Fresh water

Last updated

Amazonas, Iquitos - Leticia, Kolumbien (11472506936).jpg
Cove with Shamans Rock Olkhon Island Lake Baikal Russia (14594856552).jpg
Transition from Sawgrass to Coastal Habitat, NPSPhoto (9250299462).jpg
Rivers, lakes, and marshlands, such as (from top) South America's Amazon River, Russia's Lake Baikal, and the Everglades in Florida of The United States, are types of freshwater systems.

Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. The term excludes seawater and brackish water, but it does include non-salty mineral-rich waters, such as chalybeate springs. Fresh water may encompass frozen and meltwater in ice sheets, ice caps, glaciers, snowfields and icebergs, natural precipitations such as rainfall, snowfall, hail/sleet and graupel, and surface runoffs that form inland bodies of water such as wetlands, ponds, lakes, rivers, streams, as well as groundwater contained in aquifers, subterranean rivers and lakes.

Contents

Water is critical to the survival of all living organisms. Many organisms can thrive on salt water, but the great majority of vascular plants and most insects, amphibians, reptiles, mammals and birds need fresh water to survive.

Fresh water is the water resource that is of the most and immediate use to humans. Fresh water is not always potable water, that is, water safe to drink by humans. Much of the earth's fresh water (on the surface and groundwater) is to a substantial degree unsuitable for human consumption without treatment. Fresh water can easily become polluted by human activities or due to naturally occurring processes, such as erosion.

Fresh water makes up less than 3% of the world's water resources, and just 1% of that is readily available. About 70% of the world's freshwater reserves are frozen in Antarctica. Just 3% of it is extracted for human consumption. Agriculture uses roughly two thirds of all fresh water extracted from the environment. [1] [2] [3]

Fresh water is a renewable and variable, but finite natural resource. Fresh water is replenished through the process of the natural water cycle, in which water from seas, lakes, forests, land, rivers and reservoirs evaporates, forms clouds, and returns inland as precipitation. [4] Locally, however, if more fresh water is consumed through human activities than is naturally restored, this may result in reduced fresh water availability (or water scarcity) from surface and underground sources and can cause serious damage to surrounding and associated environments. Water pollution also reduces the availability of fresh water. Where available water resources are scarce, humans have developed technologies like desalination and wastewater recycling to stretch the available supply further. However, given the high cost (both capital and running costs) and - especially for desalination - energy requirements, those remain mostly niche applications.

A non-sustainable alternative is using so-called "fossil water" from underground aquifers. As some of those aquifers formed hundreds of thousands or even millions of years ago when local climates were wetter (e.g. from one of the Green Sahara periods) and are not appreciably replenished under current climatic conditions - at least compared to drawdown, these aquifers form essentially non-renewable resources comparable to peat or lignite, which are also continuously formed in the current era but orders of magnitude slower than they are mined.

Definitions

Numerical definition

Fresh water can be defined as water with less than 500 parts per million (ppm) of dissolved salts. [5]

Other sources give higher upper salinity limits for fresh water, e.g. 1,000 ppm [6] or 3,000 ppm. [7]

Systems

Fresh water habitats are classified as either lentic systems, which are the stillwaters including ponds, lakes, swamps and mires; lotic which are running-water systems; or groundwaters which flow in rocks and aquifers. There is, in addition, a zone which bridges between groundwater and lotic systems, which is the hyporheic zone, which underlies many larger rivers and can contain substantially more water than is seen in the open channel. It may also be in direct contact with the underlying underground water.

Sources

The original source of almost all fresh water is precipitation from the atmosphere, in the form of mist, rain and snow. Fresh water falling as mist, rain or snow contains materials dissolved from the atmosphere and material from the sea and land over which the rain bearing clouds have traveled. The precipitation leads eventually to the formation of water bodies that humans can use as sources of freshwater: ponds, lakes, rainfall, rivers, streams, and groundwater contained in underground aquifers.

In coastal areas fresh water may contain significant concentrations of salts derived from the sea if windy conditions have lifted drops of seawater into the rain-bearing clouds. This can give rise to elevated concentrations of sodium, chloride, magnesium and sulfate as well as many other compounds in smaller concentrations.

In desert areas, or areas with impoverished or dusty soils, rain-bearing winds can pick up sand and dust and this can be deposited elsewhere in precipitation and causing the freshwater flow to be measurably contaminated both by insoluble solids but also by the soluble components of those soils. Significant quantities of iron may be transported in this way including the well-documented transfer of iron-rich rainfall falling in Brazil derived from sand-storms in the Sahara in north Africa. [8]

In Africa, it was revealed that groundwater controls are complex and do not correspond directly to a single factor. Groundwater showed greater resilience to climate change than expected, and areas with an increasing threshold between 0.34 and 0.39 aridity index exhibited significant sensitivity to climate change. Land-use could affect infiltration and runoff processes. The years of most recharge coincided with the most precipitation anomalies, such as during El Niño and La Niña events. Three precipitation-recharge sensitivities were distinguished: in super arid areas with more than 0.67 aridity index, there was constant recharge with little variation with precipitation; in most sites (arid, semi-arid, humid), annual recharge increased as annual precipitation remained above a certain threshold; and in complex areas down to 0.1 aridity index (focused recharge), there was very inconsistent recharge (low precipitation but high recharge). Understanding these relationships can lead to the development of sustainable strategies for water collection. This understanding is particularly crucial in Africa, where water resources are often scarce and climate change poses significant challenges. [9]

Water distribution

Visualisation of the distribution (by volume) of water on Earth. Earth water distribution ppm chart.svg
Visualisation of the distribution (by volume) of water on Earth.
A graphical distribution of the locations of water on Earth. Earth's water distribution.svg
A graphical distribution of the locations of water on Earth.

Saline water in oceans, seas and saline groundwater make up about 97% of all the water on Earth. Only 2.5–2.75% is fresh water, including 1.75–2% frozen in glaciers, ice and snow, 0.5–0.75% as fresh groundwater. The water table is the level below which all spaces are filled with water, while the area above this level, where spaces in the rock and soil contain both air and water, is known as the unsaturated zone. The water in this unsaturated zone is referred to as soil moisture.

Below the water table, the entire region is known as the saturated zone, and the water in this zone is called groundwater. [11] Groundwater plays a crucial role as the primary source of water for various purposes including drinking, washing, farming, and manufacturing, and even when not directly used as a drinking water supply it remains vital to protect due to its ability to carry contaminants and pollutants from the land into lakes and rivers, which constitute a significant percentage of other people's freshwater supply. It is almost ubiquitous underground, residing in the spaces between particles of rock and soil or within crevices and cracks in rock, typically within 100 m (330 ft) of the surface, [11] and soil moisture, and less than 0.01% of it as surface water in lakes, swamps and rivers. [12] [13]

Freshwater lakes contain about 87% of this fresh surface water, including 29% in the African Great Lakes, 22% in Lake Baikal in Russia, 21% in the North American Great Lakes, and 14% in other lakes. Swamps have most of the balance with only a small amount in rivers, most notably the Amazon River. The atmosphere contains 0.04% water. [14] In areas with no fresh water on the ground surface, fresh water derived from precipitation may, because of its lower density, overlie saline ground water in lenses or layers. Most of the world's fresh water is frozen in ice sheets. Many areas have very little fresh water, such as deserts.

Freshwater ecosystems

Water is a critical issue for the survival of all living organisms. Some can use salt water but many organisms including the great majority of higher plants and most mammals must have access to fresh water to live. Some terrestrial mammals, especially desert rodents, appear to survive without drinking, but they do generate water through the metabolism of cereal seeds, and they also have mechanisms to conserve water to the maximum degree.

Freshwater ecosystem Panorama presa las ninas mogan gran canaria.jpg
Freshwater ecosystem

Freshwater ecosystems are a subset of Earth's aquatic ecosystems. They include lakes, ponds, rivers, streams, springs, bogs, and wetlands. [15] They can be contrasted with marine ecosystems, which have a larger salt content. Freshwater habitats can be classified by different factors, including temperature, light penetration, nutrients, and vegetation. There are three basic types of freshwater ecosystems: Lentic (slow moving water, including pools, ponds, and lakes), lotic (faster moving water, for example streams and rivers) and wetlands (areas where the soil is saturated or inundated for at least part of the time). [16] [15] Freshwater ecosystems contain 41% of the world's known fish species. [17]

Freshwater ecosystems have undergone substantial transformations over time, which has impacted various characteristics of the ecosystems. [18] Original attempts to understand and monitor freshwater ecosystems were spurred on by threats to human health (for example cholera outbreaks due to sewage contamination). [19] Early monitoring focused on chemical indicators, then bacteria, and finally algae, fungi and protozoa. A new type of monitoring involves quantifying differing groups of organisms (macroinvertebrates, macrophytes and fish) and measuring the stream conditions associated with them. [20]

Challenges

The increase in the world population and the increase in per capita water use puts increasing strains on the finite resources availability of clean fresh water. The response by freshwater ecosystems to a changing climate can be described in terms of three interrelated components: water quality, water quantity or volume, and water timing. A change in one often leads to shifts in the others as well. [21]

Limited resource

Water scarcity (closely related to water stress or water crisis) is the lack of fresh water resources to meet the standard water demand. There are two types of water scarcity. One is physical. The other is economic water scarcity. [22] :560 Physical water scarcity is where there is not enough water to meet all demands. This includes water needed for ecosystems to function. Regions with a desert climate often face physical water scarcity. [23] Central Asia, West Asia, and North Africa are examples of arid areas. Economic water scarcity results from a lack of investment in infrastructure or technology to draw water from rivers, aquifers, or other water sources. It also results from weak human capacity to meet water demand. [22] :560 Many people in Sub-Saharan Africa are living with economic water scarcity. [24] :11

There is enough freshwater available globally and averaged over the year to meet demand. As such, water scarcity is caused by a mismatch between when and where people need water, and when and where it is available. [25] One of the main causes of the increase in global water demand is the increase in the number of people. Others are the rise in living conditions, changing diets (to more animal products), [26] and expansion of irrigated agriculture. [27] [28] Climate change (including droughts or floods), deforestation, water pollution and wasteful use of water can also mean there is not enough water. [29] These variations in scarcity may also be a function of prevailing economic policy and planning approaches.

Minimum streamflow

An important concern for hydrological ecosystems is securing minimum streamflow, especially preserving and restoring instream water allocations. [30] Fresh water is an important natural resource necessary for the survival of all ecosystems.

Water pollution

Water pollution (or aquatic pollution) is the contamination of water bodies, with a negative impact on their uses. [31] :6 It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources. These are sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. [32] Water pollution may affect either surface water or groundwater. This form of pollution can lead to many problems. One is the degradation of aquatic ecosystems. Another is spreading water-borne diseases when people use polluted water for drinking or irrigation. [33] Water pollution also reduces the ecosystem services such as drinking water provided by the water resource.

Sources of water pollution are either point sources or non-point sources. [34] Point sources have one identifiable cause, such as a storm drain, a wastewater treatment plant or an oil spill. Non-point sources are more diffuse. An example is agricultural runoff. [35] Pollution is the result of the cumulative effect over time. Pollution may take many forms. One would is toxic substances such as oil, metals, plastics, pesticides, persistent organic pollutants, and industrial waste products. Another is stressful conditions such as changes of pH, hypoxia or anoxia, increased temperatures, excessive turbidity, or changes of salinity). The introduction of pathogenic organisms is another. Contaminants may include organic and inorganic substances. A common cause of thermal pollution is the use of water as a coolant by power plants and industrial manufacturers.

Society and culture

Human uses

Uses of water include agricultural, industrial, household, recreational and environmental activities.

Global goals for conservation

The Sustainable Development Goals are a collection of 17 interlinked global goals designed to be a "blueprint to achieve a better and more sustainable future for all". [36] Targets on fresh water conservation are included in SDG 6 (Clean water and sanitation) and SDG 15 (Life on land). For example, Target 6.4 is formulated as "By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity." [36] Another target, Target 15.1, is: "By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems and their services, in particular forests, wetlands, mountains and drylands, in line with obligations under international agreements." [36]

See also

Notes

  1. Each tiny cube [i] (such as the one representing biological water) corresponds to approximately 1400 cubic km of water, with a mass of approximately 1.4 trillion tonnes (235000 times that of the Great Pyramid of Giza or 8 times that of Lake Kariba, arguably the heaviest human-made object). [10]
  2. Only 3% of the Earth's water is fresh water. Most of it is in icecaps and glaciers (69%) and groundwater (30%), while all lakes, rivers and swamps combined only account for a small fraction (0.3%) of the Earth's total freshwater reserves.[ citation needed ]

Subnotes

  1. The entire block comprises 1 million tiny cubes.

Related Research Articles

<span class="mw-page-title-main">Hydrosphere</span> Total amount of water on a planet

The hydrosphere is the combined mass of water found on, under, and above the surface of a planet, minor planet, or natural satellite. Although Earth's hydrosphere has been around for about 4 billion years, it continues to change in shape. This is caused by seafloor spreading and continental drift, which rearranges the land and ocean.

<span class="mw-page-title-main">Groundwater</span> Water located beneath the ground surface

Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available fresh water in the world is groundwater. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, with a negative impact on their uses. It is usually a result of human activities. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources. These are sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution may affect either surface water or groundwater. This form of pollution can lead to many problems. One is the degradation of aquatic ecosystems. Another is spreading water-borne diseases when people use polluted water for drinking or irrigation. Water pollution also reduces the ecosystem services such as drinking water provided by the water resource.

<span class="mw-page-title-main">Environmental degradation</span> Any change or disturbance to the environment perceived to be deleterious or undesirable

Environmental degradation is the deterioration of the environment through depletion of resources such as quality of air, water and soil; the destruction of ecosystems; habitat destruction; the extinction of wildlife; and pollution. It is defined as any change or disturbance to the environment perceived to be deleterious or undesirable. The environmental degradation process amplifies the impact of environmental issues which leave lasting impacts on the environment.

<span class="mw-page-title-main">Reclaimed water</span> Converting wastewater into water that can be reused for other purposes

Water reclamation is the process of converting municipal wastewater or sewage and industrial wastewater into water that can be reused for a variety of purposes. It is also called wastewater reuse, water reuse or water recycling. There are many types of reuse. It is possible to reuse water in this way in cities or for irrigation in agriculture. Other types of reuse are environmental reuse, industrial reuse, and reuse for drinking water, whether planned or not. Reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater. This latter is also known as groundwater recharge. Reused water also serve various needs in residences such as toilet flushing, businesses, and industry. It is possible to treat wastewater to reach drinking water standards. Injecting reclaimed water into the water supply distribution system is known as direct potable reuse. Drinking reclaimed water is not typical. Reusing treated municipal wastewater for irrigation is a long-established practice. This is especially so in arid countries. Reusing wastewater as part of sustainable water management allows water to remain an alternative water source for human activities. This can reduce scarcity. It also eases pressures on groundwater and other natural water bodies.

<span class="mw-page-title-main">Awash River</span> Major river in Ethiopia

The Awash River is a major river of Ethiopia. Its course is entirely contained within the boundaries of Ethiopia and empties into a chain of interconnected lakes that begin with Lake Gargori and end with Lake Abbe on the border with Djibouti, some 100 kilometres from the head of the Gulf of Tadjoura. The Awash River is the principal stream of an endorheic drainage basin covering parts of the Amhara, Oromia and Somali Regions, as well as the southern half of the Afar Region. The Awash River basin, spanning 23 administrative zones, covers 10% of Ethiopia's area.

Fossil water, fossil groundwater, or paleowater is an ancient body of water that has been contained in some undisturbed space, typically groundwater in an aquifer, for millennia. Other types of fossil water can include subglacial lakes, such as Antarctica's Lake Vostok. UNESCO defines fossil groundwater as "water that infiltrated usually millennia ago and often under climatic conditions different from the present, and that has been stored underground since that time."

<span class="mw-page-title-main">Groundwater recharge</span> Groundwater that recharges an aquifer

Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs in the vadose zone below plant roots and is often expressed as a flux to the water table surface. Groundwater recharge also encompasses water moving away from the water table farther into the saturated zone. Recharge occurs both naturally and through anthropogenic processes, where rainwater and/or reclaimed water is routed to the subsurface.

<span class="mw-page-title-main">Overdrafting</span> Unsustainable extraction of groundwater

Overdrafting is the process of extracting groundwater beyond the equilibrium yield of an aquifer. Groundwater is one of the largest sources of fresh water and is found underground. The primary cause of groundwater depletion is the excessive pumping of groundwater up from underground aquifers. Insufficient recharge can lead to depletion, reducing the usefulness of the aquifer for humans. Depletion can also have impacts on the environment around the aquifer, such as soil compression and land subsidence, local climatic change, soil chemistry changes, and other deterioration of the local environment.

<span class="mw-page-title-main">Surface water</span> Water located on top of land forming terrestrial bodies of water

Surface water is water located on top of land, forming terrestrial waterbodies, and may also be referred to as blue water, opposed to the seawater and waterbodies like the ocean.

<span class="mw-page-title-main">Water scarcity</span> Situation where there is a shortage of water

Water scarcity is the lack of fresh water resources to meet the standard water demand. There are two types of water scarcity. One is physical. The other is economic water scarcity. Physical water scarcity is where there is not enough water to meet all demands. This includes water needed for ecosystems to function. Regions with a desert climate often face physical water scarcity. Central Asia, West Asia, and North Africa are examples of arid areas. Economic water scarcity results from a lack of investment in infrastructure or technology to draw water from rivers, aquifers, or other water sources. It also results from weak human capacity to meet water demand. Many people in Sub-Saharan Africa are living with economic water scarcity.

Peak water is a concept that underlines the growing constraints on the availability, quality, and use of freshwater resources. Peak water was defined in 2010 by Peter Gleick and Meena Palaniappan. They distinguish between peak renewable, peak non-renewable, and peak ecological water to demonstrate the fact that although there is a vast amount of water on the planet, sustainably managed water is becoming scarce.

Water resources management is a significant challenge for Mexico. The country has in place a system of water resources management that includes both central (federal) and decentralized institutions. Furthermore, water management is imposing a heavy cost to the economy.

Water resources are natural resources of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. These resources can be either freshwater from natural sources, or water produced artificially from other sources, such as from reclaimed water (wastewater) or desalinated water (seawater). 97% of the water on Earth is salt water and only three percent is fresh water; slightly over two-thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air. Natural sources of fresh water include surface water, under river flow, groundwater and frozen water. People use water resources for agricultural, industrial and household activities.

<span class="mw-page-title-main">Freshwater biology</span> The scientific study of freshwater ecosystems and biology

Freshwater biology is the scientific biological study of freshwater ecosystems and is a branch of limnology. This field seeks to understand the relationships between living organisms in their physical environment. These physical environments may include rivers, lakes, streams, ponds, reservoirs, or wetlands. Knowledge from this discipline is also widely used in industrial processes to make use of biological processes involved with sewage treatment and water purification. Water presence and flow is an essential aspect to species distribution and influences when and where species interact in freshwater environments.

<span class="mw-page-title-main">Water security</span> A goal of water management to harness water-related opportunities and manage risks

The aim of water security is to make the most of water's benefits for humans and ecosystems. The second aim is to limit the risks of destructive impacts of water to an acceptable level. These risks include for example too much water (flood), too little water or poor quality (polluted) water. People who live with a high level of water security always have access to "an acceptable quantity and quality of water for health, livelihoods and production". For example, access to water, sanitation and hygiene services is one part of water security. Some organizations use the term water security more narrowly for water supply aspects only.

<span class="mw-page-title-main">Water issues in developing countries</span> Water issues and problems in developing countries are diverse and serious

Water issues in developing countries include scarcity of drinking water, poor infrastructure for water and sanitation access, water pollution, and low levels of water security. Over one billion people in developing countries have inadequate access to clean water. The main barriers to addressing water problems in developing nations include poverty, costs of infrastructure, and poor governance. The effects of climate change on the water cycle can make these problems worse.

<span class="mw-page-title-main">Water reuse in California</span>

Water reuse in California is the use of reclaimed water for beneficial use. As a heavily populated state in the drought-prone arid west, water reuse is developing as an integral part of water in California enabling both the economy and population to grow.

<span class="mw-page-title-main">Environmental issues in Israel</span>

The State of Israel is one of the smallest countries in the world, at around 20,000 sq. km, and has relatively few natural resources. Due to its limited space, semi-arid climate, high population growth and resource scarcity, Israel is highly susceptible to environmental crises. These include water shortages and pollution, shrinking of the Dead Sea, waste production and disposal, air pollution and population density. As a result, resource development, in particular water, has benefited from relatively high government support throughout most of the country's history. For example, Israel's water conservation and reclamation infrastructure is one of the most advanced in the world, with approximately half its water supply derived from reclaimed and treated waste water, brackish water and desalinated water.

<span class="mw-page-title-main">Coastal hydrogeology</span> Branch of hydrogeology

Coastal Hydrogeology is a branch of Hydrogeology that focuses on the movement and the chemical properties of groundwater in coastal areas. Coastal Hydrogeology studies the interaction between fresh groundwater and seawater, including seawater intrusion, sea level induced groundwater level fluctuation, submarine groundwater discharge, human activities and groundwater management in coastal areas.

References

  1. "Wastewater resource recovery can fix water insecurity and cut carbon emissions". European Investment Bank. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
  2. "Competing for Clean Water Has Led to a Crisis". Environment. 26 January 2010. Archived from the original on 19 February 2021. Retrieved 29 August 2022.
  3. "Freshwater Resources | National Geographic Society". education.nationalgeographic.org. Archived from the original on 26 May 2022. Retrieved 29 August 2022.
  4. "The Fundamentals of the Water Cycle". www.usgs.gov. Archived from the original on 27 November 2019. Retrieved 17 September 2021.
  5. "Groundwater Glossary". 27 March 2006. Archived from the original on 28 April 2006. Retrieved 14 May 2006.
  6. "Freshwater". Glossary of Meteorology. American Meteorological Society. June 2000. Archived from the original on 6 June 2011. Retrieved 27 November 2009.
  7. "Freshwater". Fishkeeping glossary. Practical Fishkeeping. Archived from the original on 11 May 2006. Retrieved 27 November 2009.
  8. Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V. (22 February 2017). "Soluble iron nutrients in Saharan dust over the central Amazon rainforest". Atmospheric Chemistry and Physics. 17 (4): 2673–2687. Bibcode:2017ACP....17.2673R. doi: 10.5194/acp-17-2673-2017 . hdl: 10536/DRO/DU:30091978 via ResearchGate.
  9. "Global climate change impacts on Sub-Sahara Africa: The case of Nigeria's shorelines", The Impact of Climate Change on Sub-Sahara Africa, Peter Lang, 2015, doi:10.3726/978-3-653-04584-0/15, ISBN   978-3-653-04584-0 , retrieved 19 December 2023
  10. USGS – Earth's water distribution Archived 29 June 2012 at the Wayback Machine . Ga.water.usgs.gov (11 December 2012). Retrieved on 29 December 2012.
  11. 1 2 "Natural Quality of Water and Groundwater Contamination", Groundwater Contamination, Volume I, CRC Press, pp. 35–56, 14 April 2000, doi:10.1201/9781482278934-9, ISBN   978-0-429-18165-8 , retrieved 19 December 2023
  12. Where is Earth's water? Archived 14 December 2013 at the Wayback Machine , United States Geological Survey.
  13. Physicalgeography.net Archived 26 January 2016 at the Wayback Machine . Physicalgeography.net. Retrieved on 29 December 2012.
  14. Gleick, Peter; et al. (1996). Stephen H. Schneider (ed.). Encyclopedia of Climate and Weather . Oxford University Press.
  15. 1 2 Wetzel, Robert G. (2001). Limnology : lake and river ecosystems (3rd ed.). San Diego: Academic Press. ISBN   978-0127447605. OCLC   46393244.
  16. Vaccari, David A. (8 November 2005). Environmental Biology for Engineers and Scientists. Wiley-Interscience. ISBN   0-471-74178-7.
  17. Daily, Gretchen C. (1 February 1997). Nature's Services . Island Press. ISBN   1-55963-476-6.
  18. Carpenter, Stephen R.; Stanley, Emily H.; Vander Zanden, M. Jake (2011). "State of the World's Freshwater Ecosystems: Physical, Chemical, and Biological Changes". Annual Review of Environment and Resources. 36 (1): 75–99. doi: 10.1146/annurev-environ-021810-094524 . ISSN   1543-5938.
  19. Rudolfs, Willem; Falk, Lloyd L.; Ragotzkie, R. A. (1950). "Literature Review on the Occurrence and Survival of Enteric, Pathogenic, and Relative Organisms in Soil, Water, Sewage, and Sludges, and on Vegetation: I. Bacterial and Virus Diseases". Sewage and Industrial Wastes. 22 (10): 1261–1281. JSTOR   25031419.
  20. Friberg, Nikolai; Bonada, Núria; Bradley, David C.; Dunbar, Michael J.; Edwards, Francois K.; Grey, Jonathan; Hayes, Richard B.; Hildrew, Alan G.; Lamouroux, Nicolas (2011), "Biomonitoring of Human Impacts in Freshwater Ecosystems", Advances in Ecological Research, Elsevier, pp. 1–68, doi:10.1016/b978-0-12-374794-5.00001-8, ISBN   9780123747945
  21. The World Bank, 2009 "Water and Climate Change: Understanding the Risks and Making Climate-Smart Investment Decisions". pp. 19–22. Archived from the original on 7 April 2012. Retrieved 24 October 2011.
  22. 1 2 Caretta, M.A., A. Mukherji, M. Arfanuzzaman, R.A. Betts, A. Gelfan, Y. Hirabayashi, T.K. Lissner, J. Liu, E. Lopez Gunn, R. Morgan, S. Mwanga, and S. Supratid, 2022: Chapter 4: Water. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 551–712, doi:10.1017/9781009325844.006.
  23. Rijsberman, Frank R. (2006). "Water scarcity: Fact or fiction?". Agricultural Water Management. 80 (1–3): 5–22. Bibcode:2006AgWM...80....5R. doi:10.1016/j.agwat.2005.07.001.
  24. IWMI (2007) Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture . London: Earthscan, and Colombo: International Water Management Institute.
  25. Mekonnen, Mesfin M.; Hoekstra, Arjen Y. (2016). "Four billion people facing severe water scarcity". Science Water Stress Advances. 2 (2): e1500323. Bibcode:2016SciA....2E0323M. doi:10.1126/sciadv.1500323. ISSN   2375-2548. PMC   4758739 . PMID   26933676.
  26. Liu, Junguo; Yang, Hong; Gosling, Simon N.; Kummu, Matti; Flörke, Martina; Pfister, Stephan; Hanasaki, Naota; Wada, Yoshihide; Zhang, Xinxin; Zheng, Chunmiao; Alcamo, Joseph (2017). "Water scarcity assessments in the past, present, and future: Review on Water Scarcity Assessment". Earth's Future. 5 (6): 545–559. doi:10.1002/2016EF000518. PMC   6204262 . PMID   30377623.
  27. Vorosmarty, C. J. (14 July 2000). "Global Water Resources: Vulnerability from Climate Change and Population Growth". Science. 289 (5477): 284–288. Bibcode:2000Sci...289..284V. doi:10.1126/science.289.5477.284. PMID   10894773. S2CID   37062764.
  28. Ercin, A. Ertug; Hoekstra, Arjen Y. (2014). "Water footprint scenarios for 2050: A global analysis". Environment International. 64: 71–82. Bibcode:2014EnInt..64...71E. doi: 10.1016/j.envint.2013.11.019 . PMID   24374780.
  29. "Water Scarcity. Threats". WWF. 2013. Archived from the original on 21 October 2013. Retrieved 20 October 2013.
  30. Peter Gleick; Heather Cooley; David Katz (2006). The world's water, 2006–2007: the biennial report on freshwater resources. Island Press. pp. 29–31. ISBN   978-1-59726-106-7. Archived from the original on 17 March 2022. Retrieved 12 September 2009.
  31. Von Sperling, Marcos (2007). "Wastewater Characteristics, Treatment and Disposal". Water Intelligence Online. Biological Wastewater Treatment. 6. IWA Publishing. doi: 10.2166/9781780402086 . ISBN   978-1-78040-208-6.
  32. Eckenfelder Jr WW (2000). Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons. doi:10.1002/0471238961.1615121205031105.a01. ISBN   978-0-471-48494-3.
  33. "Water Pollution". Environmental Health Education Program. Cambridge, MA: Harvard T.H. Chan School of Public Health. 23 July 2013. Archived from the original on 18 September 2021. Retrieved 18 September 2021.
  34. Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth (15 August 2009). "Modeling the contribution of point sources and non-point sources to Thachin River water pollution". Science of the Total Environment. 407 (17): 4902–4915. doi:10.1016/j.scitotenv.2009.05.007. ISSN   0048-9697.
  35. Moss B (February 2008). "Water pollution by agriculture". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 363 (1491): 659–666. doi:10.1098/rstb.2007.2176. PMC   2610176 . PMID   17666391.
  36. 1 2 3 United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313 Archived 23 October 2020 at the Wayback Machine )