Project commissioning is the process of ensuring that all systems and components of a building or industrial plant are designed, installed, tested, operated, and maintained according to the owner's or final client's operational requirements. A commissioning process may be applied not only to new projects but also to existing units and systems subject to expansion, renovation or revamping. [1] [2]
In practice, the commissioning process is the integrated application of a set of engineering techniques and procedures to check, inspect and test every operational component of the project: from individual functions (such as instruments and equipment) up to complex amalgamations (such as modules, subsystems and systems).
Commissioning activities in the broader sense applicable to all phases of the project from the basic and detailed design, procurement, construction and assembly until the final handover of the unit to the owner, sometimes including an assisted operation phase.
The main objective of commissioning is to effect the safe and orderly handover of the unit from the constructor to the owner, guaranteeing its operability in terms of performance, reliability, safety and information traceability. Additionally, when executed in a planned and effective way, commissioning normally represents an essential factor for the fulfillment of schedule, costs, safety and quality requirements of the project. [3]
For complex projects, the large volume and complexity of commissioning data, together with the need to guarantee adequate information traceability, normally leads to the use of powerful IT tools, known as commissioning management systems, to allow effective planning and monitoring of the commissioning activities.
There is currently no formal education or university degree which addresses the training or certification of a Project Commissioning Engineer. Various short and online training courses are available, but they are designed for qualified engineers.
Large civil and industrial projects for which Commissioning as an independent discipline is as important as traditional engineering disciplines, i.e. civil, naval, chemical, mechanical, electrical, electronic, instrumentation, automation, or telecom engineering, include chemical and petrochemical plants, oil and gas platforms and pipelines, metallurgical plants, paper and cellulose plants, coal handling plants, thermoelectric and hydroelectric plants, buildings, bridges, highways, and railroads.
In engineering and its various subdisciplines, acceptance testing is a test conducted to determine if the requirements of a specification or contract are met. It may involve chemical tests, physical tests, or performance tests.
Safety engineering is an engineering discipline which assures that engineered systems provide acceptable levels of safety. It is strongly related to industrial engineering/systems engineering, and the subset system safety engineering. Safety engineering assures that a life-critical system behaves as needed, even when components fail.
Construction is a general term meaning the art and science of forming objects, systems, or organizations. It comes from the Latin word constructio and Old French construction. To 'construct' is a verb: the act of building, and the noun is construction: how something is built or the nature of its structure.
In systems engineering, information systems and software engineering, the systems development life cycle (SDLC), also referred to as the application development life cycle, is a process for planning, creating, testing, and deploying an information system. The SDLC concept applies to a range of hardware and software configurations, as a system can be composed of hardware only, software only, or a combination of both. There are usually six stages in this cycle: requirement analysis, design, development and testing, implementation, documentation, and evaluation.
Process engineering is the understanding and application of the fundamental principles and laws of nature that allow humans to transform raw material and energy into products that are useful to society, at an industrial level. By taking advantage of the driving forces of nature such as pressure, temperature and concentration gradients, as well as the law of conservation of mass, process engineers can develop methods to synthesize and purify large quantities of desired chemical products. Process engineering focuses on the design, operation, control, optimization and intensification of chemical, physical, and biological processes. Process engineering encompasses a vast range of industries, such as agriculture, automotive, biotechnical, chemical, food, material development, mining, nuclear, petrochemical, pharmaceutical, and software development. The application of systematic computer-based methods to process engineering is "process systems engineering".
In software project management, software testing, and software engineering, verification and validation is the process of checking that a software engineer system meets specifications and requirements so that it fulfills its intended purpose. It may also be referred to as software quality control. It is normally the responsibility of software testers as part of the software development lifecycle. In simple terms, software verification is: "Assuming we should build X, does our software achieve its goals without any bugs or gaps?" On the other hand, software validation is: "Was X what we should have built? Does X meet the high-level requirements?"
A chemical plant is an industrial process plant that manufactures chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials. Chemical plants use specialized equipment, units, and technology in the manufacturing process. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies that have similarities to chemical plant technology such as fluid systems and chemical reactor systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant.
Performance engineering encompasses the techniques applied during a systems development life cycle to ensure the non-functional requirements for performance will be met. It may be alternatively referred to as systems performance engineering within systems engineering, and software performance engineering or application performance engineering within software engineering.
The term separator in oilfield terminology designates a pressure vessel used for separating well fluids produced from oil and gas wells into gaseous and liquid components. A separator for petroleum production is a large vessel designed to separate production fluids into their constituent components of oil, gas and water. A separating vessel may be referred to in the following ways: Oil and gas separator, Separator, Stage separator, Trap, Knockout vessel, Flash chamber, Expansion separator or expansion vessel, Scrubber, Filter. These separating vessels are normally used on a producing lease or platform near the wellhead, manifold, or tank battery to separate fluids produced from oil and gas wells into oil and gas or liquid and gas. An oil and gas separator generally includes the following essential components and features:
Project engineering includes all parts of the design of manufacturing or processing facilities, either new or modifications to and expansions of existing facilities. A "project" consists of a coordinated series of activities or tasks performed by engineers, designers, drafters and others from one or more engineering disciplines or departments. Project tasks consist of such things as performing calculations, writing specifications, preparing bids, reviewing equipment proposals and evaluating or selecting equipment and preparing various lists, such as equipment and materials lists, and creating drawings such as electrical, piping and instrumentation diagrams, physical layouts and other drawings used in design and construction. A small project may be under the direction of a project engineer. Large projects are typically under the direction of a project manager or management team. Some facilities have in house staff to handle small projects, while some major companies have a department that does internal project engineering. Large projects are typically contracted out to engineering companies. Staffing at engineering companies varies according to the work load and duration of employment may only last until an individual's tasks are completed.
In construction, commissioning or commissioning process is an integrated, systematic process to ensure, through documented verification, that all building systems perform interactively according to the "Design Intent". The commissioning process establishes and documents the "Owner's Project Requirements (OPR)" criteria for system function, performance expectations, maintainability; verify and document compliance with these criteria throughout all phases of the project. Commissioning procedures require a collaborative team effort and 'should' begin during the pre-design or planning phase of the project, continue through the design and construction phases, initial occupancy phase, training of operations and maintenance (O&M) staff, and into occupancy.
Oxygen plants are industrial systems designed to generate oxygen. They typically use air as a feedstock and separate it from other components of air using pressure swing adsorption or membrane separation techniques. Such plants are distinct from cryogenic separation plants which separate and capture all the components of air.
Commissioning is the process of assuring that all systems and components of a building or industrial plant are designed, installed, tested, operated, and maintained according to the operational requirements of the owner or final client.
Technical Integrity Engineering, also known as Asset Integrity, involves various engineering disciplines that focus on making sure a product, process, or system meets its intended requirements when it's used. Applying these disciplines to reduce costs, maintain schedules, manage technical risks, and handle legal concerns during a project's entire life cycle ensures operations run smoothly and safely in industries like Oil and Gas, Power Generation, and Nuclear Power. This helps plants work efficiently, stay safe, and deal with challenges like hazards effectively.
S.C. IPIP S.A. the Engineering and Design Institute for Oil Refineries and Petrochemical Plants is a Romanian company which was established in 1950, at Ploiești, as a milestone in the development of the petroleum, hydrocarbon processing and petrochemical industries as well as of their related fields, in Romania.
Asset Integrity Management Systems (AIMS) outline the ability of an asset to perform its required function effectively and efficiently whilst protecting health, safety and the environment and the means of ensuring that the people, systems, processes, and resources that deliver integrity are in place, in use and will perform when required over the whole life-cycle of the asset. The technical aspects of AIMS are illustrated in Figure 1. Originally developed in the UK, Asset Integrity Management was the result of a collaboration between the HSE and leading oil and gas operators resulting in a series of reports and workshops, the outcome being a group of documents called Key Programmes, currently publicly available.
Chemical process miniaturization refers to a philosophical concept within the discipline of process design that challenges the notion of "economy of scale" or "bigger is better". In this context, process design refers to the discipline taught primarily to chemical engineers. However, the emerging discipline of process miniaturization will involve integrated knowledge from many areas; as examples, systems engineering and design, remote measurement and control using intelligent sensors, biological process systems engineering, and advanced manufacturing robotics, etc.
Geoprofessions is a term coined by the Geoprofessional Business Association to connote various technical disciplines that involve engineering, earth and environmental services applied to below-ground ("subsurface"), ground-surface, and ground-surface-connected conditions, structures, or formations. The principal disciplines include, as major categories:
An isolation valve is a valve in a fluid handling system that stops the flow of process media to a given location, usually for maintenance or safety purposes. They can also be used to provide flow logic, and to connect external equipment to a system. A valve is classified as an isolation valve because of its intended function in a system, not because of the type of the valve itself. Therefore, many different types of valves can be classified as isolation valves.
COMOS is a plant engineering software from Siemens. The applications for this software are in the process industries for the engineering, operation, and maintenance of process plants as well as their asset management.