Windpump

Last updated

A windpump is a wind-driven device which is used for pumping water.

Contents

The windmills at Kinderdijk in the village of Kinderdijk, Netherlands is a UNESCO World Heritage Site KinderdijkWindmills.jpg
The windmills at Kinderdijk in the village of Kinderdijk, Netherlands is a UNESCO World Heritage Site
De Olifant at Burdaard, Friesland Molendeolifant.jpg
De Olifant at Burdaard, Friesland

Windpumps were used to pump water since at least the 9th century in what is now Afghanistan, Iran and Pakistan. [1] The use of wind pumps became widespread across the Muslim world and later spread to China and India. [2] Windmills were later used extensively in Europe, particularly in the Netherlands and the East Anglia area of Great Britain, from the late Middle Ages onwards, to drain land for agricultural or building purposes.

Simon Stevin's work in the waterstaet involved improvements to the sluices and spillways to control flooding. Windmills were already in use to pump the water out, but in Van de Molens (On mills), he suggested improvements, including the idea that the wheels should move slowly, and a better system for meshing of the gear teeth. These improvements increased the efficiency of the windmills used to pump water out of the polders by three times. He received a patent on his innovation in 1586. [3]

Eight- to ten-bladed windmills were used in the Region of Murcia, Spain, to raise water for irrigation purposes. [4] The drive from the windmill's rotor was led down through the tower and back out through the wall to turn a large wheel known as a noria . The noria supported a bucket chain which dangled down into the well. The buckets were traditionally made of wood or clay. These windmills remained in use until the 1950s, and many of the towers are still standing.

Early immigrants to the New World brought with them the technology of windmills from Europe. [5] On US farms, particularly on the Great Plains, wind pumps were used to pump water from farm wells for cattle. In California and some other states, the windmill was part of a self-contained domestic water system, including a hand-dug well and a redwood water tower supporting a redwood tank and enclosed by redwood siding (tankhouse). The self-regulating farm wind pump was invented by Daniel Halladay in 1854. [5] [6] Eventually, steel blades and steel towers replaced wooden construction, and at their peak in 1930, an estimated 600,000 units were in use, with capacity equivalent to 150 megawatts. [7] Very large lighter wind pumps in Australia directly crank the pump with the rotor of the windmill. Extra back gearing between small rotors for high wind areas and the pump crank prevents trying to push the pump rods down on the downstroke faster than they can fall by gravity. Otherwise pumping too fast leads to the pump rods buckling, making the seal of the stuffing box leak and wearing through the wall of the rising main (UK) or the drop-pipe (US) so all output is lost.

The multi-bladed wind pump or wind turbine atop a lattice tower made of wood or steel hence became, for many years, a fixture of the landscape throughout rural America. [8] These mills, made by a variety of manufacturers, featured many blades so that they would turn slowly with considerable torque in moderate winds and be self-regulating in high winds. A tower-top gearbox and crankshaft converted the rotary motion into reciprocating strokes carried downward through a rod to the pump cylinder below. Today, rising energy costs and improved pumping technology are increasing interest in the use of this once declining technology.

Worldwide use

A working wooden windpump on The Fens in Cambridgeshire, UK Wicken Fen Windpump.jpg
A working wooden windpump on The Fens in Cambridgeshire, UK

The Netherlands is well known for its windmills. Most of these iconic structures situated along the edge of polders are actually windpumps, designed to drain the land. These are particularly important as much of the country lies below sea level.

In the UK, the term windpump is rarely used, and they are better known as drainage windmills. Many of these were built in The Broads and The Fens of East Anglia for the draining of land, but most of them have since been replaced by diesel or electric powered pumps. [9] Many of the original windmills still stand in a derelict state although some have been restored.[ citation needed ]

Windpumps are used extensively in Southern Africa, Australia, and on farms and ranches in the central plains and Southwest of the United States. In South Africa and Namibia thousands of windpumps are still operating. These are mostly used to provide water for human use as well as drinking water for large sheep stocks.

Kenya has also benefited from the African development of windpump technologies. At the end of the 1970s, the UK NGO Intermediate Technology Development Group provided engineering support to the Kenyan company Bobs Harries Engineering Ltd for the development of the Kijito windpumps. Bobs Harries Engineering Ltd is still manufacturing the Kijito windpumps, and more than 300 of them are operating in the whole of East Africa.[ citation needed ]

In many parts of the world, a rope pump is being used in conjunction with wind turbines. This easy-to- construct pump works by pulling a knotted rope through a pipe (usually a simple PVC pipe) causing the water to be pulled up into the pipe. This type of pump has become common in Nicaragua and other places.[ citation needed ]

Construction

To construct a windpump, the bladed rotor needs to be matched to the pump. With non-electric windpumps, high solidity rotors are best used in conjunction with positive displacement (piston) pumps, because single-acting piston pumps need about three times as much torque to start them as to keep them going. Low solidity rotors, on the other hand, are best used with centrifugal pumps, waterladder pumps and chain and washer pumps, where the torque needed by the pump for starting is less than that needed for running at design speed. Low solidity rotors are best used if they are intended to drive an electricity generator; which in turn can drive the pump. [10]

Multi-bladed windpumps

Wind powered water pump on Oak Park Farm, Shedd, Oregon. Wind-powered-agricultural-pump-1.jpg
Wind powered water pump on Oak Park Farm, Shedd, Oregon.
Windpump in far western NSW. Windmill in far western NSW.jpg
Windpump in far western NSW.

Multi-bladed wind pumps can be found worldwide and are manufactured in the United States, Argentina, China, New Zealand, South Africa, and Australia. Commonly known in the US and Canada as a "weathercock" because it behaves much like a traditional weather vane, moving with the direction of the wind (but also measuring wind speed).The Butler brand added improvements to the technology of windpumps in 1897, 1898 and 1905 [11] A 16 ft (4.8 m) diameter wind pump can lift up to 1600 US gallons (about 6.4 metric tons) of water per hour to an elevation of 100 ft with a 15 to 20 mph wind (24–32 km/h). [12] However they take a strong wind to start so they turn over the crank of the piston pump. Wind pumps require little maintenance—usually only a change of gear box oil annually. [13] An estimated 60,000 wind pumps are still in use in the United States. They are particularly attractive for use at remote sites where electric power is not available and maintenance is difficult to provide. [14] A common multi-bladed windpump usefully pumps with about 4%–8% of the annual windpower passing through the area it sweeps [15] [16] This lower conversion is due to poor load matching between wind rotors and fixed-stroke piston pumps.

Fundamental problems of multi-bladed windpumps

Inefficient rotor

Derelict water tank with windmill in the background Derelict windpump with water tank in the foreground next to the Boorowa railway in Galong NSW Australia.JPG
Derelict water tank with windmill in the background

The main design feature of a multi-bladed rotor is "high starting torque", which is necessary for cranking a piston pump operation. Once started a multi-bladed rotor runs at too high a tipspeed ratio at less than its best efficiency of 30%. [17] On the other hand, modern wind rotors can operate at an aerodynamic efficiency of more than 40% at higher tipspeed ratio for a smaller swirl added and wasted to the wind. [17] But they would need a highly variable stroke mechanism rather than just a crank to piston pump.[ citation needed ]

Poor load matching

A multi-bladed windmill is a mechanical device with a piston pump. Because a piston pump has a fixed stroke, the energy demand of this type of pump is proportional to pump speed only. On the other hand, the energy supply of a wind rotor is proportional to the cube of wind speed. Because of that, a wind rotor runs at over speed (more speed than needed), yielding a loss of aerodynamic efficiency.

A variable stroke would match the rotor speed according to wind speed, functioning like a "variable-speed generator". The flow rate of variable stroke windpump can be increased two times, compared to fixed stroke windpumps at the same wind speed. [18]

Cyclic torque variation

A piston pump has a very light suction phase, but the upstroke is heavy and puts a big backtorque on a starting rotor when the crank is horizontal and ascending. A counterweight on the crank up in the tower and yawing with the wind direction can at least spread the torque to the crank descent.[ citation needed ]

Development of improved windpumps

Windmill patent drawing from 1889 vintage aged Windmill-patent-drawing-from-1889-vintage-aged.jpg
Windmill patent drawing from 1889 vintage aged
Aldrich windmill patent drawing from 1889 Aldrich-windmill-patent-drawing-from-1889-blue-ink-aged-pixel.jpg
Aldrich windmill patent drawing from 1889

Although multi-bladed windpumps are based on proven technology and are widely used, they have the fundamental problems mentioned above and need a practical variable stroke mechanism.[ citation needed ]

USDA experiments at Texas

Between 1988 and 1990, a variable stroke windpump was tested at the USDA-Agriculture Research Center-Texas, based on two patented designs (Don E. Avery Patent #4.392.785, 1983 and Elmo G. Harris Patent #617.877, 1899). [18] Control systems of the variable stroke wind pumps were mechanical and hydraulic; however, those experiments did not attract the attention of any windpump manufacturer. After experiments with this variable stroke windpump, research focused on wind-electric water pumping systems; no commercial variable stroke windpump exists yet.[ citation needed ]

Fluttering windpumps

Fluttering windpumps have been developed in Canada with a pump stroke varying strongly with amplitude to absorb all the variable power in the wind and to stop the uniblade from swinging too far beyond horizontal from its vertical mean position. They are much lighter and use less material than multiblade windpumps and can pump effectively in lighter wind regimes. [19] [20]

Variable stroke windpump

A Turkish engineer re-designed the variable stroke windpump technology by using modern electronic control equipment. Research began in 2004, with governmental R&D support. The first commercial new generation variable stroke wind pumps have been designed after ten years of R&D. The 30 kW variable stroke windpump design includes a Darrieus-type modern wind rotor, counterbalance and regenerative brake technology. [21]

Vertical axis wind pump (VAWP)

Using a vertical axis wind turbine, the redirection of the turbine torque from horizontal to the vertical axis can be solved, thus creating a basic shaft connection between the turbine and the pump. [22] The direct connection can produce a more efficient wind-pump. for example, Combining the VAWP system with a high-pressure (HP-VAWP) drip irrigation system can lead, with proper optimization, to two to three times higher efficiency than traditional windpumps. [23]

Combinations

Tjasker

The tjasker Tjasker Sanpoel 04.JPG
The tjasker

In the Netherlands, the tjasker is a drainage mill with common sails connected to an Archimedean screw. This is used for pumping water in areas where only a small lift is required. The windshaft sits on a tripod which allows it to pivot. The Archimedean screw lifts water into a collecting ring, where it is drawn off into a ditch at a higher level, thus draining the land. [24]

Thai windpumps

In Thailand, windpumps are traditionally built on Chinese windpump designs. These pumps are constructed from wire-braced bamboo poles carrying fabric or bamboo-mat sails; a paddle pump or waterladder pump is fixed to a Thai bladed rotor. They are mainly used in salt pans where the water lift required is typically less than one meter. [25]

See also

Related Research Articles

<span class="mw-page-title-main">Steam engine</span> Engine that uses steam to perform mechanical work

A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be transformed, by a connecting rod and crank, into rotational force for work. The term "steam engine" is most commonly applied to reciprocating engines as just described, although some authorities have also referred to the steam turbine and devices such as Hero's aeolipile as "steam engines." The essential feature of steam engines is that they are external combustion engines, where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process is called the Rankine cycle. In general usage, the term steam engine can refer to either complete steam plants, such as railway steam locomotives and portable engines, or may refer to the piston or turbine machinery alone, as in the beam engine and stationary steam engine.

<span class="mw-page-title-main">Turbine</span> Rotary mechanical device that extracts energy from a fluid flow

A turbine is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical power when combined with a generator. A turbine is a turbomachine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor. Early turbine examples are windmills and waterwheels.

<span class="mw-page-title-main">Tesla turbine</span> Bladeless centripetal flow turbine

The Tesla turbine is a bladeless centripetal flow turbine invented by Nikola Tesla in 1913. Nozzles apply a moving fluid to the edges of a set of discs. The engine uses smooth discs rotating in a chamber to generate rotational movement due to the exchange of momentum between the fluid and the discs. The discs are arranged in an orientation similar to a stack of CDs on a pole.

<span class="mw-page-title-main">Windmill</span> Machine that makes use of wind energy

A windmill is a structure that converts wind power into rotational energy using vanes called sails or blades, by tradition specifically to mill grain (gristmills), but in some parts of the English-speaking world the term has also been extended to encompass windpumps, wind turbines, and other applications. The term wind engine is also sometimes used to describe such devices.

<span class="mw-page-title-main">Darrieus wind turbine</span> Type of vertical axis wind turbine

The Darrieus wind turbine is a type of vertical axis wind turbine (VAWT) used to generate electricity from wind energy. The turbine consists of a number of curved aerofoil blades mounted on a rotating shaft or framework. The curvature of the blades allows the blade to be stressed only in tension at high rotating speeds. There are several closely related wind turbines that use straight blades. This design of the turbine was patented by Georges Jean Marie Darrieus, a French aeronautical engineer; filing for the patent was October 1, 1926. There are major difficulties in protecting the Darrieus turbine from extreme wind conditions and in making it self-starting.

<span class="mw-page-title-main">Savonius wind turbine</span> Type of wind turbine that spins along its vertical axis

Savonius wind turbines are a type of vertical-axis wind turbine (VAWT), used for converting the force of the wind into torque on a rotating shaft. The turbine consists of a number of aerofoils, usually—but not always—vertically mounted on a rotating shaft or framework, either ground stationed or tethered in airborne systems.

<span class="mw-page-title-main">Turbomachinery</span> Machine for exchanging energy with a fluid

Turbomachinery, in mechanical engineering, describes machines that transfer energy between a rotor and a fluid, including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a compressor transfers energy from a rotor to a fluid.

<span class="mw-page-title-main">Motor drive</span>

Motor drive means a system that includes a motor. An adjustable speed motor drive means a system that includes a motor that has multiple operating speeds. A variable speed motor drive is a system that includes a motor and is continuously variable in speed. If the motor is generating electrical energy rather than using it – this could be called a generator drive but is often still referred to as a motor drive.

Blade pitch or simply pitch refers to the angle of a blade in a fluid. The term has applications in aeronautics, shipping, and other fields.

<span class="mw-page-title-main">Hydraulic motor</span> Machine converting flow into rotation

A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, the category of devices called hydraulic motors has sometimes included those that run on hydropower but in today's terminology the name usually refers more specifically to motors that use hydraulic fluid as part of closed hydraulic circuits in modern hydraulic machinery.

<span class="mw-page-title-main">Wind turbine design</span> Process of defining the form of wind turbine systems

Wind turbine design is the process of defining the form and configuration of a wind turbine to extract energy from the wind. An installation consists of the systems needed to capture the wind's energy, point the turbine into the wind, convert mechanical rotation into electrical power, and other systems to start, stop, and control the turbine.

<span class="mw-page-title-main">Unconventional wind turbines</span> Wind turbines of unconventional design

Unconventional wind turbines are those that differ significantly from the most common types in use.

<span class="mw-page-title-main">History of wind power</span> Aspect of history

Wind power has been used as long as humans have put sails into the wind. King Hammurabi's Codex already mentioned windmills for generating mechanical energy. Wind-powered machines used to grind grain and pump water — the windmill and wind pump — were developed in what is now Iran, Afghanistan, and Pakistan by the 9th century. Wind power was widely available and not confined to the banks of fast-flowing streams, or later, requiring sources of fuel. Wind-powered pumps drained the polders of the Netherlands, and in arid regions such as the American midwest or the Australian outback, wind pumps provided water for livestock and steam engines.

<span class="mw-page-title-main">Hydraulic pump</span> Mechanical power source

A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. Hydraulic pumps are used in hydraulic drive systems and can be hydrostatic or hydrodynamic. They generate flow with enough power to overcome pressure induced by a load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical action delivers this liquid to the pump outlet and forces it into the hydraulic system. Hydrostatic pumps are positive displacement pumps while hydrodynamic pumps can be fixed displacement pumps, in which the displacement cannot be adjusted, or variable displacement pumps, which have a more complicated construction that allows the displacement to be adjusted. Hydrodynamic pumps are more frequent in day-to-day life. Hydrostatic pumps of various types all work on the principle of Pascal's law.

<span class="mw-page-title-main">Éolienne Bollée</span>

The Éolienne Bollée is an unusual wind turbine, unique for having a stator and a rotor, as a water turbine has. The eponymous invention was first patented in 1868 by Ernest Sylvain Bollée in France. A further patent dated 1885 differed mainly in two ways: First, in how the turbine was turned to face the wind and second, in an improvement which increased the flow of wind through the turbine was added. The turbines built according to the 1885 patent were commercially successful.

<span class="mw-page-title-main">Wind turbine</span> Machine that converts wind energy into electrical energy

A wind turbine is a device that converts the kinetic energy of wind into electrical energy. As of 2020, hundreds of thousands of large turbines, in installations known as wind farms, were generating over 650 gigawatts of power, with 60 GW added each year. Wind turbines are an increasingly important source of intermittent renewable energy, and are used in many countries to lower energy costs and reduce reliance on fossil fuels. One study claimed that, as of 2009, wind had the "lowest relative greenhouse gas emissions, the least water consumption demands and the most favorable social impacts" compared to photovoltaic, hydro, geothermal, coal and gas energy sources.

<span class="mw-page-title-main">Wind-turbine aerodynamics</span> Physical property

The primary application of wind turbines is to generate energy using the wind. Hence, the aerodynamics is a very important aspect of wind turbines. Like most machines, wind turbines come in many different types, all of them based on different energy extraction concepts.

<span class="mw-page-title-main">Variable speed wind turbine</span> Type of wind turbine

A variable speed wind turbine is one which is specifically designed to operate over a wide range of rotor speeds. It is in direct contrast to fixed speed wind turbine where the rotor speed is approximately constant. The reason to vary the rotor speed is to capture the maximum aerodynamic power in the wind, as the wind speed varies. The aerodynamic efficiency, or coefficient of power, for a fixed blade pitch angle is obtained by operating the wind turbine at the optimal tip-speed ratio as shown in the following graph.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

<span class="mw-page-title-main">Vertical-axis wind turbine</span> Type of wind turbine

A vertical-axis wind turbine (VAWT) is a type of wind turbine where the main rotor shaft is set transverse to the wind while the main components are located at the base of the turbine. This arrangement allows the generator and gearbox to be located close to the ground, facilitating service and repair. VAWTs do not need to be pointed into the wind, which removes the need for wind-sensing and orientation mechanisms. Major drawbacks for the early designs included the significant torque ripple during each revolution, and the large bending moments on the blades. Later designs addressed the torque ripple by sweeping the blades helically. Savonius vertical-axis wind turbines (VAWT) are not widespread, but their simplicity and better performance in disturbed flow-fields, compared to small horizontal-axis wind turbines (HAWT) make them a good alternative for distributed generation devices in an urban environment.

References

  1. Lucas, Adam (2006). Wind, Water, Work: Ancient and Medieval Milling Technology. Brill Publishers. p. 61. ISBN   90-04-14649-0.
  2. "History of Sciences in the Islamic World". swipnet.se. Archived from the original on May 24, 2007. Retrieved August 20, 2021.
  3. Sarton, George (1934). "Simon Stevin of Bruges (1548-1620)". Isis. 21 (2): 241–303. doi:10.1086/346851. S2CID   144054163.
  4. Schinas, Jill (2008). "Spanish Water Works". yachtmollymawk.com. Retrieved August 20, 2021.
  5. 1 2 Baker, T. Lindsay. "Brief History of Windmills in the New World". windmillersgazette.com. Archived from the original on October 7, 2011. Retrieved August 20, 2021.
  6. Clements, Elizabeth (2003). "Historic Turns in The Windmill City". Fermi News. Fermilab. 26 (3). Retrieved August 20, 2021.
  7. Gipe, Paul (1995). Wind Energy Comes of Age. John Wiley and Sons. pp. 123–127. ISBN   0-471-10924-X.
  8. Duval, George (July 18, 2021). "Wind Turbines vs. Windmills: What's the Difference?". semprius.com. Retrieved August 20, 2021.
  9. Williamson, Tom (1997). The Norfolk Broads: A Landscape History. Manchester University Press. p. 106. ISBN   9780719048005.
  10. Water lifting devices; matching bladed rotors to pumps
  11. "Butler Pictorial" (PDF). Retrieved 2023-07-30.
  12. Iron Man Windmill Website pumping capacity calculator, retrieved January 15, 2011
  13. Aermotor Web site frequently asked questions, retrieved Sept. 17, 2008
  14. "Windmill parts".
  15. Argaw, N.,"Renewable Energy for Water Pumping Applications in Rural Villages", 2003, NREL Report 30361, page 27
  16. Brian Vick, Nolan Clark "Performance and Economic Comparison of a Mechanical Windmill to Wind-Electric Water Pumping System", 1997, USDA-Agricultural Research Service, see Figure-2
  17. 1 2 Hau, Erich "Wind Turbines", 2005, page 101, Fig.5-10
  18. 1 2 Clark, Nolan "Variable Stroke Pumping for Mechanical Windmills", 1990, AWEA Proceedings
  19. "Econologica".
  20. Archived at Ghostarchive and the Wayback Machine : "WING'D MILLS 2013: FLO'Pump and FLUTTER WELL Pump". YouTube .
  21. ENA Yelkapan Technologies Ltd.
  22. Hagen, L. J., and Sharif, M., 1981, “Darrieus Wind Turbine and Pump Performance for Low-Lift Irrigation Pumping,” U.S. Department of Agriculture, Manhattan, KS, Report No. DOE/ARS-3707-20741/81/1.
  23. "Keisar, D., Eilan, B., and Greenblatt, D. (February 8, 2021). "High Pressure Vertical Axis Wind Pump." ASME. J. Fluids Eng. May 2021; 143(5): 051204".
  24. "The types of windmills". Odur. Retrieved 2008-05-24.
  25. Smulders, P.T. (January 1996). "Wind water pumping: the forgotten option" (PDF). Energy for Sustainable Development . 11 (5).
  26. Coil pump frequently used for windpump construction