Drainage basin

Last updated
Illustration of a drainage basin. The dashed line is the main water divide of the hydrographic basin. Hydrographic basin.svg
Illustration of a drainage basin. The dashed line is the main water divide of the hydrographic basin.
Digital terrain map of the Latorita River's drainage basin in Romania EN Bazinul hidrografic al Raului Latorita, Romania.jpg
Digital terrain map of the Latorița River's drainage basin in Romania
Digital terrain model of the Latorita River's drainage basin in Romania Modelare 3D pentru Bazinul Hidrografic al Paraului Latorita.gif
Digital terrain model of the Latorița River's drainage basin in Romania

A drainage basin is any area of land where precipitation collects and drains off into a common outlet, such as into a river, bay, or other body of water. The drainage basin includes all the surface water from rain runoff, snowmelt, hail, sleet and nearby streams that run downslope towards the shared outlet, as well as the groundwater underneath the earth's surface. [1] Drainage basins connect into other drainage basins at lower elevations in a hierarchical pattern, with smaller sub-drainage basins, which in turn drain into another common outlet. [2]

Contents

Other terms for drainage basin are catchment area, catchment basin, drainage area, river basin, water basin, [3] [4] and impluvium. [5] [6] [7] In North America, the term watershed is commonly used to mean a drainage basin, though in other English-speaking countries, it is used only in its original sense, that of a drainage divide.

In a closed drainage basin, or endorheic basin, the water converges to a single point inside the basin, known as a sink, which may be a permanent lake, a dry lake, or a point where surface water is lost underground. [8]

The drainage basin acts as a funnel by collecting all the water within the area covered by the basin and channelling it to a single point. Each drainage basin is separated topographically from adjacent basins by a perimeter, the drainage divide, making up a succession of higher geographical features (such as a ridge, hill or mountains) forming a barrier.

Drainage basins are similar but not identical to hydrologic units, which are drainage areas delineated so as to nest into a multi-level hierarchical drainage system. Hydrologic units are defined to allow multiple inlets, outlets, or sinks. In a strict sense, all drainage basins are hydrologic units but not all hydrologic units are drainage basins. [8]

Major drainage basins of the world

Map

Major continental divides, showing drainage into the major oceans and seas of the world. Ocean drainage.png
Major continental divides, showing drainage into the major oceans and seas of the world.
Drainage basins of the principal oceans and seas of the world. Grey areas are endorheic basins that do not drain to the oceans.

Ocean basins

The following is a list of the major ocean basins:

Largest river basins

The five largest river basins (by area), from largest to smallest, are the basins of the Amazon (7M km2), the Congo (4M km2), the Nile (3.4M km2), the Mississippi (3.22M km2), and the Río de la Plata (3.17M km2). The three rivers that drain the most water, from most to least, are the Amazon, Ganga, and Congo rivers. [9]

Endorheic drainage basins

Endorheic basin in Central Asia Uureg Nuur.jpg
Endorheic basin in Central Asia

Endorheic drainage basins are inland basins that do not drain to an ocean. Around 18% of all land drains to endorheic lakes or seas or sinks. The largest of these consists of much of the interior of Asia, which drains into the Caspian Sea, the Aral Sea, and numerous smaller lakes. Other endorheic regions include the Great Basin in the United States, much of the Sahara Desert, the drainage basin of the Okavango River (Kalahari Basin), highlands near the African Great Lakes, the interiors of Australia and the Arabian Peninsula, and parts in Mexico and the Andes. Some of these, such as the Great Basin, are not single drainage basins but collections of separate, adjacent closed basins.

In endorheic bodies of standing water where evaporation is the primary means of water loss, the water is typically more saline than the oceans. An extreme example of this is the Dead Sea.

Importance

Geopolitical boundaries

Drainage basins have been historically important for determining territorial boundaries, particularly in regions where trade by water has been important. For example, the English crown gave the Hudson's Bay Company a monopoly on the fur trade in the entire Hudson Bay basin, an area called Rupert's Land. Bioregional political organization today includes agreements of states (e.g., international treaties and, within the US, interstate compacts) or other political entities in a particular drainage basin to manage the body or bodies of water into which it drains. Examples of such interstate compacts are the Great Lakes Commission and the Tahoe Regional Planning Agency.

Hydrology

Drainage basin of the Ohio River, part of the Mississippi River drainage basin Ohiorivermap.png
Drainage basin of the Ohio River, part of the Mississippi River drainage basin

In hydrology, the drainage basin is a logical unit of focus for studying the movement of water within the hydrological cycle, because the majority of water that discharges from the basin outlet originated as precipitation falling on the basin. A portion of the water that enters the groundwater system beneath the drainage basin may flow towards the outlet of another drainage basin because groundwater flow directions do not always match those of their overlying drainage network. Measurement of the discharge of water from a basin may be made by a stream gauge located at the basin's outlet.

Rain gauge data is used to measure total precipitation over a drainage basin, and there are different ways to interpret that data. If the gauges are many and evenly distributed over an area of uniform precipitation, using the arithmetic mean method will give good results. In the Thiessen polygon method, the drainage basin is divided into polygons with the rain gauge in the middle of each polygon assumed to be representative for the rainfall on the area of land included in its polygon. These polygons are made by drawing lines between gauges, then making perpendicular bisectors of those lines form the polygons. The isohyetal method involves contours of equal precipitation are drawn over the gauges on a map. Calculating the area between these curves and adding up the volume of water is time-consuming.

Isochrone maps can be used to show the time taken for runoff water within a drainage basin to reach a lake, reservoir or outlet, assuming constant and uniform effective rainfall. [10] [11] [12] [13]

Geomorphology

Drainage basins are the principal hydrologic unit considered in fluvial geomorphology. A drainage basin is the source for water and sediment that moves from higher elevation through the river system to lower elevations as they reshape the channel forms.

Ecology

The Mississippi River drains the largest area of any U.S. river, much of it agricultural regions. Agricultural runoff and other water pollution that flows to the outlet is the cause of the hypoxic, or dead zone in the Gulf of Mexico. Mississippi River basin.jpg
The Mississippi River drains the largest area of any U.S. river, much of it agricultural regions. Agricultural runoff and other water pollution that flows to the outlet is the cause of the hypoxic, or dead zone in the Gulf of Mexico.

Drainage basins are important in ecology. As water flows over the ground and along rivers it can pick up nutrients, sediment, and pollutants. With the water, they are transported towards the outlet of the basin, and can affect the ecological processes along the way as well as in the receiving water source.

Modern use of artificial fertilizers, containing nitrogen, phosphorus, and potassium, has affected the mouths of drainage basins. The minerals are carried by the drainage basin to the mouth, and may accumulate there, disturbing the natural mineral balance. This can cause eutrophication where plant growth is accelerated by the additional material.

Resource management

Because drainage basins are coherent entities in a hydro-logical sense, it has become common to manage water resources on the basis of individual basins. In the U.S. state of Minnesota, governmental entities that perform this function are called "watershed districts". In New Zealand, they are called catchment boards. Comparable community groups based in Ontario, Canada, are called conservation authorities. In North America, this function is referred to as "watershed management". In Brazil, the National Policy of Water Resources, regulated by Act n° 9.433 of 1997, establishes the drainage basin as the territorial division of Brazilian water management.

When a river basin crosses at least one political border, either a border within a nation or an international boundary, it is identified as a transboundary river. Management of such basins becomes the responsibility of the countries sharing it. Nile Basin Initiative, OMVS for Senegal River, Mekong River Commission are a few examples of arrangements involving management of shared river basins.

Management of shared drainage basins is also seen as a way to build lasting peaceful relationships among countries. [14]

Catchment factors

The catchment is the most significant factor determining the amount or likelihood of flooding.

Catchment factors are: topography, shape, size, soil type, and land use (paved or roofed areas). Catchment topography and shape determine the time taken for rain to reach the river, while catchment size, soil type, and development determine the amount of water to reach the river.

Topography

Generally, topography plays a big part in how fast runoff will reach a river. Rain that falls in steep mountainous areas will reach the primary river in the drainage basin faster than flat or lightly sloping areas (e.g., > 1% gradient).

Shape

Shape will contribute to the speed with which the runoff reaches a river. A long thin catchment will take longer to drain than a circular catchment.

Size

Size will help determine the amount of water reaching the river, as the larger the catchment the greater the potential for flooding. It is also determined on the basis of length and width of the drainage basin.

Soil type

Soil type will help determine how much water reaches the river. The runoff from the drainage area is dependent on the soil type.Certain soil types such as sandy soils are very free-draining, and rainfall on sandy soil is likely to be absorbed by the ground. However, soils containing clay can be almost impermeable and therefore rainfall on clay soils will run off and contribute to flood volumes. After prolonged rainfall even free-draining soils can become saturated, meaning that any further rainfall will reach the river rather than being absorbed by the ground. If the surface is impermeable the precipitation will create surface run-off which will lead to higher risk of flooding; if the ground is permeable, the precipitation will infiltrate the soil.

Land use

Land use can contribute to the volume of water reaching the river, in a similar way to clay soils. For example, rainfall on roofs, pavements, and roads will be collected by rivers with almost no absorption into the groundwater.

See also

Related Research Articles

Hydrology The science of the movement, distribution, and quality of water on Earth and other planets

Hydrology is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and environmental watershed sustainability. A practitioner of hydrology is called a hydrologist. Hydrologists are scientists studying earth or environmental science, civil or environmental engineering, and physical geography. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.

Flood Overflow of water that submerges land that is not normally submerged

A flood is an overflow of water that submerges land that is usually dry. In the sense of "flowing water", the word may also be applied to the inflow of the tide. Floods are an area of study of the discipline hydrology and are of significant concern in agriculture, civil engineering and public health.

Endorheic basin Closed drainage basin that allows no outflow

An endorheic basin is a drainage basin that normally retains water and allows no outflow to other external bodies of water, such as rivers or oceans, but converges instead into lakes or swamps, permanent or seasonal, that equilibrate through evaporation. They are also called closed or terminal basins or internal drainage systems or basins. Endorheic regions contrast with exorheic regions. Endorheic water bodies include some of the largest lakes in the world, such as the Caspian Sea, the world's largest saline inland sea.

Storm drain Infrastructure for draining excess rain and ground water from impervious surfaces such as paved streets

A storm drain, storm sewer, surface water drain/sewer, or stormwater drain is infrastructure designed to drain excess rain and ground water from impervious surfaces such as paved streets, car parks, parking lots, footpaths, sidewalks, and roofs. Storm drains vary in design from small residential dry wells to large municipal systems.

Hydrograph

A hydrograph is a graph showing the rate of flow (discharge) versus time past a specific point in a river, channel, or conduit carrying flow. The rate of flow is typically expressed in cubic meters or cubic feet per second . It can also refer to a graph showing the volume of water reaching a particular outfall, or location in a sewerage network. Graphs are commonly used in the design of sewerage, more specifically, the design of surface water sewerage systems and combined sewers.

The United States Environmental Protection Agency (EPA) Storm Water Management Model is a dynamic rainfall–runoff–subsurface runoff simulation model used for single-event to long-term (continuous) simulation of the surface/subsurface hydrology quantity and quality from primarily urban/suburban areas. It can simulate the Rainfall- runoff, runoff, evaporation, infiltration and groundwater connection for roots, streets, grassed areas, rain gardens and ditches and pipes, for example. The hydrology component of SWMM operates on a collection of subcatchment areas divided into impervious and pervious areas with and without depression storage to predict runoff and pollutant loads from precipitation, evaporation and infiltration losses from each of the subcatchment. Besides, low impact development (LID) and best management practice areas on the subcatchment can be modeled to reduce the impervious and pervious runoff. The routing or hydraulics section of SWMM transports this water and possible associated water quality constituents through a system of closed pipes, open channels, storage/treatment devices, ponds, storages, pumps, orifices, weirs, outlets, outfalls and other regulators. SWMM tracks the quantity and quality of the flow generated within each subcatchment, and the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period composed of multiple fixed or variable time steps. The water quality constituents such as water quality constituents can be simulated from buildup on the subcatchments through washoff to a hydraulic network with optional first order decay and linked pollutant removal, best management practice and low-impact development removal and treatment can be simulated at selected storage nodes. SWMM is one of the hydrology transport models which the EPA and other agencies have applied widely throughout North America and through consultants and universities throughout the world. The latest update notes and new features can be found on the EPA website in the download section. Recently added in November 2015 were the EPA SWMM 5.1 Hydrology Manual and in 2016 the EPA SWMM 5.1 Hydraulic Manual and EPA SWMM 5.1 Water Quality Volume (III) + Errata

Rain garden form of rainwater runoff management

Rain gardens, also called bioretention facilities, are one of a variety of practices designed to treat polluted stormwater runoff. Rain gardens are designed landscape sites that reduce the flow rate, total quantity, and pollutant load of runoff from impervious urban areas like roofs, driveways, walkways,and parking lots, and compacted lawn areas. Rain gardens rely on plants and natural or engineered soil medium to retain stormwater and increase the lag time of infiltration, while remediating and filtering pollutants carried by urban runoff. Rain gardens provide a method to reuse and optimize any rain that falls, reducing or avoiding the need for additional irrigation. A benefit of planting rain gardens is the consequential decrease in ambient air and water temperature, a mitigation that is especially effective in urban areas containing an abundance of impervious surfaces that absorb heat in a phenomenon known as the heat-island effect.

Surface runoff Flow of excess rainwater not infiltrating in the ground over its surface

Surface runoff is the flow of water occurring on the ground surface when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and that the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Surface runoff is a major component of the water cycle. It is the primary agent of soil erosion by water. The land area producing runoff that drains to a common point is called a drainage basin.

Water balance Looks at how water moves in a closed system

In hydrology, a water balance equation can be used to describe the flow of water in and out of a system. A system can be one of several hydrological domains, such as a column of soil or a drainage basin. Water balance can also refer to the ways in which an organism maintains water in dry or hot conditions. It is often discussed in reference to plants or arthropods, which have a variety of water retention mechanisms, including a lipid waxy coating that has limited permeability.

Streamflow, or channel runoff, is the flow of water in streams, rivers, and other channels, and is a major element of the water cycle. It is one component of the runoff of water from the land to waterbodies, the other component being surface runoff. Water flowing in channels comes from surface runoff from adjacent hillslopes, from groundwater flow out of the ground, and from water discharged from pipes. The discharge of water flowing in a channel is measured using stream gauges or can be estimated by the Manning equation. The record of flow over time is called a hydrograph. Flooding occurs when the volume of water exceeds the capacity of the channel.

Hydrological transport model

An hydrological transport model is a mathematical model used to simulate the flow of rivers, streams, groundwater movement or drainage front displacement, and calculate water quality parameters. These models generally came into use in the 1960s and 1970s when demand for numerical forecasting of water quality and drainage was driven by environmental legislation, and at a similar time widespread access to significant computer power became available. Much of the original model development took place in the United States and United Kingdom, but today these models are refined and used worldwide.

Runoff model (reservoir) mathematical model

A runoff model is a mathematical model describing the rainfallrunoff relations of a rainfall catchment area, drainage basin or watershed. More precisely, it produces a surface runoff hydrograph in response to a rainfall event, represented by and input as a hyetograph. In other words, the model calculates the conversion of rainfall into runoff.
A well known runoff model is the linear reservoir, but in practice it has limited applicability.
The runoff model with a non-linear reservoir is more universally applicable, but still it holds only for catchments whose surface area is limited by the condition that the rainfall can be considered more or less uniformly distributed over the area. The maximum size of the watershed then depends on the rainfall characteristics of the region. When the study area is too large, it can be divided into sub-catchments and the various runoff hydrographs may be combined using flood routing techniques.

A hydrological code or hydrologic unit code is a sequence of numbers or letters that identify a hydrological feature like a river, river reach, lake, or area like a drainage basin or catchment.

A continental divide is a drainage divide on a continent such that the drainage basin on one side of the divide feeds into one ocean or sea, and the basin on the other side either feeds into a different ocean or sea, or else is endorheic, not connected to the open sea. Every continent on earth except Antarctica has at least one continental drainage divide; islands, even small ones like Killiniq Island on the Labrador Sea in Canada, may also host part of a continental divide or have their own island-spanning divide.

Stream Body of surface water flowing down a channel

A stream is a body of water with surface water flowing within the bed and banks of a channel. The flow of a stream is controlled by three inputs - surface water, subsurface water and groundwater. The surface and subsurface water are highly variable between periods of rainfall. Groundwater, on the other hand, has a relatively constant input and is controlled more by long-term patterns of precipitation. The stream encompasses surface, subsurface and groundwater fluxes that respond to geological, geomorphological, hydrological and biotic controls.

The following outline is provided as an overview of and topical guide to hydrology:

Vflo

Vflo is a commercially available, physics-based distributed hydrologic model generated by Vieux & Associates, Inc. Vflo uses radar rainfall data for hydrologic input to simulate distributed runoff. Vflo employs GIS maps for parameterization via a desktop interface. The model is suited for distributed hydrologic forecasting in post-analysis and in continuous operations. Vflo output is in the form of hydrographs at selected drainage network grids, as well as distributed runoff maps covering the watershed. Model applications include civil infrastructure operations and maintenance, stormwater prediction and emergency management, continuous and short-term surface water runoff, recharge estimation, soil moisture monitoring, land use planning, water quality monitoring, and water resources management.

DPHM-RS is a semi-distributed hydrologic model developed at University of Alberta, Canada.

The flash flood guidance system (FFGS) was designed and developed by the Hydrologic Research Center a non-profit public-benefit corporation located in of San Diego, CA, US, for use by meteorological and hydrologic forecasters throughout the world. The primary purpose of the FFGS is to provide operational forecasters and disaster management agencies with real-time informational guidance products pertaining to the threat of small-scale flash flooding throughout a specified region. The FFGS provides the necessary products to support the development of warnings for flash floods from rainfall events through the use of remote-sensed precipitation and hydrologic models. The FFGS outputs are made available to users to support their analysis of weather-related events that can initiate flash floods and then to make a rapid evaluation of the potential for a flash flood at a location. To assess the threat of a local flash flood, the FFGS is designed to allow product adjustments based on the forecaster's experience with local conditions, incorporation of other information and any last minute local observations or local observer reports. The system supports evaluations of the threat of flash flooding over hourly to six-hourly time scales for stream basins that range in size from 25 to 200 km2 in size. Important technical elements of the flash flood guidance system are the development and use of a bias-corrected radar and/or satellite precipitation estimate field and the use of land-surface hydrologic modeling. The system then provides information on rainfall and hydrologic response, the two important factors in determining the potential for a flash flood. The system is based on the concept of flash flood guidance and flash flood threat. Both indices provide the user with the information needed to evaluate the potential for a flash flood, including assessing the uncertainty associated with the data.

References

Citations

  1. "drainage basin". The Physical Environment. University of Wisconsin–Stevens Point. Archived from the original on March 21, 2004.
  2. "What is a watershed and why should I care?". university of delaware. Archived from the original on 2012-01-21. Retrieved 2008-02-11.
  3. Lambert, David (1998). The Field Guide to Geology . Checkmark Books. pp.  130–13. ISBN   0-8160-3823-6.
  4. Uereyen, Soner; Kuenzer, Claudia (9 December 2019). "A Review of Earth Observation-Based Analyses for Major River Basins". Remote Sensing. 11 (24): 2951. Bibcode:2019RemS...11.2951U. doi: 10.3390/rs11242951 .
  5. Huneau, F.; Jaunat, J.; Kavouri, K.; Plagnes, V.; Rey, F.; Dörfliger, N. (2013-07-18). "Intrinsic vulnerability mapping for small mountainous karst aquifers, implementation of the new PaPRIKa method to Western Pyrenees (France)". Engineering Geology. Elsevier. 161: 81–93. doi:10.1016/j.enggeo.2013.03.028. Efficient management is strongly correlated to the proper protection perimeter definition around springs and proactive regulation of land uses over the spring's catchment area ("impluvium").
  6. Lachassagne, Patrick (2019-02-07). "Natural mineral waters". Encyclopédie de l'environnement. Retrieved 2019-06-10. In order to preserve the long-term stability and purity of natural mineral water, bottlers have put in place "protection policies" for the impluviums (or catchment areas) of their sources. The catchment area is the territory on which the part of precipitated rainwater (and/or snowmelt) that infiltrates the subsoil feeds the mineral aquifer and thus contributes to the renewal of the resource. In other words, a precipitated drop on the impluvium territory may join the mineral aquifer; ...
  7. Labat, D.; Ababou, R.; Manginb, A. (2000-12-05). "Rainfall–runoff relations for karstic springs. Part I: convolution and spectral analyses". Journal of Hydrology. 238 (3–4): 123–148. Bibcode:2000JHyd..238..123L. doi:10.1016/S0022-1694(00)00321-8. The non-karstic impluvium comprises all elements of the ground surface and soils that are poorly permeable, on a part of which water is running while also infiltrating on another minor part. This superficial impluvium, if it exists, constitutes the first level of organisation of the drainage system of the karstic basin.
  8. 1 2 "Hydrologic Unit Geography". Virginia Department of Conservation & Recreation. Archived from the original on 14 December 2012. Retrieved 21 November 2010.
  9. Encarta Encyclopedia articles on Amazon River, Congo River, and Ganges Published by Microsoft in computers.
  10. Bell, V. A.; Moore, R. J. (1998). "A grid-based distributed flood forecasting model for use with weather radar data: Part 1. Formulation" (PDF). Hydrology and Earth System Sciences. Copernicus Publications. 2 (2/3): 265–281. Bibcode:1998HESS....2..265B. doi:10.5194/hess-2-265-1998.
  11. Subramanya, K (2008). Engineering Hydrology. Tata McGraw-Hill. p. 298. ISBN   978-0-07-064855-5.
  12. "EN 0705 isochrone map". UNESCO. Archived from the original on November 22, 2012. Retrieved March 21, 2012.
  13. "Isochrone map". Webster's Online Dictionary. Retrieved March 21, 2012.[ permanent dead link ]
  14. "Articles". www.strategicforesight.com.

Sources

  • DeBarry, Paul A. (2004). Watersheds: Processes, Assessment and Management. John Wiley & Sons.