Solar pond

Last updated
Solar Evaporation Ponds in the Atacama Desert Solar Evaporation Ponds, Atacama Desert.jpg
Solar Evaporation Ponds in the Atacama Desert

A solar pond is a pool of saltwater which collects and stores solar thermal energy. The saltwater naturally forms a vertical salinity gradient also known as a "halocline", in which low-salinity water floats on top of high-salinity water. The layers of salt solutions increase in concentration (and therefore density) with depth. Below a certain depth, the solution has a uniformly high salt concentration.

Contents

Description

When the sun's rays contact the bottom of a shallow pool, they heat the water adjacent to the bottom. When water at the bottom of the pool is heated, it becomes less dense than the cooler water above it, and convection begins. Solar ponds heat water by impeding this convection. Salt is added to the water until the lower layers of water become completely saturated. High-salinity water at the bottom of the pond does not mix readily with the low-salinity water above it, so when the bottom layer of water is heated, convection occurs separately in the bottom and top layers, with only mild mixing between the two. This greatly reduces heat loss, and allows for the high-salinity water to get up to 90 °C while maintaining 30 °C low-salinity water. [1] This hot, salty water can then be pumped away for use in electricity generation, through a turbine or as a source of thermal energy.

Advantages and disadvantages

Efficiency

The energy obtained is in the form of low-grade heat of 70 to 80 °C compared to an assumed 20 °C ambient temperature. According to the second law of thermodynamics (see Carnot-cycle), the maximum theoretical efficiency of a cycle that uses heat from a high temperature reservoir at 80 °C and has a lower temperature of 20 °C is 1−(273+20)/(273+80)=17%. By comparison, a power plant's heat engine delivering high-grade heat at 800 °C would have a maximum theoretical limit of 73% for converting heat into useful work (and thus would be forced to divest as little as 27% in waste heat to the cold temperature reservoir at 20 °C). The low efficiency of solar ponds is usually justified with the argument that the 'collector', being just a plastic-lined pond, might potentially result in a large-scale system that is of lower overall levelised energy cost than a solar concentrating system.

Development

Further research is aimed at addressing the problems, such as the development of membrane ponds. These use a thin permeable membrane to separate the layers without allowing salt to pass through.

Examples

The largest operating solar pond for electricity generation was the Beit HaArava pond built in Israel and operated up until 1988. It had an area of 210,000 m² and gave an electrical output of 5 MW. [3]

India was the first Asian country to have established a solar pond in Bhuj , in Gujarat. The project was sanctioned under the National Solar Pond Programme by the Ministry of Non-Conventional Energy Sources in 1987 and completed in 1993 after a sustained collaborative effort by TERI, the Gujarat Energy Development Agency, and the GDDC (Gujarat Dairy Development Corporation Ltd). The solar pond successfully demonstrated the expediency of the technology by supplying 80,000 litres of hot water daily to the plant. It is designed to supply about 22,000,000 kWh [ citation needed ] of Thermal Energy annually . The Energy and Resources Institute provided all technical inputs and took up the complete execution of research, development, and demonstration. TERI operated and maintained this facility until 1996 before handing it over to the GDDC. The solar pond functioned effortlessly till the year 2000 when severe financial losses crippled GDDC. Subsequently, the Bhuj earthquake left the Kutch Dairy non-functional. [4]

The 0.8-acre (3,200 m2) solar pond powering 20% of Bruce Foods Corporation's operations in El Paso, Texas is the second largest in the U.S. It is also the first ever salt-gradient solar pond in the U.S. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

<span class="mw-page-title-main">Convection</span> Fluid flow that occurs due to heterogeneous fluid properties and body forces.

Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity. When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

<span class="mw-page-title-main">Passive solar building design</span> Architectural engineering that uses the Suns heat without electric or mechanical systems

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices. This image shows the characteristics of a Passive Solar home and it's benefits.

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

<span class="mw-page-title-main">Solar updraft tower</span> Thermal convection power plant

The solar updraft tower (SUT) is a design concept for a renewable-energy power plant for generating electricity from low temperature solar heat. Sunshine heats the air beneath a very wide greenhouse-like roofed collector structure surrounding the central base of a very tall chimney tower. The resulting convection causes a hot air updraft in the tower by the chimney effect. This airflow drives wind turbines, placed in the chimney updraft or around the chimney base, to produce electricity.

<span class="mw-page-title-main">Solar thermal energy</span> Technology using sunlight for heat

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors.

<span class="mw-page-title-main">Solar water heating</span> Use of sunlight for water heating with a solar thermal collector

Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications.

<span class="mw-page-title-main">Solar thermal collector</span> Device that collects heat

A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non water heating devices such as solar cooker, solar air heaters.

<span class="mw-page-title-main">Parabolic trough</span> Technology used in concentrated solar power stations

A parabolic trough is a type of solar thermal collector that is straight in one dimension and curved as a parabola in the other two, lined with a polished metal mirror. The sunlight which enters the mirror parallel to its plane of symmetry is focused along the focal line, where objects are positioned that are intended to be heated. In a solar cooker, for example, food is placed at the focal line of a trough, which is cooked when the trough is aimed so the Sun is in its plane of symmetry.

<span class="mw-page-title-main">Thermal energy storage</span> Technologies to store thermal energy

Thermal energy storage (TES) is achieved with widely different technologies. Depending on the specific technology, it allows excess thermal energy to be stored and used hours, days, months later, at scales ranging from the individual process, building, multiuser-building, district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer air conditioning. Storage media include water or ice-slush tanks, masses of native earth or bedrock accessed with heat exchangers by means of boreholes, deep aquifers contained between impermeable strata; shallow, lined pits filled with gravel and water and insulated at the top, as well as eutectic solutions and phase-change materials.

<span class="mw-page-title-main">Geothermal gradient</span> Rate of temperature increase with depth in Earths interior

Geothermal gradient is the rate of temperature change with respect to increasing depth in Earth's interior. As a general rule, the crust temperature rises with depth due to the heat flow from the much hotter mantle; away from tectonic plate boundaries, temperature rises in about 25–30 °C/km (72–87 °F/mi) of depth near the surface in most of the world. However, in some cases the temperature may drop with increasing depth, especially near the surface, a phenomenon known as inverse or negative geothermal gradient. The effects of weather, sun, and season only reach a depth of approximately 10-20 metres.

Solar desalination is a desalination technique powered by solar energy. The two common methods are direct (thermal) and indirect (photovoltaic).

<span class="mw-page-title-main">Osmotic power</span> Energy available from the difference in the salt concentration between seawater and river water

Osmotic power, salinity gradient power or blue energy is the energy available from the difference in the salt concentration between seawater and river water. Two practical methods for this are reverse electrodialysis (RED) and pressure retarded osmosis (PRO). Both processes rely on osmosis with membranes. The key waste product is brackish water. This byproduct is the result of natural forces that are being harnessed: the flow of fresh water into seas that are made up of salt water.

<span class="mw-page-title-main">Photovoltaic thermal hybrid solar collector</span>

Photovoltaic thermal collectors, typically abbreviated as PVT collectors and also known as hybrid solar collectors, photovoltaic thermal solar collectors, PV/T collectors or solar cogeneration systems, are power generation technologies that convert solar radiation into usable thermal and electrical energy. PVT collectors combine photovoltaic solar cells, which convert sunlight into electricity, with a solar thermal collector, which transfers the otherwise unused waste heat from the PV module to a heat transfer fluid. By combining electricity and heat generation within the same component, these technologies can reach a higher overall efficiency than solar photovoltaic (PV) or solar thermal (T) alone.

Solar Lake is a saline desert lake located on the edge of the Red Sea, about 18 km south of Eilat in the Sinai Peninsula, Taba, Egypt, close to its borders with Israel. A small lake of high salinity, it is the site of complex biochemical phenomena, linked to cycles of evaporation and of infiltration of waters.

<span class="mw-page-title-main">Double diffusive convection</span> Convection with two density gradients

Double diffusive convection is a fluid dynamics phenomenon that describes a form of convection driven by two different density gradients, which have different rates of diffusion.

<span class="mw-page-title-main">Marine energy</span> Energy stored in the waters of oceans

Marine energy or marine power refers to the energy carried by ocean waves, tides, salinity, and ocean temperature differences. The movement of water in the world's oceans creates a vast store of kinetic energy, or energy in motion. Some of this energy can be harnessed to generate electricity to power homes, transport and industries.

Solar energy – radiant light and heat from the sun. It has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar energy technologies include solar heating, solar photovoltaics, solar thermal electricity and solar architecture, which can make considerable contributions to solving some of the most urgent problems that the world now faces.

Renewable thermal energy is the technology of gathering thermal energy from a renewable energy source for immediate use or for storage in a thermal battery for later use.

The low-temperature distillation (LTD) technology is the first implementation of the direct spray distillation (DSD) process. The first large-scale units are now in operation for desalination. The process was first developed by scientists at the University of Applied Sciences in Switzerland, focusing on low-temperature distillation in vacuum conditions, from 2000 to 2005.

References

  1. G. Boyle. Renewable Energy: Power for a Sustainable Future, 2nd ed.
  2. G. Boyle. Renewable Energy: Power for a Sustainable Future, 2nd ed. Oxford, UK: Oxford University Press, 2004.
  3. C, Nielsen; A, Akbarzadeh; J, Andrews; HRL, Becerra; P, Golding (2005), The History of Solar Pond Science and Technology, Proceedings of the 2005 Solar World Conference, Orlando, FL
  4. Solar Gradient Solar Ponds, Teriin, archived from the original on 26 October 2008, retrieved 28 November 2009.
  5. "A". 2012. CiteSeerX   10.1.1.680.7971 .