to the wall of the condenser, the temperature of the liquid refrigerant must be lower than the condensation temperature.
Additional subcooling can be achieved by heat exchange between relatively warm liquid refrigerant leaving the condenser and the cooler refrigerant vapor emerging from the evaporator. The enthalpy difference required for the subcooling leads to the superheating of the vapor drawn into the compressor. When the increase in cooling achieved by subcooling is greater that the compressor drive input required to overcome the additional pressure losses, such a heat exchange improves the coefficient of performance. [67]
One disadvantage of the subcooling of liquids is that the difference between the condensing temperature and the heat-sink temperature must be larger. This leads to a moderately high pressure difference between condensing and evaporating pressure, whereby the compressor energy increases.
Pure refrigerants can be divided into organic substances (hydrocarbons (HCs), chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), hydrofluoroolefins (HFOs), and HCFOs), and inorganic substances (ammonia (NH
3), carbon dioxide (CO
2), and water (H
2O) [68] ). [69] Their boiling points are usually below −25 °C. [70]
In the past 200 years, the standards and requirements for new refrigerants have changed. Nowadays low global warming potential (GWP) is required, in addition to all the previous requirements for safety, practicality, material compatibility, appropriate atmospheric life,[ clarification needed ] and compatibility with high-efficiency products. By 2022, devices using refrigerants with a very low GWP still have a small market share but are expected to play an increasing role due to enforced regulations, [71] as most countries have now ratified the Kigali Amendment to ban HFCs. [72] Isobutane (R600A) and propane (R290) are far less harmful to the environment than conventional hydrofluorocarbons (HFC) and are already being used in air-source heat pumps. [73] Propane may be the most suitable for high temperature heat pumps. [74] Ammonia (R717) and carbon dioxide (R-744) also have a low GWP. As of 2023 [update] smaller CO
2 heat pumps are not widely available and research and development of them continues. [75] A 2024 report said that refrigerants with GWP are vulnerable to further international restrictions. [76]
Until the 1990s, heat pumps, along with fridges and other related products used chlorofluorocarbons (CFCs) as refrigerants, which caused major damage to the ozone layer when released into the atmosphere. Use of these chemicals was banned or severely restricted by the Montreal Protocol of August 1987. [77]
Replacements, including R-134a and R-410A, are hydrofluorocarbons (HFC) with similar thermodynamic properties with insignificant ozone depletion potential (ODP) but had problematic GWP. [78] HFCs are powerful greenhouse gases which contribute to climate change. [79] [80] Dimethyl ether (DME) also gained in popularity as a refrigerant in combination with R404a. [81] More recent refrigerants include difluoromethane (R32) with a lower GWP, but still over 600.
refrigerant | 20-year GWP | 100-year GWP |
---|---|---|
R-290 propane [82] | 0.072 | 0.02 |
R-600a isobutane | 3 [83] | |
R-32 [82] | 491 | 136 |
R-410a [84] | 4705 | 2285 |
R-134a [84] | 4060 | 1470 |
R-404a [84] | 7258 | 4808 |
Devices with R-290 refrigerant (propane) are expected to play a key role in the future. [74] [85] The 100-year GWP of propane, at 0.02, is extremely low and is approximately 7000 times less than R-32. However, the flammability of propane requires additional safety measures: the maximum safe charges have been set significantly lower than for lower flammability refrigerants (only allowing approximately 13.5 times less refrigerant in the system than R-32). [86] [87] [88] This means that R-290 is not suitable for all situations or locations. Nonetheless, by 2022, an increasing number of devices with R-290 were offered for domestic use, especially in Europe.[ citation needed ]
At the same time,[ when? ] HFC refrigerants still dominate the market. Recent government mandates have seen the phase-out of R-22 refrigerant. Replacements such as R-32 and R-410A are being promoted as environmentally friendly but still have a high GWP. [89] A heat pump typically uses 3 kg of refrigerant. With R-32 this amount still has a 20-year impact equivalent to 7 tons of CO2, which corresponds to two years of natural gas heating in an average household. Refrigerants with a high ODP have already been phased out.[ citation needed ]
Financial incentives aim to protect consumers from high fossil gas costs and to reduce greenhouse gas emissions, [90] and are currently available in more than 30 countries around the world, covering more than 70% of global heating demand in 2021. [4]
Food processors, brewers, petfood producers and other industrial energy users are exploring whether it is feasible to use renewable energy to produce industrial-grade heat. Process heating accounts for the largest share of onsite energy use in Australian manufacturing, with lower-temperature operations like food production particularly well-suited to transition to renewables.
To help producers understand how they could benefit from making the switch, the Australian Renewable Energy Agency (ARENA) provided funding to the Australian Alliance for Energy Productivity (A2EP) to undertake pre-feasibility studies at a range of sites around Australia, with the most promising locations advancing to full feasibility studies. [91]
In an effort to incentivize energy efficiency and reduce environmental impact, the Australian states of Victoria, New South Wales, and Queensland have implemented rebate programs targeting the upgrade of existing hot water systems. These programs specifically encourage the transition from traditional gas or electric systems to heat pump based systems. [92] [93] [94] [95] [96]
In 2022, the Canada Greener Homes Grant [97] provides up to $5000 for upgrades (including certain heat pumps), and $600 for energy efficiency evaluations.
Purchase subsidies in rural areas in the 2010s reduced burning coal for heating, which had been causing ill health. [98]
In the 2024 report by the International Energy Agency (IEA) titled "The Future of Heat Pumps in China," it is highlighted that China, as the world's largest market for heat pumps in buildings, plays a critical role in the global industry. The country accounts for over one-quarter of global sales, with a 12% increase in 2023 alone, despite a global sales dip of 3% the same year. [99]
Heat pumps are now used in approximately 8% of all heating equipment sales for buildings in China as of 2022, and they are increasingly becoming the norm in central and southern regions for both heating and cooling. Despite their higher upfront costs and relatively low awareness, heat pumps are favored for their energy efficiency, consuming three to five times less energy than electric heaters or fossil fuel-based solutions. Currently, decentralized heat pumps installed in Chinese buildings represent a quarter of the global installed capacity, with a total capacity exceeding 250 GW, which covers around 4% of the heating needs in buildings. [99]
Under the Announced Pledges Scenario (APS), which aligns with China's carbon neutrality goals, the capacity is expected to reach 1,400 GW by 2050, meeting 25% of heating needs. This scenario would require an installation of about 100 GW of heat pumps annually until 2050. Furthermore, the heat pump sector in China employs over 300,000 people, with employment numbers expected to double by 2050, underscoring the importance of vocational training for industry growth. This robust development in the heat pump market is set to play a significant role in reducing direct emissions in buildings by 30% and cutting PM2.5 emissions from residential heating by nearly 80% by 2030. [99] [100]
To speed up the deployment rate of heat pumps, the European Commission launched the Heat Pump Accelerator Platform in November 2024. [101] It will encourage industry experts, policymakers, and stakeholders to collaborate, share best practices and ideas, and jointly discuss measures that promote sustainable heating solutions. [102]
As of 2022: heat pumps have no Value Added Tax (VAT) although in Northern Ireland they are taxed at the reduced rate of 5% instead of the usual level of VAT of 20% for most other products. [103] As of 2022 [update] the installation cost of a heat pump is more than a gas boiler, but with the "Boiler Upgrade Scheme" [104] government grant and assuming electricity/gas costs remain similar their lifetime costs would be similar on average. [105] However lifetime cost relative to a gas boiler varies considerably depending on several factors, such as the quality of the heat pump installation and the tariff used. [106] In 2024 England was criticised for still allowing new homes to be built with gas boilers, unlike some other counties where this is banned. [107]
The High-efficiency Electric Home Rebate Program was created in 2022 to award grants to State energy offices and Indian Tribes in order to establish state-wide high-efficiency electric-home rebates. Effective immediately, American households are eligible for a tax credit to cover the costs of buying and installing a heat pump, up to $2,000. Starting in 2023, low- and moderate-level income households will be eligible for a heat-pump rebate of up to $8,000. [108]
In 2022, more heat pumps were sold in the United States than natural gas furnaces. [109]
In November 2023 Biden's administration allocated 169 million dollars from the Inflation Reduction Act to speed up production of heat pumps. It used the Defense Production Act to do so, because according to the administration, energy that is better for the climate is also better for national security. [110]
Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.
An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning systems, which use vapor-compression or absorption refrigeration cycles. Evaporative cooling exploits the fact that water will absorb a relatively large amount of heat in order to evaporate. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation). This can cool air using much less energy than refrigeration. In extremely dry climates, evaporative cooling of air has the added benefit of conditioning the air with more moisture for the comfort of building occupants.
A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.
Heat recovery ventilation (HRV), also known as mechanical ventilation heat recovery (MVHR) is a ventilation system that recovers energy by operating between two air sources at different temperatures. It is used to reduce the heating and cooling demands of buildings.
An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. Solar energy, burning a fossil fuel, waste heat from factories, and district heating systems are examples of heat sources that can be used. An absorption refrigerator uses two coolants: the first coolant performs evaporative cooling and then is absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Absorption refrigerators can also be used to air-condition buildings using the waste heat from a gas turbine or water heater in the building. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration.
Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) may all use economizers. In simple terms, an economizer is a heat exchanger.
Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.
An absorption heat pump (AHP) is a heat pump driven by thermal energy such as combustion of natural gas, steam solar-heated water, air or geothermal-heated water differently from compression heat pumps that are driven by mechanical energy. AHPs are more complex and require larger units compared to compression heat pumps. In particular, the lower electricity demand of such heat pumps is related to the liquid pumping only. Their applications are restricted to those cases when electricity is extremely expensive or a large amount of unutilized heat at suitable temperatures is available and when the cooling or heating output has a greater value than heat input consumed. Absorption refrigerators also work on the same principle, but are not reversible and cannot serve as a heat source.
An air source heat pump (ASHP) is a heat pump that can absorb heat from air outside a building and release it inside; it uses the same vapor-compression refrigeration process and much the same equipment as an air conditioner, but in the opposite direction. ASHPs are the most common type of heat pump and, usually being smaller, tend to be used to heat individual houses or flats rather than blocks, districts or industrial processes.
A ground source heat pump is a heating/cooling system for buildings that use a type of heat pump to transfer heat to or from the ground, taking advantage of the relative constancy of temperatures of the earth through the seasons. Ground-source heat pumps (GSHPs) – or geothermal heat pumps (GHP), as they are commonly termed in North America – are among the most energy-efficient technologies for providing HVAC and water heating, using far less energy than can be achieved by burning a fuel in a boiler/furnace or by use of resistive electric heaters.
Air conditioning, often abbreviated as A/C (US) or air con (UK), is the process of removing heat from an enclosed space to achieve a more comfortable interior temperature and in some cases also strictly controlling the humidity of internal air. Air conditioning can be achieved using a mechanical 'air conditioner' or by other methods, including passive cooling and ventilative cooling. Air conditioning is a member of a family of systems and techniques that provide heating, ventilation, and air conditioning (HVAC). Heat pumps are similar in many ways to air conditioners, but use a reversing valve to allow them both to heat and to cool an enclosed space.
An evaporator is a type of heat exchanger device that facilitates evaporation by utilizing conductive and convective heat transfer, which provides the necessary thermal energy for phase transition from liquid to vapour. Within evaporators, a circulating liquid is exposed to an atmospheric or reduced pressure environment causing it to boil at a lower temperature compared to normal atmospheric boiling.
Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that transmits heat from one location at a certain temperature to another location at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" or “cooler” if the objective is to cool the heat source. The operating principles in both cases are the same; energy is used to move heat from a colder place to a warmer place.
Natural refrigerants are considered substances that serve as refrigerants in refrigeration systems. They are alternatives to synthetic refrigerants such as chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and hydrofluorocarbon (HFC) based refrigerants. Unlike other refrigerants, natural refrigerants can be found in nature and are commercially available thanks to physical industrial processes like fractional distillation, chemical reactions such as Haber process and spin-off gases. The most prominent of these include various natural hydrocarbons, carbon dioxide, ammonia, and water. Natural refrigerants are preferred actually in new equipment to their synthetic counterparts for their presumption of higher degrees of sustainability. With the current technologies available, almost 75 percent of the refrigeration and air conditioning sector has the potential to be converted to natural refrigerants.
HVAC is a major sub discipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.
Pumpable icetechnology (PIT) uses thin liquids, with the cooling capacity of ice. Pumpable ice is typically a slurry of ice crystals or particles ranging from 5 micrometers to 1 cm in diameter and transported in brine, seawater, food liquid, or gas bubbles of air, ozone, or carbon dioxide.
Variable refrigerant flow (VRF), also known as variable refrigerant volume (VRV), is an HVAC technology invented by Daikin Industries, Ltd. in 1982. Similar to ductless mini-split systems, VRFs use refrigerant as the primary cooling and heating medium, and are usually less complex than conventional chiller-based systems. This refrigerant is conditioned by one or more condensing units, and is circulated within the building to multiple indoor units. VRF systems, unlike conventional chiller-based systems, allow for varying degrees of cooling in more specific areas, may supply hot water in a heat recovery configuration without affecting efficiency, and switch to heating mode during winter without additional equipment, all of which may allow for reduced energy consumption. Also, air handlers and large ducts are not used which can reduce the height above a dropped ceiling as well as structural impact as VRF uses smaller penetrations for refrigerant pipes instead of ducts.
The Glossary of Geothermal Heating and Cooling provides definitions of many terms used within the Geothermal heat pump industry. The terms in this glossary may be used by industry professionals, for education materials, and by the general public.
A solar-assisted heat pump (SAHP) is a machine that combines a heat pump and thermal solar panels and/or PV solar panels in a single integrated system. Typically these two technologies are used separately to produce hot water. In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator. The goal of this system is to get high coefficient of performance (COP) and then produce energy in a more efficient and less expensive way.
An absorption-compression heat pump (ACHP) is a device that integrate an electric compressor in an absorption heat pump. In some cases this is obtained by combining a vapor-compression heat pump and an absorption heat pump. It is also referred to as a hybrid heat pump which is however a broader field. Thanks to this integration, the device can obtain cooling and heating effects using both thermal and electrical energy sources. This type of systems is well coupled with cogeneration systems where both heat and electricity are produced. Depending on the configuration, the system can maximize heating and cooling production from a given amount of fuel, or can improve the temperature of waste heat from other processes. This second use is the most studied one and has been applied to several industrial applications.
Photovoltaic-thermal direct expansion solar assisted heat pump (PV/T-DX-SAHP) system enables to benefit the waste heat for evaporation of refrigerant in PV/T collector-evaporator, while providing better cooling for PV cells (Yao et al., 2020).