Hydric soil

Last updated

Hydric soil is soil which is permanently or seasonally saturated by water, resulting in anaerobic conditions, as found in wetlands.

Contents

Overview

Most soils are aerobic. This is important because plant roots respire (that is, they consume oxygen and carbohydrates while releasing carbon dioxide) and there must be sufficient air—especially oxygen—in the soil to support most forms of soil life. Air normally moves through interconnected pores by forces such as changes in atmospheric pressure, the flushing action of rainwater, and by simple diffusion.

In addition to plant roots, most forms of soil microorganisms need oxygen to survive. This is true of the more well-known soil animals as well, such as ants, earthworms and moles. But soils can often become saturated with water due to rainfall and flooding. Gas diffusion in soil slows (some 10,000 times slower) when soil becomes saturated with water because there are no open passageways for air to travel. When oxygen levels become limited, intense competition arises between soil life forms for the remaining oxygen. When this anaerobic environment continues for long periods during the growing season, quite different biological and chemical reactions begin to dominate, compared with aerobic soils. In soils where saturation with water is prolonged and is repeated for many years, unique soil properties usually develop that can be recognized in the field. Soils with these unique properties are called hydric soils, and although they may occupy a relatively small portion of the landscape, they maintain important soil functions in the environment. [1]

The plants found in hydric soils often have aerenchyma, internal spaces in stems and rhizomes, that allow atmospheric oxygen to be transported to the rooting zone. [2] Hence, many wetlands are dominated by plants with aerenchyma; [3] common examples include cattails, sedges and water-lilies.

Technical definitions

United States

A hydric soil is defined by federal law [4] to mean "soil that, in its undrained condition, is saturated, flooded, or ponded long enough during a growing season to develop an anaerobic condition that supports the growth and regeneration of hydrophytic vegetation". This term is part of the legal definition of a wetland included in the United States Food Security Act of 1985 (P.L. 99-198). This definition is provided in the controlling regulations to the Wetland Conservation Provisions of the FSA of 1985(7 C.F.R 12) and is used by the U.S.D.A. Natural Resources Conservation Service in the administration of the Wetland Conservation Compliance provisions ("Swampbuster") contained in the FSA of 1985. In adopting this definition in 1985, Congress attempted to capture the duration of waterlogged condition of a hydric soil by adding that a hydric soil is waterlogged long enough to support not only the growth of plants adapted to life in anaerobic conditions but also the regeneration of such plants.

Another common definition of a hydric soils is provided by the National Technical Committee of Hydric Soils (NTCHS) as "a soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part." [5] The NTCHS hydric soil definition is used by the U.S. Army Corps of Engineers and the Environmental Protection Agency in their joint responsibilities in the administration of Section 404 of the Clean Water Act (1972).

See also

Related Research Articles

<span class="mw-page-title-main">Marsh gas</span> Gas produced naturally within marshes, swamps and bogs

Marsh gas, also known as swamp gas or bog gas, is a mixture primarily of methane and smaller amounts of hydrogen sulfide, carbon dioxide, and trace phosphine that is produced naturally within some geographical marshes, swamps, and bogs.

<span class="mw-page-title-main">Swamp</span> A forested wetland

A swamp is a forested wetland. Swamps are considered to be transition zones because both land and water play a role in creating this environment. Swamps vary in size and are located all around the world. The water of a swamp may be fresh water, brackish water, or seawater. Freshwater swamps form along large rivers or lakes where they are critically dependent upon rainwater and seasonal flooding to maintain natural water level fluctuations. Saltwater swamps are found along tropical and subtropical coastlines. Some swamps have hammocks, or dry-land protrusions, covered by aquatic vegetation, or vegetation that tolerates periodic inundation or soil saturation. The two main types of swamp are "true" or swamp forests and "transitional" or shrub swamps. In the boreal regions of Canada, the word swamp is colloquially used for what is more formally termed a bog, fen, or muskeg. Some of the world's largest swamps are found along major rivers such as the Amazon, the Mississippi, and the Congo.

<span class="mw-page-title-main">Wetland</span> Land area that is permanently, or seasonally saturated with water

Wetlands, or simply a wetland, is a distinct ecosystem that is flooded or saturated by water, either permanently or seasonally. Flooding results in oxygen-free (anoxic) processes prevailing, especially in the soils. The primary factor that distinguishes wetlands from terrestrial land forms or water bodies is the characteristic vegetation of aquatic plants, adapted to the unique anoxic hydric soils. Wetlands are considered among the most biologically diverse of all ecosystems, serving as home to a wide range of plant and animal species. Methods for assessing wetland functions, wetland ecological health, and general wetland condition have been developed for many regions of the world. These methods have contributed to wetland conservation partly by raising public awareness of the functions some wetlands provide. Constructed wetlands are designed and built to treat municipal and industrial wastewater as well as to divert stormwater runoff. Constructed wetlands may also play a role in water-sensitive urban design.

<span class="mw-page-title-main">Fen</span> Type of wetland fed by mineral-rich ground or surface water

A fen is a type of peat-accumulating wetland fed by mineral-rich ground or surface water. It is one of the main types of wetlands along with marshes, swamps, and bogs. Bogs and fens, both peat-forming ecosystems, are also known as mires. The unique water chemistry of fens is a result of the ground or surface water input. Typically, this input results in higher mineral concentrations and a more basic pH than found in bogs. As peat accumulates in a fen, groundwater input can be reduced or cut off, making the fen ombrotrophic rather than minerotrophic. In this way, fens can become more acidic and transition to bogs over time.

<span class="mw-page-title-main">Marsh</span> Low-lying and seasonally waterlogged land

A marsh is - according to ecological definitions - a wetland that is dominated by herbaceous rather than woody plant species. More in general, the word can be used for any low-lying and seasonally waterlogged terrain. In Europe and in agricultural literature low-lying meadows that require draining and embanked polderlands are also referred to as marshes or marshland.

A sapric is a subtype of a histosol where virtually all of the organic material has undergone sufficient decomposition to prevent the identification of plant parts. Muck is a sapric soil that is naturally waterlogged or is artificially drained.

Natural Resources Conservation Service (NRCS), formerly known as the Soil Conservation Service (SCS), is an agency of the United States Department of Agriculture (USDA) that provides technical assistance to farmers and other private landowners and managers.

<span class="mw-page-title-main">Oxygen saturation</span> Relative measure of the amount of oxygen that is dissolved or carried in a given medium

Oxygen saturation is a relative measure of the concentration of oxygen that is dissolved or carried in a given medium as a proportion of the maximal concentration that can be dissolved in that medium at the given temperature. It can be measured with a dissolved oxygen probe such as an oxygen sensor or an optode in liquid media, usually water. The standard unit of oxygen saturation is percent (%).

<span class="mw-page-title-main">Histosol</span> Soil consisting primarily of organic materials

In both the World Reference Base for Soil Resources (WRB) and the USDA soil taxonomy, a Histosol is a soil consisting primarily of organic materials. They are defined as having 40 centimetres (16 in) or more of organic soil material starting within 40 cm from the soil surface. In Soil Taxonomy, Gelisols key out before Histosols, and in WRB, Histosols key out before Cryosols. Therefore, organic permafrost soils belong to the Histosols in WRB and to the Gelisols (Histels) in Soil Taxonomy.

<span class="mw-page-title-main">Aquatic ecosystem</span> Ecosystem in a body of water

An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be lentic ; lotic ; and wetlands.

<span class="mw-page-title-main">Gleysol</span> Saturated soil type

A gleysol is a wetland soil that unless drained is saturated with groundwater for long enough to develop a characteristic gleyic colour pattern. The pattern is essentially made up of reddish, brownish, or yellowish colours at surfaces of soil particles and/or in the upper soil horizons mixed with greyish/blueish colours inside the peds and/or deeper in the soil. Gleysols are also known as Gleyzems, meadow soils, Aqu-suborders of Entisols, Inceptisols and Mollisols, or as groundwater soils and hydro-morphic soils.

<span class="mw-page-title-main">Aerenchyma</span>

Aerenchyma or aeriferous parenchyma or lacunae, is a modification of the parenchyma to form a spongy tissue that creates spaces or air channels in the leaves, stems and roots of some plants, which allows exchange of gases between the shoot and the root. The channels of air-filled cavities provide a low-resistance internal pathway for the exchange of gases such as oxygen, carbon dioxide and ethylene between the plant above the water and the submerged tissues. Aerenchyma is also widespread in aquatic and wetland plants which must grow in hypoxic soils.

<span class="mw-page-title-main">Soil color</span> Morphological property of soil

Soil color is often the most visually apparent property of soil. While color itself does not influence the behavior or practical use of soils, it does indicate important information about the soil organic matter content, mineralogy, moisture, and drainage.

G. Wade Hurt is a soil scientist in the United States and an authority on hydric soils. As of 2007, he has a position with the University of Florida's Soil and Water Science Department in Gainesville.

<span class="mw-page-title-main">Salt marsh dieback</span>

High salt marsh dieback, or salt marsh browning, is the primary force in salt marsh degradation in the high marsh. The general effect is that the plants in the marsh die off and brown, leaving dead organic matter, and ultimately open sediment. Without strong plant roots holding the sediment, these open areas of land erode, causing the salt marsh to retreat back to the mainland. Dieback zones lack their main producers, such as the salt marsh cord grass, or Spartina alterniflora, and ultimately become completely unproductive.

<span class="mw-page-title-main">Freshwater marsh</span> Non-tidal, non-forested marsh wetland that contains fresh water

A freshwater marsh is a non-tidal, non-forested marsh wetland that contains fresh water, and is continuously or frequently flooded. Freshwater marshes primarily consist of sedges, grasses, and emergent plants. Freshwater marshes are usually found near the mouths of rivers, along lakes, and are present in areas with low drainage like abandoned oxbow lakes. It is the counterpart to the salt marsh, an upper coastal intertidal zone of bio-habitat, which is regularly flushed with sea water.

<span class="mw-page-title-main">Waterlogging (agriculture)</span> Saturation of soil with water

Waterlogging water is the saturation of soil with water. Soil may be regarded as waterlogged when it is nearly saturated with water much of the time such that its air phase is restricted and anaerobic conditions prevail. In extreme cases of prolonged waterlogging, anaerobiosis occurs, the roots of mesophytes suffer, and the subsurface reducing atmosphere leads to such processes as denitrification, methanogenesis, and the reduction of iron and manganese oxides.

<span class="mw-page-title-main">Redox gradient</span>

A redox gradient is a series of reduction-oxidation (redox) reactions sorted according to redox potential. The redox ladder displays the order in which redox reactions occur based on the free energy gained from redox pairs. These redox gradients form both spatially and temporally as a result of differences in microbial processes, chemical composition of the environment, and oxidative potential. Common environments where redox gradients exist are coastal marshes, lakes, contaminant plumes, and soils.

<span class="mw-page-title-main">Greenhouse gas emissions from wetlands</span> Source of gas emissions

Greenhouse gas emissions from wetlands of concern consist primarily of methane and nitrous oxide emissions. Wetlands are the largest natural source of atmospheric methane in the world, and are therefore a major area of concern with respect to climate change. Wetlands account for approximately 20 - 30% of atmospheric methane through emissions from soils and plants, and contribute an approximate average of 161 Tg of methane to the atmosphere per year.

<span class="mw-page-title-main">Chemistry of wetland dredging</span>

Wetland chemistry is largely affected by dredging, which can be done for a variety of purposes. Wetlands are areas within floodplains with both terrestrial and aquatic characteristics, including marshes, swamps, bogs, and others. It has been estimated that they occupy around 2.8x106 km2, about 2.2% of the earth’s surface, but other estimates are even higher. It has also been estimated to have a worth of $14.9 trillion and are responsible for 75% of commercial and 90% of recreational harvest of fish and shellfish in the United States. Wetlands also hold an important role in water purification, storm protection, industry, travel, research, education, and tourism. Being heavily used and traveled through, dredging is common and leads to continuation of long-term damage of the ecosystem and land loss, and ultimately a loss in industry, homes, and protection.

References

  1. Schuyt, K. and Brander, L. 2004. Living Waters: Conserving the Source of Life – The Economic Values of theWorld’sWetlands. Amsterdam, the Netherlands: European Union, and Gland, Switzerland: World Wildlife Fund.
  2. Justin, S. H. F. W. and Armstrong, W. 1987. The anatomical characteristics of roots and plant response to soil flooding. New Phytologist 106: 465–95.
  3. Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK.
  4. Food Security Act(FSA) of 1985 16 U.S.C. Section 3801(a)(2)
  5. This definition (Federal Register, July 13, 1994) replaced the older 1991 version and accomplished two things. First, a soil that is artificially drained or protected (ditches, levees, etc.) is a hydric soil if the soil in its undisturbed state meets the definition of a hydric soil. Estimated soil properties for manipulated soils are based on best professional estimates of the properties thought to exist before manipulation. Second, the link between the definition and criteria was removed.

Bibliography