Seasonal thermal energy storage

Last updated

Seasonal thermal energy storage (STES), also known as inter-seasonal thermal energy storage, [1] is the storage of heat or cold for periods of up to several months. The thermal energy can be collected whenever it is available and be used whenever needed, such as in the opposing season. For example, heat from solar collectors or waste heat from air conditioning equipment can be gathered in hot months for space heating use when needed, including during winter months. Waste heat from industrial process can similarly be stored and be used much later [2] or the natural cold of winter air can be stored for summertime air conditioning. [3] [4]

Contents

STES stores can serve district heating systems, as well as single buildings or complexes. Among seasonal storages used for heating, the design peak annual temperatures generally are in the range of 27 to 80 °C (81 to 180 °F), and the temperature difference occurring in the storage over the course of a year can be several tens of degrees. Some systems use a heat pump to help charge and discharge the storage during part or all of the cycle. For cooling applications, often only circulation pumps are used.

Examples for district heating include Drake Landing Solar Community where ground storage provides 97% of yearly consumption without heat pumps, [5] and Danish pond storage with boosting. [6]

STES technologies

There are several types of STES technology, covering a range of applications from single small buildings to community district heating networks. Generally, efficiency increases and the specific construction cost decreases with size.

Underground thermal energy storage

UTES (underground thermal energy storage), in which the storage medium may be geological strata ranging from earth or sand to solid bedrock, or aquifers.
UTES technologies include:

Surface and above ground technologies

Conferences and organizations

The International Energy Agency's Energy Conservation through Energy Storage (ECES) Programme [28] [29] has held triennial global energy conferences since 1981. The conferences originally focused exclusively on STES, but now that those technologies are mature other topics such as phase change materials (PCM) and electrical energy storage are also being covered. Since 1985 each conference has had "stock" (for storage) at the end of its name; e.g. EcoStock, ThermaStock. [30] They are held at various locations around the world. Most recent were InnoStock 2012 (the 12th International Conference on Thermal Energy Storage) in Lleida, Spain [31] and GreenStock 2015 in Beijing. [32] EnerStock 2018 will be held in Adana, Turkey in April 2018. [33]

The IEA-ECES programme continues the work of the earlier International Council for Thermal Energy Storage which from 1978 to 1990 had a quarterly newsletter and was initially sponsored by the U.S. Department of Energy. The newsletter was initially called ATES Newsletter, and after BTES became a feasible technology it was changed to STES Newsletter. [34] [35]

Use of STES for small, passively heated buildings

Small passively heated buildings typically use the soil adjoining the building as a low-temperature seasonal heat store that in the annual cycle reaches a maximum temperature similar to average annual air temperature, with the temperature drawn down for heating in colder months. Such systems are a feature of building design, as some simple but significant differences from 'traditional' buildings are necessary. At a depth of about 20 feet (6 m) in the soil, the temperature is naturally stable within a year-round range, [36] if the drawdown does not exceed the natural capacity for solar restoration of heat. Such storage systems operate within a narrow range of storage temperatures over the course of a year, as opposed to the other STES systems described above for which large annual temperature differences are intended.

Two basic passive solar building technologies were developed in the US during the 1970s and 1980s. They use direct heat conduction to and from thermally isolated, moisture-protected soil as a seasonal storage method for space heating, with direct conduction as the heat return mechanism. In one method, "passive annual heat storage" (PAHS), [37] the building's windows and other exterior surfaces capture solar heat which is transferred by conduction through the floors, walls, and sometimes the roof, into adjoining thermally buffered soil. When the interior spaces are cooler than the storage medium, heat is conducted back to the living space. [38] [39]

The other method, “annualized geothermal solar” (AGS) uses a separate solar collector to capture heat. The collected heat is delivered to a storage device (soil, gravel bed or water tank) either passively by the convection of the heat transfer medium (e.g. air or water) or actively by pumping it. This method is usually implemented with a capacity designed for six months of heating.

A number of examples of the use of solar thermal storage from across the world include: Suffolk One a college in East Anglia, England, that uses a thermal collector of pipe buried in the bus turning area to collect solar energy that is then stored in 18 boreholes each 100 metres (330 ft) deep for use in winter heating. Drake Landing Solar Community in Canada uses solar thermal collectors on the garage roofs of 52 homes, which is then stored in an array of 35 metres (115 ft) deep boreholes. The ground can reach temperatures in excess of 70 °C which is then used to heat the houses passively. The scheme has been running successfully since 2007. In Brædstrup, Denmark, some 8,000 square metres (86,000 sq ft) of solar thermal collectors are used to collect some 4,000,000 kWh/year similarly stored in an array of 50 metres (160 ft) deep boreholes.

Liquid engineering

Architect Matyas Gutai [40] obtained an EU grant to construct a house in Hungary [41] which uses extensive water filled wall panels as heat collectors and reservoirs with underground heat storage water tanks. The design uses microprocessor control.

Small buildings with internal STES water tanks

A number of homes and small apartment buildings have demonstrated combining a large internal water tank for heat storage with roof-mounted solar-thermal collectors. Storage temperatures of 90 °C (194 °F) are sufficient to supply both domestic hot water and space heating. The first such house was MIT Solar House #1, in 1939. An eight-unit apartment building in Oberburg, Switzerland was built in 1989, with three tanks storing a total of 118 m3 (4,167 cubic feet) that store more heat than the building requires. Since 2011, that design is now being replicated in new buildings. [42]

In Berlin, the “Zero Heating Energy House”, was built in 1997 in as part of the IEA Task 13 low energy housing demonstration project. It stores water at temperatures up to 90 °C (194 °F) inside a 20 m3 (706 cubic feet) tank in the basement. [43]

A similar example was built in Ireland in 2009, as a prototype. The solar seasonal store [44] consists of a 23 m3 (812 cu ft) tank, filled with water, [45] which was installed in the ground, heavily insulated all around, to store heat from evacuated solar tubes during the year. The system was installed as an experiment to heat the world's first standardized pre-fabricated passive house [46] in Galway, Ireland. The aim was to find out if this heat would be sufficient to eliminate the need for any electricity in the already highly efficient home during the winter months.

Based on improvements in glazing the Zero heating buildings are now possible without seasonal energy storage.

Use of STES in greenhouses

STES is also used extensively for the heating of greenhouses. [47] [48] [49] ATES is the kind of storage commonly in use for this application. In summer, the greenhouse is cooled with ground water, pumped from the “cold well” in the aquifer. The water is heated in the process, and is returned to the “warm well” in the aquifer. When the greenhouse needs heat, such as to extend the growing season, water is withdrawn from the warm well, becomes chilled while serving its heating function, and is returned to the cold well. This is a very efficient system of free cooling, which uses only circulation pumps and no heat pumps.

Annualized geo-solar

Annualized geo-solar (AGS) enables passive solar heating in even cold, foggy north temperate areas. It uses the ground under or around a building as thermal mass to heat and cool the building. After a designed, conductive thermal lag of 6 months the heat is returned to, or removed from, the inhabited spaces of the building. In hot climates, exposing the collector to the frigid night sky in winter can cool the building in summer.

The six-month thermal lag is provided by about three meters (ten feet) of dirt. A six-meter-wide (20 ft) buried skirt of insulation around the building keeps rain and snow melt out of the dirt, which is usually under the building. The dirt does radiant heating and cooling through the floor or walls. A thermal siphon moves the heat between the dirt and the solar collector. The solar collector may be a sheet-metal compartment in the roof, or a wide flat box on the side of a building or hill. The siphons may be made from plastic pipe and carry air. Using air prevents water leaks and water-caused corrosion. Plastic pipe doesn't corrode in damp earth, as metal ducts can.

AGS heating systems typically consist of:

Usually it requires several years for the storage earth-mass to fully preheat from the local at-depth soil temperature (which varies widely by region and site-orientation) to an optimum Fall level at which it can provide up to 100% of the heating requirements of the living space through the winter. This technology continues to evolve, with a range of variations (including active-return devices) being explored. The listserve where this innovation is most often discussed is "Organic Architecture" at Yahoo.

This system is almost exclusively deployed in northern Europe. One system has been built at Drake Landing in North America. A more recent system is a Do-it-yourself energy-neutral home in progress in Collinsville, IL that will rely solely on Annualized Solar for conditioning.

See also

Related Research Articles

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

<span class="mw-page-title-main">Passive solar building design</span> Architectural engineering that uses the Suns heat without electric or mechanical systems

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

<span class="mw-page-title-main">Solar thermal energy</span> Technology using sunlight for heat

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors.

<span class="mw-page-title-main">Solar water heating</span> Use of sunlight for water heating with a solar thermal collector

Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications.

<span class="mw-page-title-main">Solar thermal collector</span> Device that collects heat

A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non water heating devices such as solar cooker, solar air heaters.

<span class="mw-page-title-main">Thermal energy storage</span> Technologies to store thermal energy

Thermal energy storage (TES) is the storage of thermal energy for later reuse. Employing widely different technologies, it allows surplus thermal energy to be stored for hours, days, or months. Scale both of storage and use vary from small to large – from individual processes to district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer cooling. Storage media include water or ice-slush tanks, masses of native earth or bedrock accessed with heat exchangers by means of boreholes, deep aquifers contained between impermeable strata; shallow, lined pits filled with gravel and water and insulated at the top, as well as eutectic solutions and phase-change materials.

Renewable heat is an application of renewable energy referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented.

<span class="mw-page-title-main">Waste heat</span> Heat that is produced by a machine that uses energy, as a byproduct of doing work

Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility than the original energy source. Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example, incandescent light bulbs get hot, a refrigerator warms the room air, a building gets hot during peak hours, an internal combustion engine generates high-temperature exhaust gases, and electronic components get warm when in operation.

<span class="mw-page-title-main">Energy recovery</span>

Energy recovery includes any technique or method of minimizing the input of energy to an overall system by the exchange of energy from one sub-system of the overall system with another. The energy can be in any form in either subsystem, but most energy recovery systems exchange thermal energy in either sensible or latent form.

<span class="mw-page-title-main">Ground source heat pump</span> System to transfer heat to/from the ground

A ground source heat pump is a heating/cooling system for buildings that use a type of heat pump to transfer heat to or from the ground, taking advantage of the relative constancy of temperatures of the earth through the seasons. Ground-source heat pumps (GSHPs) – or geothermal heat pumps (GHP), as they are commonly termed in North America – are among the most energy-efficient technologies for providing HVAC and water heating, using far less energy than can be achieved by burning a fuel in a boiler/furnace or by use of resistive electric heaters.

<span class="mw-page-title-main">Central solar heating</span> Solar architecture

Central solar heating is the provision of central heating and hot water from solar energy by a system in which the water is heated centrally by arrays of solar thermal collectors and distributed through district heating pipe networks.

<span class="mw-page-title-main">Solar combisystem</span> Solar collection system which provides heating and cooling

A solar combisystem provides both solar space heating and cooling as well as hot water from a common array of solar thermal collectors, usually backed up by an auxiliary non-solar heat source.

The Drake Landing Solar Community (DLSC) is a planned community in Okotoks, Alberta, Canada, equipped with a central solar heating system and other energy efficient technologies. This heating system is the first of its kind in North America, although much larger systems have been built in northern Europe. The 52 homes in the community are heated with a solar district heating system that is charged with heat originating from solar collectors on the garage roofs and is enabled for year-round heating by underground seasonal thermal energy storage (STES).

Energy recycling is the energy recovery process of using energy that would normally be wasted, usually by converting it into electricity or thermal energy. Undertaken at manufacturing facilities, power plants, and large institutions such as hospitals and universities, it significantly increases efficiency, thereby reducing energy costs and greenhouse gas pollution simultaneously. The process is noted for its potential to mitigate global warming profitably. This work is usually done in the form of combined heat and power or waste heat recovery.

<span class="mw-page-title-main">Photovoltaic thermal hybrid solar collector</span>

Photovoltaic thermal collectors, typically abbreviated as PVT collectors and also known as hybrid solar collectors, photovoltaic thermal solar collectors, PV/T collectors or solar cogeneration systems, are power generation technologies that convert solar radiation into usable thermal and electrical energy. PVT collectors combine photovoltaic solar cells, which convert sunlight into electricity, with a solar thermal collector, which transfers the otherwise unused waste heat from the PV module to a heat transfer fluid. By combining electricity and heat generation within the same component, these technologies can reach a higher overall efficiency than solar photovoltaic (PV) or solar thermal (T) alone.

<span class="mw-page-title-main">IEA Solar Heating and Cooling Programme</span>

The International Energy Agency Solar Heating and Cooling Technology Collaboration Programme (IEA SHC TCP) is one of over 40 multilateral Technology Collaboration Programmes (also known as TCPs) of the International Energy Agency. It was one of the first of such programmes, founded in 1977. Its current mission is to "advance international collaborative efforts for solar energy to reach the goal set in the vision of contributing 50% of the low temperature heating and cooling demand by 2030.". Its international solar collector statistics Solar Heat Worldwide serves as a reference document for governments, financial institutions, consulting firms and non-profit/non-governmental organizations.

<span class="mw-page-title-main">Solar power in Denmark</span>

Solar power in Denmark amounts to 3,529 MW of grid-connected PV capacity at the end of December 2023, and contributes to a goal to use 100% renewable electricity by 2030 and 100% renewable energy by 2050. Solar power met 6.1% of Danish electricity demand in 2022, the highest share in the Nordic countries.

Aquifer thermal energy storage (ATES) is the storage and recovery of thermal energy in subsurface aquifers. ATES can heat and cool buildings. Storage and recovery is achieved by extraction and injection of groundwater using wells. Systems commonly operate in seasonal modes. Groundwater that is extracted in summer performs cooling by transferring heat from the building to the water by means of a heat exchanger. The heated groundwater is reinjected into the aquifer, which stores the heated water. In wintertime, the flow is reversed — heated groundwater is extracted.

Renewable thermal energy is the technology of gathering thermal energy from a renewable energy source for immediate use or for storage in a thermal battery for later use.

<span class="mw-page-title-main">Cold district heating</span> District heating with very low temperatures

Cold district heating is a technical variant of a district heating network that operates at low transmission temperatures well below those of conventional district heating systems and can provide both space heating and cooling. Transmission temperatures in the range of approx. 10 to 25 °C are common, allowing different consumers to heat and cool simultaneously and independently of each other. Hot water is produced and the building heated by water heat pumps, which obtain their thermal energy from the heating network, while cooling can be provided either directly via the cold heat network or, if necessary, indirectly via chillers. Cold local heating is sometimes also referred to as an anergy network. The collective term for such systems in scientific terminology is 5th generation district heating and cooling. Due to the possibility of being operated entirely by renewable energies and at the same time contributing to balancing the fluctuating production of wind turbines and photovoltaic systems, cold local heating networks are considered a promising option for a sustainable, potentially greenhouse gas and emission-free heat supply.

References

  1. Wong, Bill; Snijders, Aart; McClung, Larry (2006). "Recent Inter-seasonal Underground Thermal Energy Storage Applications in Canada". 2006 IEEE EIC Climate Change Conference. EIC Climate Change Technology, 2006 IEEE. pp. 1–7. doi:10.1109/EICCCC.2006.277232. ISBN   1-4244-0218-2. S2CID   8533614.
  2. Andersson, O.; Hägg, M. (2008), "Deliverable 10 - Sweden - Preliminary design of a seasonal heat storage for ITT Flygt, Emmaboda, Sweden" (PDF), Deliverable 10 - Sweden - Preliminary design of a seasonal heat storage for ITT Flygt, Emmaboda, Sweden, IGEIA – Integration of geothermal energy into industrial applications, pp. 38–56 and 72–76, archived from the original (PDF) on 11 April 2020, retrieved 21 April 2013
  3. 1 2 Paksoy, H.; Snijders, A.; Stiles, L. (2009), "Aquifer Thermal Energy Cold Storage System at Richard Stockton College" (PDF), Aquifer Thermal Energy Cold Storage System at Richard Stockton College, EFFSTOCK 2009 (11th International) - Thermal Energy Storage for Efficiency and Sustainability, Stockholm, archived from the original (PDF) on 12 January 2014, retrieved 22 April 2013{{citation}}: CS1 maint: location missing publisher (link)
  4. Gehlin, S.; Nordell, B. (1998), "Thermal Response test-In situ measurements of Thermal Properties in hard rock" (PDF), Thermal Response test-In situ measurements of Thermal Properties in hard rock, Avdelningen för vattenteknik. Luleå, Luleå Tekniska Universitet
  5. 1 2 Wong, Bill (28 June 2011), "Drake Landing Solar Community" (PDF), Drake Landing Solar Community, IDEA/CDEA District Energy/CHP 2011 Conference, Toronto, pp. 1–30, archived from the original (PDF) on 10 September 2016, retrieved 21 April 2013
  6. 1 2 Wittrup, Sanne (14 June 2015). "Verdens største damvarmelager indviet i Vojens". Ingeniøren . Archived from the original on 19 October 2015.
  7. Seibt, P.; Kabus, F. (2003), "Aquifer Thermal Energy Storage in Germany" (PDF), Aquifer Thermal Energy Storage in Germany, American Astronomical...
  8. Snijders, A. (30 July 2008), "ATES Technology Development and Major Applications in Europe" (PDF), ATES Technology Development and Major Applications in Europe, Conservation for the Living Community (Toronto and Region Conservation Authority), Toronto, Canada{{citation}}: CS1 maint: location missing publisher (link)
  9. Godschalk, M.S.; Bakema, G. (2009), "20,000 ATES systems in the Netherlands in 2020 – Major step towards a sustainable energy supply" (PDF), 20,000 ATES systems in the Netherlands in 2020 – Major step towards a sustainable energy supply, EFFSTOCK 2009 (11th International) – Thermal Energy Storage for Efficiency and Sustainability, Stockholm{{citation}}: CS1 maint: location missing publisher (link)
  10. Midttømme, K.; Ramstad, R. (2006), "Status of UTES in Norway" (PDF), Status of UTES in Norway, EcoStock 2006 (10th International) – Thermal Energy Storage for Efficiency and Sustainability, Pomona, New Jersey{{citation}}: CS1 maint: location missing publisher (link)
  11. Stene, J. (19 May 2008), "Large-Scale Ground-Source Heat Pump Systems in Norway" (PDF), Large-Scale Ground-Source Heat Pump Systems in Norway, IEA Heat Pump Annex 29 Workshop, Zurich{{citation}}: CS1 maint: location missing publisher (link)
  12. Hellström, G. (19 May 2008), "Large-Scale Applications of Ground-Source Heat Pumps in Sweden" (PDF), Large-Scale Applications of Ground-Source Heat Pumps in Sweden, IEA Heat Pump Annex 29 Workshop, Zurich{{citation}}: CS1 maint: location missing publisher (link)
  13. "Interseasonal Heat Transfer". Icax.co.uk. Retrieved 22 December 2017.
  14. "Thermal Banks". Icax.co.uk. Retrieved 22 December 2017.
  15. "Report on Interseasonal Heat Transfer by the Highways Agency". Icax.co.uk. Retrieved 22 December 2017.
  16. Chrisopherson, Elizabeth G. (Exec. Producer) (19 April 2009). Green Builders (segment interviewing Lynn Stiles) (Television production). PBS.
  17. Nussbicker-Lux, J. (2011), "Solar Thermal Combined with District Heating and Seasonal Heat Storage" (PDF), Solar Thermal Combined with District Heating and Seasonal Heat Storage, OTTI Symposium Thermische Solarenergie, Bad Staffelstein{{citation}}: CS1 maint: location missing publisher (link)
  18. "Canadian Solar Community Sets New World Record for Energy Efficiency and Innovation" (Press release). Natural Resources Canada. 5 October 2012. Retrieved 21 April 2013. "Drake Landing Solar Community (webpage)" . Retrieved 21 April 2013.
  19. Michel, F.A. (2009), "Utilization of abandoned mine workings for thermal energy storage in Canada" (PDF), Utilization of abandoned mine workings for thermal energy storage in Canada, Effstock Conference (11th International) – Thermal Energy Storage for Efficiency and Sustainability, Stockholm{{citation}}: CS1 maint: location missing publisher (link)
  20. Holms, L. (29 September 2011), "Long Term Experience with Solar District Heating", Long Term Experience with Solar District Heating, International SDH Workshop, Ferrara, IT, archived from the original on 8 March 2020, retrieved 22 April 2013{{citation}}: CS1 maint: location missing publisher (link)
  21. State of Green (undated). World largest thermal pit storage in Vojens. "The huge storage will be operated as an interseasonal heat storage allowing the solar heating plant to deliver more than 50% of the annual heat production to the network. The rest of the heat will be produced by 3 gas engines, a 10 MW electric boiler, an absorption heat pump and gas boilers."
  22. SDH (Solar District Heating) Newsletter (2014). The world's largest solar heating plant to be established in Vojens, Denmark. 7 June 2014.
  23. Wittrup, Sanne (23 October 2015). "Dansk solteknologi mod nye verdensrekorder". Ingeniøren .
  24. Wittrup, Sanne (26 September 2014). "Her er verdens største varmelager og solfanger". Ingeniøren .
  25. Epp, Baerbel (17 May 2019). "Seasonal pit heat storage: Cost benchmark of 30 EUR/m³".
  26. Mangold, D. (6 February 2010), "Prospects of Solar Thermal and Heat Storage in DHC" (PDF), Prospects of Solar Thermal and Heat Storage in DHC, Euroheat and Power + COGEN Europe, Brussels{{citation}}: CS1 maint: location missing publisher (link)
  27. Hellström, G. (18 May 2006), "Market and Technology in Sweden", Market and Technology in Sweden (PDF), 1st Groundhit workshop, p. 23[ permanent dead link ]
  28. IEA ECES Programme (2009). "Homepage".
  29. Paksoy, S. (2013), International Energy Agency Energy Conservation through Energy Storage Programme since 1978 (PDF), IEA ECES, archived from the original (PDF) on 10 June 2015
  30. Nordell, Bo; Gehlin, S. (2009), 30 years of thermal energy storage – a review of the IEA ECES stock conferences (PDF), IEA ECES, archived from the original (PDF) on 1 September 2013
  31. IEA ECES Programme (2012). "Innostock 2012 webpage".
  32. IEA ECES Programme (2013), 2015 --13th ECES Conference Introduction, archived from the original on 10 June 2015
  33. IEA ECES Programme (2017), Upcoming Events
  34. "ATES Newsletter and STES Newsletter archive". 2012.[ permanent dead link ]
  35. "Index for ATES Newsletter and STES Newsletter" (PDF). 2012.[ permanent dead link ]
  36. ICAX (webpage, undated). Mean Annual Air Temperature Determines Temperature in the Ground.
  37. EarthShelters (webpage, undated). Improving the Earth Shelter. Chapter 1 in: Passive Annual Heat Storage – Improving the Design of Earth Shelters Archived 3 December 2010 at the Wayback Machine
  38. Geery, D. 1982. Solar Greenhouses: Underground
  39. Hait, J. 1983. Passive Annual Heat Storage — Improving the Design of Earth Shelters.
  40. "Liquid Engineering - Towards New Sustainable Model for Architecture and City | Matyas Gutai". Academia.edu. 1 January 1970. Retrieved 22 December 2017.
  41. Parke, Phoebe (21 July 2016). "Meet the man who builds houses with water - CNN". Edition.cnn.com. Retrieved 22 December 2017.
  42. Sun & Wind Energy (2011). The solar house concept is spreading Archived 2013-11-10 at the Wayback Machine .
  43. Hestnes, A.; Hastings, R. (eds) (2003). Solar Energy Houses: Strategies, Technologies, Examples. pp. 109-114. ISBN   1-902916-43-3.
  44. "Scandinavian Homes - Research - Solar seasonal storage project with University of Ulster". www.scanhome.ie.
  45. "Archived copy" (PDF). Archived from the original (PDF) on 26 June 2011. Retrieved 17 December 2010.{{cite web}}: CS1 maint: archived copy as title (link)
  46. "Construct Ireland Articles - Passive Resistance". Archived from the original on 3 October 2006.
  47. Paksoy H., Turgut B., Beyhan B., Dasgan H.Y., Evliya H., Abak K., Bozdag S. (2010). Greener Greenhouses Archived 2011-11-25 at the Wayback Machine . World Energy Congress. Montreal 2010.
  48. Turgut B., Dasgan H.Y., Abak K., Paksoy H., Evliya H., Bozdag S. (2008). Aquifer thermal energy storage application in greenhouse climatization. International Symposium on Strategies Towards Sustainability of Protected Cultivation in Mild Winter Climate. Also: EcoStock 2006. pp. 143-148.
  49. See slide 15 of Snijders (2008), above.