Inland sea

Last updated

An inland sea (also known as an epeiric sea or an epicontinental sea) is a continental body of water which is very large in area and is either completely surrounded by dry land or connected to an ocean by a river, strait or "arm of the sea". An inland sea will generally be brackish, with higher salinity than a freshwater lake but usually lower salinity than seawater. As with other seas, inland seas experience tides governed by the orbits of the Moon and Sun. [1]

Contents

Definition

What constitutes an "inland sea" is complex and somewhat necessarily vague. [2] The United States Hydrographic Office defined it as "a body of water nearly or completely surrounded by land, especially if very large or composed of salt water". [3]

Geologic engineers Heinrich Ries and Thomas L. Watson say an inland sea is merely a very large lake. [2] Rydén, Migula, and Andersson [4] and Deborah Sandler of the Environmental Law Institute add that an inland sea is "more or less" cut off from the ocean. [5] [4] It may be semi-enclosed, [4] or connected to the ocean by a strait or "arm of the sea". [5] An inland sea is distinguishable from a bay in that a bay is directly connected to the ocean. [5]

The term "epeiric sea" was coined by Joseph Barrell in 1917. He defined an epeiric sea as a shallow body of water whose bottom is within the wave base (e.g., where bottom sediments are no longer stirred by the wave above), [6] as one with limited connection to an ocean, [7] [8] [4] and as simply shallow. [4] [lower-alpha 1] An inland sea is only an epeiric sea when a continental interior is flooded by marine transgression due to sea level rise or epeirogenic movement. [6] [9]

An epicontinental sea is synonymous with an epeiric sea. [9] The term "epicontinental sea" may also refer to the waters above a continental shelf. This is a legal, not geological, term. [10] Epeiric, epicontinental, and inland seas occur on a continent, not adjacent to it. [4]

The law of the sea does not apply to inland seas. [11]

Modern inland seas

This 1827 map of Australia depicts a 'Great River' and a 'Supposed Sea' that both proved nonexistent. Maslens Inland Sea of Australia.jpg
This 1827 map of Australia depicts a 'Great River' and a 'Supposed Sea' that both proved nonexistent.

In modern times, continents stand high, eustatic sea levels are low, and there are few inland seas.

The Great Lakes, despite being completely fresh water, have been referred to as resembling or having characteristics like inland seas from a USGS management perspective. Lake Ontario is the only Great Lake connected to the Atlantic Ocean below Niagara Falls. [15] [16]

Modern examples might also include the recently (less than 10,000 years ago) reflooded Persian Gulf, and the South China Sea that presently covers the Sunda Shelf. [lower-alpha 2]

Former epicontinental seas in Earth's history

At various times in the geologic past, inland seas covered central areas of continents during periods of high sea level that result in marine transgressions. Inland seas have been greater in extent and more common than at present.

See also

Notes

  1. Geologist Richard A. Matzner defines shallow as usually under 250 metres (820 ft) in depth. [7] Rydén, Migula, and Andersson do not define shallow, but cite examples of inland seas with a depth of 100 metres (330 ft) or less. [4]
  2. The Lord Howe Rise that covers much of the sunken "continent" of Zealandia and the largely submerged Mascarene Plateau that includes the Granitic Group islands of the Seychelles could not be considered "inland".
  3. Also in Australia the promise of an inland sea is often said to have been one of the prime motives of inland exploration during the 1820s and 1830s. Although this theory was championed by the explorer Charles Sturt, it enjoyed little support among the other explorers, most of whom were more inclined to believe in the existence of a Great River which discharged into the ocean in the north-west corner of the continent. [22]

Related Research Articles

<span class="mw-page-title-main">Geography of Africa</span>

Africa is a continent comprising 63 political territories, representing the largest of the great southward projections from the main mass of Earth's surface. Within its regular outline, it comprises an area of 30,368,609 km2 (11,725,385 sq mi), excluding adjacent islands. Its highest mountain is Kilimanjaro; its largest lake is Lake Victoria.

<span class="mw-page-title-main">Baltic Sea</span> Sea in northern Europe

The Baltic Sea is an arm of the Atlantic Ocean that is enclosed by Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland, Russia, Sweden, and the North and Central European Plain.

<span class="mw-page-title-main">Brackish water</span> Water with salinity between freshwater and seawater

Brackish water, sometimes termed brack water, is water occurring in a natural environment that has more salinity than freshwater, but not as much as seawater. It may result from mixing seawater and fresh water together, as in estuaries, or it may occur in brackish fossil aquifers. The word comes from the Middle Dutch root brak. Certain human activities can produce brackish water, in particular civil engineering projects such as dikes and the flooding of coastal marshland to produce brackish water pools for freshwater prawn farming. Brackish water is also the primary waste product of the salinity gradient power process. Because brackish water is hostile to the growth of most terrestrial plant species, without appropriate management it can be damaging to the environment.

In oceanography, a mediterranean sea is a mostly enclosed sea that has limited exchange of water with outer oceans and whose water circulation is dominated by salinity and temperature differences rather than by winds or tides. The eponymous Mediterranean Sea, for example, is almost completely enclosed by Asia, Europe, and Africa.

<span class="mw-page-title-main">Tethys Ocean</span> Prehistoric ocean between Gondwana and Laurasia

The Tethys Ocean, also called the Tethys Sea or the Neo-Tethys, was a prehistoric ocean during much of the Mesozoic Era and early-mid Cenozoic Era. It was the predecessor to the modern Indian Ocean, the Mediterranean Sea, and the Eurasian inland marine basins.

<span class="mw-page-title-main">Western Interior Seaway</span> Prehistoric inland sea that split the continent of North America

The Western Interior Seaway was a large inland sea that split the continent of North America into two landmasses for 34 million years. The ancient sea, which existed from the early Late Cretaceous to the earliest Paleocene, connected the Gulf of Mexico to the Arctic Ocean. The two land masses it created were Laramidia to the west and Appalachia to the east. At its largest extent, it was 2,500 feet (760 m) deep, 600 miles (970 km) wide and over 2,000 miles (3,200 km) long.

<span class="mw-page-title-main">Marine transgression</span> Geologic event in which sea level rises relative to the land

A marine transgression is a geologic event during which sea level rises relative to the land and the shoreline moves toward higher ground, which results in flooding. Transgressions can be caused by the land sinking or by the ocean basins filling with water or decreasing in capacity. Transgressions and regressions may be caused by tectonic events such as orogenies, severe climate change such as ice ages or isostatic adjustments following removal of ice or sediment load.

The Zechstein is a unit of sedimentary rock layers of Late Permian (Lopingian) age located in the European Permian Basin which stretches from the east coast of England to northern Poland. The name Zechstein was formerly also used as a unit of time in the geologic timescale, but nowadays it is only used for the corresponding sedimentary deposits in Europe.

The Mastogloia Sea is one of the prehistoric stages of the Baltic Sea in its development after the last ice age. This took place c. 8000 years ago following the Ancylus Lake stage and preceding the Littorina Sea stage.

<span class="mw-page-title-main">Geological history of Earth</span> The sequence of major geological events in Earths past

The geological history of the Earth follows the major geological events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.

The Turgai Strait, also known as the Turgay/TurgaiSea, Obik Sea, Ural Sea or West Siberian Sea, was a large shallow body of salt water during the Mesozoic through Cenozoic Eras. It extended north of the present-day Caspian Sea to the "paleo-Arctic" region, and was in existence from the Middle Jurassic to Oligocene, approximately 160 to 29 million years ago.

<span class="mw-page-title-main">Paratethys</span> Prehistoric shallow inland sea in Eurasia

The Paratethys sea, Paratethys ocean, Paratethys realm or just Paratethys was a large shallow inland sea that stretched from the region north of the Alps over Central Europe to the Aral Sea in Central Asia.

<span class="mw-page-title-main">Continental divide</span> Drainage divide on a continent

A continental divide is a drainage divide on a continent such that the drainage basin on one side of the divide feeds into one ocean or sea, and the basin on the other side either feeds into a different ocean or sea, or else is endorheic, not connected to the open sea. Every continent on earth except Antarctica has at least one continental drainage divide; islands, even small ones like Killiniq Island on the Labrador Sea in Canada, may also host part of a continental divide or have their own island-spanning divide. The endpoints of a continental divide may be coastlines of gulfs, seas or oceans, the boundary of an endorheic basin, or another continental divide. One case, the Great Basin Divide, is a closed loop around an endorheic basin. The endpoints where a continental divide meets the coast are not always definite since the exact border between adjacent bodies of water is usually not clearly defined. The International Hydrographic Organization's publication Limits of Oceans and Seas defines exact boundaries of oceans, but it is not universally recognized. Where a continental divide meets an endorheic basin, such as the Great Divide Basin of Wyoming, the continental divide splits and encircles the basin. Where two divides intersect, they form a triple divide, or a tripoint, a junction where three watersheds meet.

<span class="mw-page-title-main">Outline of oceanography</span> Hierarchical outline list of articles related to oceanography

The following outline is provided as an overview of and introduction to Oceanography.

This is a list of articles related to plate tectonics and tectonic plates.

The geology of the Baltic Sea is characterized by having areas located both at the Baltic Shield of the East European Craton and in the Danish-North German-Polish Caledonides. Historical geologists make a distinction between the current Baltic Sea depression, formed in the Cenozoic era, and the much older sedimentary basins whose sediments are preserved in the zone. Although glacial erosion has contributed to shape the present depression, the Baltic trough is largely a depression of tectonic origin that existed long before the Quaternary glaciation.

The geology of Somalia is built on more than 700 million year old igneous and metamorphic crystalline basement rock, which outcrops at some places in northern Somalia. These ancient units are covered in thick layers of sedimentary rock formed in the last 200 million years and influenced by the rifting apart of the Somali Plate and the Arabian Plate. The geology of Somaliland, the de facto independent country recognized as part of Somalia, is to some degree better studied than that of Somalia as a whole. Instability related to the Somali Civil War and previous political upheaval has limited geologic research in places while heightening the importance of groundwater resources for vulnerable populations.

<span class="mw-page-title-main">Geology of Somaliland</span>

The geology of Somaliland is very closely related to the geology of Somalia. Somaliland is a de facto independent country within the boundaries that the international community recognizes as Somalia. Because it encompasses the former territory of British Somaliland, the region is historically better researched than former Italian Somaliland. Somaliland is built on more than 700 million year old igneous and metamorphic crystalline basement rock.. These ancient units are covered in thick layers of sedimentary rock formed in the last 200 million years and influenced by the rifting apart of the Somali Plate and the Arabian Plate.

The geology of Denmark includes 12 kilometers of unmetamorphosed sediments lying atop the Precambrian Fennoscandian Shield, the Norwegian-Scottish Caledonides and buried North German-Polish Caledonides. The stable Fennoscandian Shield formed from 1.45 billion years ago to 850 million years ago in the Proterozoic. The Fennoscandian Border Zone is a large fault, bounding the deep basement rock of the Danish Basin—a trough between the Border Zone and the Ringkobing-Fyn High. The Sorgenfrei-Tornquist Zone is a fault-bounded area displaying Cretaceous-Cenozoic inversion.

The Lava Formation is a Mesozoic geologic formation in Lithuania and Kaliningrad, being either the sister or the same unit as the Ciechocinek Formation. It represents the outcrop of Lower Toarcian layers in the Baltic Syncline and in the Lithuanian-Polish Syneclise. It is known by the presence of Miospores and Pollen, as well Plant remains. The formation contains grey, greenish, and dark grey silt and clay with interealatians and lenses of fine-grained sand, pyritic concretions and plant remains. The Jotvingiai Group Toarcian deposits represent deposits laid down in fresh water and brackish basins, possibly lagoons or coastal plain lakes. The Bartoszyce IG 1 of the Ciechocinek Formation shows how at the initial phase of the Toarcian there was a regional transgression in the Baltic Syncline, indicated by greenish-grey mudstones, heteroliths and fine-grained sandstones with abundant plant fossils and plant roots, what indicates a local delta progradation between the Lava and Ciechocinek Fms. Then a great accumulation of miospores indicates a local concentration, likely due to a rapidly decelerating fluvial flow in a delta-fringing lagoon forming a “hydrodynamic trap”, with the wave and currents stopping the miospores to spread to the basin. Latter a marsh system developed with numerous palaeosol levels, being overlayed by brackish-marine embayment deposits that return to lagoon-marsh facies with numerous plant roots and palaeosol levels in the uppermost section, ending the succession. Overall the facies show that the local Ciechocinek-Lava system was a sedimentary basin shallow and isolated, surrounded by a flat coastal/delta plain with marshes, delivering abundant spores and Phytoclasts, indicators of proximal landmasses with high availability of wood and other plant material. This climate at the time of deposition was strongly seasonal, probably with monsoonal periods. Due to the abundant presence of deltaic sediments on the upper part, it is considered to be related to the retry of the sea level. The Lava Formation was deposited on a mostly continental setting, with its upper part, dominated by argillaceous sediments, corresponding to the Ciechocinek Formation. There is a great amount of kaolinite content, being present laterally in the basin, decreasing and lifting space to increasing smectite to the south-west of the formation. On the other hand, there is a great amount of coarsest sediments, which consist mostly of sands.

References

  1. Klein, George Devries; Ryer, Thomas A. (1 July 1978). "Tidal circulation patterns in Precambrian, Paleozoic, and Cretaceous epeiric and mioclinal shelf seas". Geological Society of America Bulletin . 89 (7): 1050–1058. Bibcode:1978GSAB...89.1050K. doi:10.1130/0016-7606(1978)89<1050:TCPIPP>2.0.CO;2 . Retrieved 21 April 2023.
  2. 1 2 Ries, Heinrich; Watson, Thomas L. (1947). Elements of Engineering Geology. New York: J. Wiley & Sons. p. 286. ISBN   9785877732124. OCLC   486745.
  3. United States Hydrographic Office (1956). Navigation Dictionary. Washington, D.C.: Supintendent of Documents. p. 189. OCLC   3040490.
  4. 1 2 3 4 5 6 7 Rydén, Lars; Migula, Pawel; Andersson, Magnus (2003). Environmental Science: Understanding, Protecting, and Managing the Environment in the Baltic Sea Region. Uppsala: Baltic University Press. p. 123. ISBN   9789197001700.
  5. 1 2 3 Sandler, Deborah (1994). Protecting the Gulf of Aqaba: A Regional Environmental Challenge. Washington, D.C.: Environmental Law Institute. p. 45. ISBN   9780911937466.
  6. 1 2 Pratt, Brian R.; Holmden, Chris (2007). Dynamics of Epeiric Seas. St. John's, Newfoundland and Labrador, Canada: Geological Association of Canada. p. 1. ISBN   9781897095348..
  7. 1 2 Matzner, Richard A., ed. (2020). Dictionary of Geophysics, Astrophysics, and Astronomy. Boca Raton: CRC Press. p. 156. ISBN   9780367455279.
  8. Morris, Christopher, ed. (1992). Academic Press Dictionary of Science and Technology. San Diego: Academic Press. p. 757. ISBN   9780122004001.
  9. 1 2 Monkhouse, Francis J. (2008). A Dictionary of Geography. New Brunswick, N.J.: Aldine Transaction. p. 124. ISBN   9780202361314.
  10. Zaklin, Ralph (1974). The Changing Law of the Sea: Western Hemisphere Perspectives. Leiden, Netherlands: Sijthoff. p. 109. ISBN   9789028600843.
  11. Galletti, Florence (2015). "Transformations in International Law of the Sea: Governance of the Space or Resource". In Monaco, André; Prouzet, Patrick (eds.). Governance of Seas and Oceans. London: Wiley. p. 31. ISBN   9781848217805.
  12. "Baltic Sea Portal". Archived from the original on 22 September 2009.
  13. Šliaupa, Salius; Hoth, Peer (2011). "Geological Evolution and Resources of the Baltic Sea Area from the Precambrian to the Quaternary". In Harff, Jan; Björck, Svante; Hoth, Peter (eds.). The Baltic Sea Basin. Springer. ISBN   978-3-642-17219-9.
  14. Lidmar-Bergström, Karna (1997). "A long-term perspective on glacial erosion". Earth Surface Processes and Landforms . 22 (3): 297–306. Bibcode:1997ESPL...22..297L. doi:10.1002/(SICI)1096-9837(199703)22:3<297::AID-ESP758>3.0.CO;2-R.
  15. Rao, Yerubandi R.; Schwab, David J. (2007-01-01). "Transport and Mixing Between the Coastal and Offshore Waters in the Great Lakes: a Review". Journal of Great Lakes Research. 33 (1): 202–218. doi:10.3394/0380-1330(2007)33[202:TAMBTC]2.0.CO;2. ISSN   0380-1330. S2CID   53538578.
  16. "Great Lakes and Inland Seas | U.S. Geological Survey". www.usgs.gov. Retrieved 2023-02-06.
  17. 1 2 Encinas, Alfonso; Pérez, Felipe; Nielsen, Sven; Finger, Kenneth L.; Valencia, Victor; Duhart, Paul (2014). "Geochronologic and paleontologic evidence for a Pacific–Atlantic connection during the late Oligocene–early Miocene in the Patagonian Andes (43–44°S)". Journal of South American Earth Sciences . 55: 1–18. Bibcode:2014JSAES..55....1E. doi:10.1016/j.jsames.2014.06.008. hdl: 10533/130517 .
  18. Nielsen, S.N. (2005). "Cenozoic Strombidae, Aporrhaidae, and Struthiolariidae (Gastropoda, Stromboidea) from Chile: their significance to biogeography of faunas and climate of the south-east Pacific". Journal of Paleontology . 79: 1120–1130. doi:10.1666/0022-3360(2005)079[1120:csaasg]2.0.co;2. S2CID   130207579.
  19. Guillame, Benjamin; Martinod, Joseph; Husson, Laurent; Roddaz, Martin; Riquelme, Rodrigo (2009). "Neogene uplift of central eastern Patagonia: Dynamic response to active spreading ridge subduction?". Tectonics . 28.
  20. "Peru finds giant crocodile fossil in Amazon". Daily Times . 12 September 2005.
  21. Clode, Danielle (August 2015). Prehistoric marine life in Australia's inland sea. Museum Victoria. ISBN   978-1-921833-16-8. OCLC   895759221.
  22. Cathcart, Michael (2009). The Water Dreamers: How Water and Silence Shaped Australia. Melbourne: Text Publishing. chapter 7. ISBN   9781921520648.