Brine

Last updated

Brine (or briny water) is water with a high-concentration solution of salt (typically sodium chloride or calcium chloride). In diverse contexts, brine may refer to the salt solutions ranging from about 3.5% (a typical concentration of seawater, on the lower end of that of solutions used for brining foods) up to about 26% (a typical saturated solution, depending on temperature). Brine forms naturally due to evaporation of ground saline water but it is also generated in the mining of sodium chloride. [1] Brine is used for food processing and cooking (pickling and brining), for de-icing of roads and other structures, and in a number of technological processes. It is also a by-product of many industrial processes, such as desalination, so it requires wastewater treatment for proper disposal or further utilization (fresh water recovery). [2]

Contents

In nature

A NASA technician measures the concentration level of brine using a hydrometer at a salt evaporation pond in San Francisco. Brine concentration measurement.jpg
A NASA technician measures the concentration level of brine using a hydrometer at a salt evaporation pond in San Francisco.

Brines are produced in multiple ways in nature. Modification of seawater via evaporation results in the concentration of salts in the residual fluid, a characteristic geologic deposit called an evaporite is formed as different dissolved ions reach the saturation states of minerals, typically gypsum and halite. Dissolution of such salt deposits into water can produce brines as well. As seawater freezes, dissolved ions tend to remain in solution resulting in a fluid termed a cryogenic brine. At the time of formation, these cryogenic brines are by definition cooler than the freezing temperature of seawater and can produce a feature called a brinicle where cool brines descend, freezing the surrounding seawater.

The brine cropping out at the surface as saltwater springs are known as "licks" or "salines". [3] The contents of dissolved solids in groundwater vary highly from one location to another on Earth, both in terms of specific constituents (e.g. halite, anhydrite, carbonates, gypsum, fluoride-salts, organic halides, and sulfate-salts) and regarding the concentration level. Using one of several classification of groundwater based on total dissolved solids (TDS), brine is water containing more than 100,000 mg/L TDS. [4] Brine is commonly produced during well completion operations, particularly after the hydraulic fracturing of a well.

Uses

Culinary

Brine is a common agent in food processing and cooking. Brining is used to preserve or season the food. Brining can be applied to vegetables, cheeses, fruit and some fish in a process known as pickling. Meat and fish are typically steeped in brine for shorter periods of time, as a form of marination, enhancing its tenderness and flavor, or to enhance shelf period.

Chlorine production

Elemental chlorine can be produced by electrolysis of brine (NaCl solution). This process also produces sodium hydroxide (NaOH) and Hydrogen gas (H2). The reaction equations are as follows:

Refrigerating fluid

Brine is used as a secondary fluid in large refrigeration installations for the transport of thermal energy. Most commonly used brines are based on inexpensive calcium chloride and sodium chloride. [5] It is used because the addition of salt to water lowers the freezing temperature of the solution and the heat transport efficiency can be greatly enhanced for the comparatively low cost of the material. The lowest freezing point obtainable for NaCl brine is −21.1 °C (−6.0 °F) at the concentration of 23.3% NaCl by weight. [5] This is called the eutectic point.

Because of their corrosive properties salt-based brines have been replaced by organic liquids such as ethylene glycol. [6]

Sodium chloride brine spray is used on some fishing vessels to freeze fish. [7] The brine temperature is generally −5 °F (−21 °C). Air blast freezing temperatures are −31 °F (−35 °C) or lower. Given the higher temperature of brine, the system efficiency over air blast freezing can be higher. High-value fish usually are frozen at much lower temperatures, below the practical temperature limit for brine.

Water softening and purification

Brine is an auxiliary agent in water softening and water purification systems involving ion exchange technology. The most common example are household dishwashers, utilizing sodium chloride in form of dishwasher salt. Brine is not involved in the purification process itself, but used for regeneration of ion-exchange resin on cyclical basis. The water being treated flows through the resin container until the resin is considered exhausted and water is purified to a desired level. Resin is then regenerated by sequentially backwashing the resin bed to remove accumulated solids, flushing removed ions from the resin with a concentrated solution of replacement ions, and rinsing the flushing solution from the resin. [8] After treatment, ion-exchange resin beads saturated with calcium and magnesium ions from the treated water, are regenerated by soaking in brine containing 6–12% NaCl. The sodium ions from brine replace the calcium and magnesium ions on the beads. [9] [10]

De-icing

In lower temperatures, a brine solution can be used to de-ice or reduce freezing temperatures on roads. [11]

Quenching

Quenching is a heat-treatment process when forging metals such as steel. A brine solution, along with oil and other substances, is commonly used to harden steel. When brine is used, there is an enhanced uniformity of the cooling process and heat transfer. [12]

Desalination

The desalination process consists of the separation of salts from an aqueous solution to obtain fresh water from a source of seawater or brackish water; and in turn, a discharge is generated, commonly called brine. [13]

Marine brine discharge in Chile with its surrounding marine life Brine Discharge (Ivan Sola).jpg
Marine brine discharge in Chile with its surrounding marine life

Characteristics

The characteristics of the discharge depend on different factors, such as the desalination technology used, salinity and quality of the water used, environmental and oceanographic characteristics, desalination process carried out, among others. [14] The discharge of desalination plants by seawater reverse osmosis (SWRO), are mainly characterized by presenting a salinity concentration that can, in the worst case, double the salinity of the seawater used, and unlike of thermal desalination plants, have practically the same temperature and dissolved oxygen as the seawater used. [15] [16]

Dissolved chemicals

The discharge could contain trace chemical products used during the industrial treatments applies,such as antiscalants, coagulants, flocculants, which are discarded together with the discharge, and which could affect the physical-chemical quality of the effluent. However, these are practically consumed during the process and the concentrations in the discharge are very low, which are practically diluted during the discharge, without affecting marine ecosystems. [17] [18]

Heavy metals

The materials used in SWRO plants are dominated by non-metallic components and stainless steels, since lower operating temperatures allow the construction of desalination plants with more corrosion-resistant coatings. [19] [14] Therefore, the concentration values of heavy metals in the discharge of SWRO plants are much lower than the acute toxicity levels to generate environmental impacts on marine ecosystems. [20] [14] [21]

Discharge

The discharge is generally dumped back into the sea, through an underwater outfall or coastal release, due to its lower energy and economic cost compared to other discharge methods. [18] [22] Due to its increase in salinity, the discharge has a greater density compared to the surrounding seawater. Therefore, when the discharge reaches the sea, it can form a saline plume that can tends to follow the bathymetric line of the bottom until it is completely diluted. [23] [24] [25] The distribution of the salt plume may depend on different factors, such as the production capacity of the plant, the discharge method, the oceanographic and environmental conditions of the discharge point, among others. [15] [23] [22] [26]

Marine environment

Brine discharge might lead to an increase in salinity above certain threshold levels that has the potential to affect benthic communities, especially those more sensitive to osmotic pressure, finally having an effect on their abundance and diversity. [27] [28] [29]

However, if appropriate mitigation measures are applied, the potential environmental impacts of discharges from SWRO plants can be correctly minimized. [18] [26] Some examples can be found in countries such as Spain, Israel, Chile or Australia, in which the mitigation measures adopted reduce the area affected by the discharge, guaranteeing a sustainable development of the desalination process without significant impacts on marine ecosystems. [30] [31] [32] [33] [34] [26] [35] When noticeable effects have been detected on the environment surrounding discharge areas, it generally corresponds to old desalination plants in which the correct mitigation measures were not implemented. [36] [30] [37] Some examples can be found in Spain, Australia or Chile, where it has been shown that saline plumes do not exceed values of 5% with respect to the natural salinity of the sea in a radius less than 100 m from the point of discharge when proper measures are adopted. [32] [26]

Mitigation measures

The mitigation measures that are typically employed to prevent negatively impact sensitive marine enviorment are listed below: [38] [39] [40]

Regulation

Currently, in many countries, such as Spain, Israel, Chile and Australia, the development of a rigorous environmental impact assessment process is required, both for the construction and operational phases. [41] [42] [43] During its developent, the most important legal management tools are established within the local environmental regulation, to prevent and adopt mitigation measures that guarantee the sustainable development of desalination projects. This includes a series of administrative tools and periodic environmental monitoring, to adopt preventive, corrective and further monitoring measures of the state of the surrounding marine environment. [44] [45]

Under the context of this environmental assessment process, numerous countries require compliance with an Environmental Monitoring Program (PVA), in order to evaluate the effectiveness of the preventive and corrective measures established during the environmental assessment process, and thus guarantee the operation of desalination plants without producing significant environmental impacts. [46] [47] The PVAs establishes a series of mandatory requirements that are mainly related to the monitoring of discharge, using a series of measurements and characterizations based on physical-chemical and biological information. [46] [47] In addition, the PVAs could also include different requirements related to monitoring the effects of seawater intake and those that may potentially be related to effects on the terrestrial environment.

Wastewater

Brine is a byproduct of many industrial processes, such as desalination, power plant cooling towers, produced water from oil and natural gas extraction, acid mine or acid rock drainage, reverse osmosis reject, chlor-alkali wastewater treatment, pulp and paper mill effluent, and waste streams from food and beverage processing. Along with diluted salts, it can contain residues of pretreatment and cleaning chemicals, their reaction byproducts and heavy metals due to corrosion.

Wastewater brine can pose a significant environmental hazard, both due to corrosive and sediment-forming effects of salts and toxicity of other chemicals diluted in it. [48]

Unpolluted brine from desalination plants and cooling towers can be returned to the ocean. From the desalination process, reject brine is produced, which proposes potential damages to the marine life and habitats. [49] To limit the environmental impact, it can be diluted with another stream of water, such as the outfall of a wastewater treatment or power plant. Since brine is heavier than seawater and would accumulate on the ocean bottom, it requires methods to ensure proper diffusion, such as installing underwater diffusers in the sewerage. [50] Other methods include drying in evaporation ponds, injecting to deep wells, and storing and reusing the brine for irrigation, de-icing or dust control purposes. [48]

Technologies for treatment of polluted brine include: membrane filtration processes, such as reverse osmosis and forward osmosis; ion exchange processes such as electrodialysis or weak acid cation exchange; or evaporation processes, such as thermal brine concentrators and crystallizers employing mechanical vapour recompression and steam. New methods for membrane brine concentration, employing osmotically assisted reverse osmosis and related processes, are beginning to gain ground as part of zero liquid discharge systems (ZLD). [51]

Composition and purification

Brine consists of concentrated solution of Na+ and Cl ions. Sodium chloride per se does not exist in water: it is fully ionized. Other cations found in various brines include K+, Mg2+, Ca2+, and Sr2+. The latter three are problematic because they form scale and they react with soaps. Aside from chloride, brines sometimes contain Br and I and, most problematically, SO2−
4
. Purification steps often include the addition of calcium oxide to precipitate solid magnesium hydroxide together with gypsum (CaSO4), which can be removed by filtration. Further purification is achieved by fractional crystallization. The resulting purified salt is called evaporated salt or vacuum salt. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Desalination</span> Removal of salts from water

Desalination is a process that takes away mineral components from saline water. More generally, desalination is the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture. Saltwater is desalinated to produce water suitable for human consumption or irrigation. The by-product of the desalination process is brine. Desalination is used on many seagoing ships and submarines. Most of the modern interest in desalination is focused on cost-effective provision of fresh water for human use. Along with recycled wastewater, it is one of the few rainfall-independent water resources.

<span class="mw-page-title-main">Seawater</span> Water from a sea or an ocean

Seawater, or sea water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5%. This means that every kilogram of seawater has approximately 35 grams (1.2 oz) of dissolved salts. The average density at the surface is 1.025 kg/L. Seawater is denser than both fresh water and pure water because the dissolved salts increase the mass by a larger proportion than the volume. The freezing point of seawater decreases as salt concentration increases. At typical salinity, it freezes at about −2 °C (28 °F). The coldest seawater still in the liquid state ever recorded was found in 2010, in a stream under an Antarctic glacier: the measured temperature was −2.6 °C (27.3 °F).

<span class="mw-page-title-main">Forward osmosis</span> Water purification process

Forward osmosis (FO) is an osmotic process that, like reverse osmosis (RO), uses a semi-permeable membrane to effect separation of water from dissolved solutes. The driving force for this separation is an osmotic pressure gradient, such that a "draw" solution of high concentration, is used to induce a net flow of water through the membrane into the draw solution, thus effectively separating the feed water from its solutes. In contrast, the reverse osmosis process uses hydraulic pressure as the driving force for separation, which serves to counteract the osmotic pressure gradient that would otherwise favor water flux from the permeate to the feed. Hence significantly more energy is required for reverse osmosis compared to forward osmosis.

<span class="mw-page-title-main">Industrial wastewater treatment</span> Processes used for treating wastewater that is produced by industries as an undesirable by-product

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans. This applies to industries that generate wastewater with high concentrations of organic matter, toxic pollutants or nutrients such as ammonia. Some industries install a pre-treatment system to remove some pollutants, and then discharge the partially treated wastewater to the municipal sewer system.

Multi-stage flash distillation (MSF) is a water desalination process that distills sea water by flashing a portion of the water into steam in multiple stages of what are essentially countercurrent heat exchangers. Current MSF facilities may have as many as 30 stages.

physical plant, mechanical plant or industrial plant refers to the necessary infrastructure used in operation and maintenance of a given facility. The operation of these facilities, or the department of an organization which does so, is called "plant operations" or facility management. Industrial plant should not be confused with "manufacturing plant" in the sense of "a factory". This is a holistic look at the architecture, design, equipment, and other peripheral systems linked with a plant required to operate or maintain it.

Solar desalination is a desalination technique powered by solar energy. The two common methods are direct (thermal) and indirect (photovoltaic).

<span class="mw-page-title-main">Electrodialysis</span> Applied electric potential transport of salt ions.

Electrodialysis (ED) is used to transport salt ions from one solution through ion-exchange membranes to another solution under the influence of an applied electric potential difference. This is done in a configuration called an electrodialysis cell. The cell consists of a feed (dilute) compartment and a concentrate (brine) compartment formed by an anion exchange membrane and a cation exchange membrane placed between two electrodes. In almost all practical electrodialysis processes, multiple electrodialysis cells are arranged into a configuration called an electrodialysis stack, with alternating anion and cation-exchange membranes forming the multiple electrodialysis cells. Electrodialysis processes are different from distillation techniques and other membrane based processes in that dissolved species are moved away from the feed stream, whereas other processes move away the water from the remaining substances. Because the quantity of dissolved species in the feed stream is far less than that of the fluid, electrodialysis offers the practical advantage of much higher feed recovery in many applications.

<span class="mw-page-title-main">Osmotic power</span> Energy available from the difference in the salt concentration between seawater and river water

Osmotic power, salinity gradient power or blue energy is the energy available from the difference in the salt concentration between seawater and river water. Two practical methods for this are reverse electrodialysis (RED) and pressure retarded osmosis (PRO). Both processes rely on osmosis with membranes. The key waste product is brackish water. This byproduct is the result of natural forces that are being harnessed: the flow of fresh water into seas that are made up of salt water.

Thin-film composite membranes are semipermeable membranes manufactured to provide selectivity with high permeability. Most TFC's are used in water purification or water desalination systems. They also have use in chemical applications such as gas separations, dehumidification, batteries and fuel cells. A TFC membrane can be considered a molecular sieve constructed in the form of a film from two or more layered materials. The additional layers provide structural strength and a low-defect surface to support a selective layer that is thin enough to be selective but not so thick that it causes low permeability.

<span class="mw-page-title-main">Menachem Elimelech</span> American engineer

Menachem Elimelech is the Sterling Professor of Chemical and Environmental Engineering at Yale University. Elimelech is the only professor from an engineering department at Yale to be awarded the Sterling professorship since its establishment in 1920. Elimelech moved from the University of California, Los Angeles (UCLA) to Yale University in 1998 and founded Yale's Environmental Engineering program.

Nanofiltration is a membrane filtration process that uses nanometer sized pores through which particles smaller than about 1–10 nanometers pass through the membrane. Nanofiltration membranes have pore sizes of about 1–10 nanometers, smaller than those used in microfiltration and ultrafiltration, but a slightly bigger than those in reverse osmosis. Membranes used are predominantly polymer thin films. It is used to soften, disinfect, and remove impurities from water, and to purify or separate chemicals such as pharmaceuticals.

<span class="mw-page-title-main">Evaporation pond</span>

Evaporation ponds are artificial ponds with very large surface areas that are designed to efficiently evaporate water by sunlight and expose water to the ambient temperatures. Evaporation ponds are inexpensive to design making it ideal for multiple purposes such as wastewater treatment processes, storage, and extraction of minerals. Evaporation ponds differ in usage and result in a wide range of environmental and health effects.

A solar-powered desalination unit produces potable water from saline water through direct or indirect methods of desalination powered by sunlight. Solar energy is the most promising renewable energy source due to its ability to drive the more popular thermal desalination systems directly through solar collectors and to drive physical and chemical desalination systems indirectly through photovoltaic cells.

<span class="mw-page-title-main">Bittern (salt)</span> Solution from evaporation of seawater or brine

Bittern, or nigari, is the salt solution formed when halite precipitates from seawater or brines. Bitterns contain magnesium, calcium, and potassium ions as well as chloride, sulfate, iodide, and other ions.

Reverse osmosis (RO) is a water purification process that uses a semi-permeable membrane to separate water molecules from other substances. RO applies pressure to overcome osmotic pressure that favors even distributions. RO can remove dissolved or suspended chemical species as well as biological substances, and is used in industrial processes and the production of potable water. RO retains the solute on the pressurized side of the membrane and the purified solvent passes to the other side. It relies on the relative sizes of the various molecules to decide what passes through. "Selective" membranes reject large molecules, while accepting smaller molecules.

<span class="mw-page-title-main">Pressure-retarded osmosis</span>

Pressure retarded osmosis (PRO) is a technique to separate a solvent from a solution that is more concentrated and also pressurized. A semipermeable membrane allows the solvent to pass to the concentrated solution side by osmosis. The technique can be used to generate power from the salinity gradient energy resulting from the difference in the salt concentration between sea and river water.

Membrane distillation (MD) is a thermally driven separation process in which separation is driven by phase change. A hydrophobic membrane presents a barrier for the liquid phase, allowing the vapour phase to pass through the membrane's pores. The driving force of the process is a partial vapour pressure difference commonly triggered by a temperature difference.

<span class="mw-page-title-main">Zero liquid discharge</span> Water treatment process used to remove liquid waste

Zero Liquid Discharge(ZLD) is a classification of water treatment processes intended to reduce wastewater efficiently and produce clean water that is suitable for reuse (e.g., irrigation). ZLD systems employ wastewater treatment technologies and desalination to purify and recycle virtually all wastewater received.

There are approximately 16,000 operational desalination plants, located across 177 countries, which generate an estimated 95 million m3/day of fresh water. Micro desalination plants operate near almost every natural gas or fracking facility in the United States. Furthermore, micro desalination facilities exist in textile, leather, food industries, etc.

References

  1. 1 2 Westphal, Gisbert; Kristen, Gerhard; Wegener, Wilhelm; Ambatiello, Peter; Geyer, Helmut; Epron, Bernard; Bonal, Christian; Steinhauser, Georg; Götzfried (2010). "Sodium Chloride". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a24_317.pub4. ISBN   978-3527306732.
  2. Panagopoulos, Argyris; Haralambous, Katherine-Joanne; Loizidou, Maria (November 2019). "Desalination brine disposal methods and treatment technologies – A review". Science of the Total Environment. 693: 133545. Bibcode:2019ScTEn.693m3545P. doi:10.1016/j.scitotenv.2019.07.351. PMID   31374511. S2CID   199387639.
  3. "The Scioto Saline-Ohio's Early Salt Industry" (PDF). dnr.state.oh.us. Archived from the original (PDF) on 2012-10-07.
  4. "Global Overview of Saline Groundwater Occurrence and Genesis". igrac.net. Archived from the original on 2011-07-23. Retrieved 2017-07-17.
  5. 1 2 "Secondary Refrigerant Systems". Cool-Info.com. Retrieved 17 July 2017.
  6. "Calcium Chloride versus Glycol". accent-refrigeration.com. Retrieved 17 July 2017.
  7. Kolbe, Edward; Kramer, Donald (2007). Planning for Seafood Freezing (PDF). Alaska Sea Grant College Program Oregon State University. ISBN   978-1566121194. Archived from the original (PDF) on 12 July 2017. Retrieved 17 July 2017.
  8. Kemmer, Frank N., ed. (1979). The NALCO Water Handbook. McGraw-Hill. pp. 12–7, 12–25.
  9. "Hard and soft water". GCSE Bitesize. BBC.
  10. Arup K. SenGupta (2016). Ion Exchange and Solvent Extraction: A Series of Advances. CRC Press. pp. 125–. ISBN   978-1-4398-5540-9.
  11. "Prewetting with Salt Brine for More Effective Roadway Deicing". www.usroads.com. Archived from the original on 2015-01-07. Retrieved 2012-01-14.
  12. 3. Luís H. Pizetta Zordão, Vinícius A. Oliveira, George E. Totten, Lauralice C.F. Canale, "Quenching power of aqueous salt solution", International Journal of Heat and Mass Transfer, Volume 140, 2019, pp. 807–818.
  13. Mezher, Toufic; Fath, Hassan; Abbas, Zeina; Khaled, Arslan (2011-01-31). "Techno-economic assessment and environmental impacts of desalination technologies". Desalination. 266 (1): 263–273. Bibcode:2011Desal.266..263M. doi:10.1016/j.desal.2010.08.035. ISSN   0011-9164.
  14. 1 2 3 Panagopoulos, Argyris; Haralambous, Katherine-Joanne (December 2020). "Environmental impacts of desalination and brine treatment - Challenges and mitigation measures". Marine Pollution Bulletin. 161: 111773. Bibcode:2020MarPB.16111773P. doi:10.1016/j.marpolbul.2020.111773. ISSN   0025-326X. PMID   33128985.
  15. 1 2 Abessi, Ozeair (2018), "Brine Disposal and Management—Planning, Design, and Implementation", Sustainable Desalination Handbook, Elsevier, pp. 259–303, doi:10.1016/b978-0-12-809240-8.00007-1, ISBN   978-0-12-809240-8 , retrieved 2024-04-09
  16. Mezher, Toufic; Fath, Hassan; Abbas, Zeina; Khaled, Arslan (January 2011). "Techno-economic assessment and environmental impacts of desalination technologies". Desalination. 266 (1–3): 263–273. Bibcode:2011Desal.266..263M. doi:10.1016/j.desal.2010.08.035. ISSN   0011-9164.
  17. Blanco-Murillo, Fabio; Marín-Guirao, Lázaro; Sola, Iván; Rodríguez-Rojas, Fernanda; Ruiz, Juan M.; Sánchez-Lizaso, José Luis; Sáez, Claudio A. (November 2023). "Desalination brine effects beyond excess salinity: Unravelling specific stress signaling and tolerance responses in the seagrass Posidonia oceanica". Chemosphere. 341: 140061. Bibcode:2023Chmsp.34140061B. doi:10.1016/j.chemosphere.2023.140061. hdl: 10045/137033 . ISSN   0045-6535. PMID   37689149.
  18. 1 2 3 Fernández-Torquemada, Yolanda; Carratalá, Adoración; Sánchez Lizaso, José Luis (2019). "Impact of brine on the marine environment and how it can be reduced". Desalination and Water Treatment. 167: 27–37. Bibcode:2019DWatT.167...27F. doi:10.5004/dwt.2019.24615. hdl: 10045/101370 .
  19. Lin, Yung-Chang; Chang-Chien, Guo-Ping; Chiang, Pen-Chi; Chen, Wei-Hsiang; Lin, Yuan-Chung (August 2013). "Potential impacts of discharges from seawater reverse osmosis on Taiwan marine environment". Desalination. 322: 84–93. Bibcode:2013Desal.322...84L. doi:10.1016/j.desal.2013.05.009. ISSN   0011-9164.
  20. Gheorghe, Stefania; Stoica, Catalina; Vasile, Gabriela Geanina; Nita-Lazar, Mihai; Stanescu, Elena; Lucaciu, Irina Eugenia (2017-01-18), "Metals Toxic Effects in Aquatic Ecosystems: Modulators of Water Quality", Water Quality, IntechOpen, doi:10.5772/65744, ISBN   978-953-51-2882-3 , retrieved 2024-04-09
  21. Zhou, Jin; Chang, Victor W.-C.; Fane, Anthony G. (January 2013). "An improved life cycle impact assessment (LCIA) approach for assessing aquatic eco-toxic impact of brine disposal from seawater desalination plants". Desalination. 308: 233–241. Bibcode:2013Desal.308..233Z. doi:10.1016/j.desal.2012.07.039. ISSN   0011-9164.
  22. 1 2 Missimer, Thomas M.; Maliva, Robert G. (May 2018). "Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls". Desalination. 434: 198–215. Bibcode:2018Desal.434..198M. doi: 10.1016/j.desal.2017.07.012 . ISSN   0011-9164.
  23. 1 2 Fernández-Torquemada, Yolanda; Gónzalez-Correa, José Miguel; Loya, Angel; Ferrero, Luis Miguel; Díaz-Valdés, Marta; Sánchez-Lizaso, José Luis (May 2009). "Dispersion of brine discharge from seawater reverse osmosis desalination plants". Desalination and Water Treatment. 5 (1–3): 137–145. Bibcode:2009DWatT...5..137F. doi:10.5004/dwt.2009.576. hdl: 10045/11309 . ISSN   1944-3994.
  24. Loya-Fernández, Ángel; Ferrero-Vicente, Luis Miguel; Marco-Méndez, Candela; Martínez-García, Elena; Zubcoff Vallejo, José Jacobo; Sánchez-Lizaso, José Luis (April 2018). "Quantifying the efficiency of a mono-port diffuser in the dispersion of brine discharges". Desalination. 431: 27–34. Bibcode:2018Desal.431...27L. doi:10.1016/j.desal.2017.11.014. ISSN   0011-9164.
  25. Palomar, P.; Lara, J.L.; Losada, I.J.; Rodrigo, M.; Alvárez, A. (March 2012). "Near field brine discharge modelling part 1: Analysis of commercial tools". Desalination. 290: 14–27. Bibcode:2012Desal.290...14P. doi:10.1016/j.desal.2011.11.037. ISSN   0011-9164.
  26. 1 2 3 4 Sola, Iván; Fernández-Torquemada, Yolanda; Forcada, Aitor; Valle, Carlos; del Pilar-Ruso, Yoana; González-Correa, José M.; Sánchez-Lizaso, José Luis (December 2020). "Sustainable desalination: Long-term monitoring of brine discharge in the marine environment". Marine Pollution Bulletin. 161: 111813. Bibcode:2020MarPB.16111813S. doi:10.1016/j.marpolbul.2020.111813. hdl: 10045/110110 . ISSN   0025-326X. PMID   33157504.
  27. de-la-Ossa-Carretero, J. A.; Del-Pilar-Ruso, Y.; Loya-Fernández, A.; Ferrero-Vicente, L. M.; Marco-Méndez, C.; Martinez-Garcia, E.; Giménez-Casalduero, F.; Sánchez-Lizaso, J. L. (2016-02-15). "Bioindicators as metrics for environmental monitoring of desalination plant discharges". Marine Pollution Bulletin. 103 (1): 313–318. Bibcode:2016MarPB.103..313D. doi:10.1016/j.marpolbul.2015.12.023. ISSN   0025-326X. PMID   26781455.
  28. Del-Pilar-Ruso, Yoana; Martinez-Garcia, Elena; Giménez-Casalduero, Francisca; Loya-Fernández, Angel; Ferrero-Vicente, Luis Miguel; Marco-Méndez, Candela; de-la-Ossa-Carretero, Jose Antonio; Sánchez-Lizaso, José Luis (2015-03-01). "Benthic community recovery from brine impact after the implementation of mitigation measures". Water Research. 70: 325–336. Bibcode:2015WatRe..70..325D. doi:10.1016/j.watres.2014.11.036. hdl: 10045/44105 . ISSN   0043-1354. PMID   25543242.
  29. Sánchez-Lizaso, José Luis; Romero, Javier; Ruiz, Juanma; Gacia, Esperança; Buceta, José Luis; Invers, Olga; Fernández Torquemada, Yolanda; Mas, Julio; Ruiz-Mateo, Antonio; Manzanera, Marta (2008-03-01). "Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants". Desalination. European Desalination Society and Center for Research and Technology Hellas (CERTH), Sani Resort 22 –25 April 2007, Halkidiki, Greece. 221 (1): 602–607. Bibcode:2008Desal.221..602S. doi:10.1016/j.desal.2007.01.119. ISSN   0011-9164.
  30. 1 2 Del-Pilar-Ruso, Yoana; Martinez-Garcia, Elena; Giménez-Casalduero, Francisca; Loya-Fernández, Angel; Ferrero-Vicente, Luis Miguel; Marco-Méndez, Candela; de-la-Ossa-Carretero, Jose Antonio; Sánchez-Lizaso, José Luis (March 2015). "Benthic community recovery from brine impact after the implementation of mitigation measures". Water Research. 70: 325–336. Bibcode:2015WatRe..70..325D. doi:10.1016/j.watres.2014.11.036. hdl: 10045/44105 . ISSN   0043-1354. PMID   25543242.
  31. Fernández-Torquemada, Yolanda; Carratalá, Adoración; Sánchez Lizaso, José Luis (2019). "Impact of brine on the marine environment and how it can be reduced" (PDF). Desalination and Water Treatment. 167: 27–37. Bibcode:2019DWatT.167...27F. doi:10.5004/dwt.2019.24615. hdl:10045/101370.
  32. 1 2 Kelaher, Brendan P.; Clark, Graeme F.; Johnston, Emma L.; Coleman, Melinda A. (2020-01-21). "Effect of Desalination Discharge on the Abundance and Diversity of Reef Fishes". Environmental Science & Technology. 54 (2): 735–744. Bibcode:2020EnST...54..735K. doi:10.1021/acs.est.9b03565. ISSN   0013-936X. PMID   31849222.
  33. Muñoz, Pamela T.; Rodríguez-Rojas, Fernanda; Celis-Plá, Paula S. M.; López-Marras, Américo; Blanco-Murillo, Fabio; Sola, Iván; Lavergne, Céline; Valenzuela, Fernando; Orrego, Rodrigo; Sánchez-Lizaso, José Luis; Sáez, Claudio A. (2023). "Desalination effects on macroalgae (part b): Transplantation experiments at brine-impacted sites with Dictyota spp. from the Pacific Ocean and Mediterranean Sea". Frontiers in Marine Science. 10. doi: 10.3389/fmars.2023.1042799 . hdl: 10045/131985 . ISSN   2296-7745.
  34. Rodríguez-Rojas, Fernanda; López-Marras, Américo; Celis-Plá, Paula S.M.; Muñoz, Pamela; García-Bartolomei, Enzo; Valenzuela, Fernando; Orrego, Rodrigo; Carratalá, Adoración; Sánchez-Lizaso, José Luis; Sáez, Claudio A. (September 2020). "Ecophysiological and cellular stress responses in the cosmopolitan brown macroalga Ectocarpus as biomonitoring tools for assessing desalination brine impacts". Desalination. 489: 114527. Bibcode:2020Desal.48914527R. doi:10.1016/j.desal.2020.114527. ISSN   0011-9164.
  35. Sola, Iván; Zarzo, Domingo; Carratalá, Adoración; Fernández-Torquemada, Yolanda; de-la-Ossa-Carretero, José A.; Del-Pilar-Ruso, Yoana; Sánchez-Lizaso, José Luis (October 2020). "Review of the management of brine discharges in Spain". Ocean & Coastal Management. 196: 105301. Bibcode:2020OCM...19605301S. doi:10.1016/j.ocecoaman.2020.105301. ISSN   0964-5691.
  36. Belatoui, Abdelmalek; Bouabessalam, Hassiba; Hacene, Omar Rouane; de-la-Ossa-Carretero, Jose Antonio; Martinez-Garcia, Elena; Sanchez-Lizaso, Jose Luis (2017). "Environmental effects of brine discharge from two desalinations plants in Algeria (South Western Mediterranean)". Desalination and Water Treatment. 76: 311–318. Bibcode:2017DWatT..76..311B. doi:10.5004/dwt.2017.20812.
  37. Fernández-Torquemada, Yolanda; González-Correa, José Miguel; Sánchez-Lizaso, José Luis (January 2013). "Echinoderms as indicators of brine discharge impacts". Desalination and Water Treatment. 51 (1–3): 567–573. Bibcode:2013DWatT..51..567F. doi:10.1080/19443994.2012.716609. hdl: 10045/27557 . ISSN   1944-3994.
  38. Sola, Iván; Fernández-Torquemada, Yolanda; Forcada, Aitor; Valle, Carlos; del Pilar-Ruso, Yoana; González-Correa, José M.; Sánchez-Lizaso, José Luis (December 2020). "Sustainable desalination: Long-term monitoring of brine discharge in the marine environment". Marine Pollution Bulletin. 161 (Pt B): 111813. Bibcode:2020MarPB.16111813S. doi:10.1016/j.marpolbul.2020.111813. hdl: 10045/110110 . ISSN   0025-326X. PMID   33157504.
  39. Sola, Iván; Sáez, Claudio A.; Sánchez-Lizaso, José Luis (November 2021). "Evaluating environmental and socio-economic requirements for improving desalination development". Journal of Cleaner Production. 324: 129296. doi:10.1016/j.jclepro.2021.129296. hdl: 10045/118667 . ISSN   0959-6526.
  40. Sola, Iván; Sánchez-Lizaso, José Luis; Muñoz, Pamela T.; García-Bartolomei, Enzo; Sáez, Claudio A.; Zarzo, Domingo (October 2019). "Assessment of the Requirements within the Environmental Monitoring Plans Used to Evaluate the Environmental Impacts of Desalination Plants in Chile". Water. 11 (10): 2085. doi: 10.3390/w11102085 . hdl: 10045/97207 . ISSN   2073-4441.
  41. Fuentes-Bargues, José Luis (August 2014). "Analysis of the process of environmental impact assessment for seawater desalination plants in Spain". Desalination. 347: 166–174. Bibcode:2014Desal.347..166F. doi:10.1016/j.desal.2014.05.032. ISSN   0011-9164.
  42. Sadhwani Alonso, J. Jaime; Melián-Martel, Noemi (2018), "Environmental Regulations—Inland and Coastal Desalination Case Studies", Sustainable Desalination Handbook, Elsevier, pp. 403–435, doi:10.1016/b978-0-12-809240-8.00010-1, ISBN   978-0-12-809240-8 , retrieved 2024-04-10
  43. Sola, Iván; Sáez, Claudio A.; Sánchez-Lizaso, José Luis (November 2021). "Evaluating environmental and socio-economic requirements for improving desalination development". Journal of Cleaner Production. 324: 129296. doi:10.1016/j.jclepro.2021.129296. hdl: 10045/118667 . ISSN   0959-6526.
  44. Elsaid, Khaled; Sayed, Enas Taha; Abdelkareem, Mohammad Ali; Baroutaji, Ahmad; Olabi, A. G. (2020-10-20). "Environmental impact of desalination processes: Mitigation and control strategies". Science of the Total Environment. 740: 140125. Bibcode:2020ScTEn.740n0125E. doi:10.1016/j.scitotenv.2020.140125. ISSN   0048-9697. PMID   32927546.
  45. Sadhwani Alonso, J. Jaime; Melián-Martel, Noemi (2018-01-01), Gude, Veera Gnaneswar (ed.), "Chapter 10 - Environmental Regulations—Inland and Coastal Desalination Case Studies", Sustainable Desalination Handbook, Butterworth-Heinemann, pp. 403–435, doi:10.1016/b978-0-12-809240-8.00010-1, ISBN   978-0-12-809240-8 , retrieved 2024-04-10
  46. 1 2 Sola, Iván; Sánchez-Lizaso, José Luis; Muñoz, Pamela T.; García-Bartolomei, Enzo; Sáez, Claudio A.; Zarzo, Domingo (October 2019). "Assessment of the Requirements within the Environmental Monitoring Plans Used to Evaluate the Environmental Impacts of Desalination Plants in Chile". Water. 11 (10): 2085. doi: 10.3390/w11102085 . hdl: 10045/97207 . ISSN   2073-4441.
  47. 1 2 Sola, Iván; Zarzo, Domingo; Sánchez-Lizaso, José Luis (2019-12-01). "Evaluating environmental requirements for the management of brine discharges in Spain". Desalination. 471: 114132. Bibcode:2019Desal.47114132S. doi:10.1016/j.desal.2019.114132. hdl: 10045/96149 . ISSN   0011-9164.
  48. 1 2 "7 Ways to Dispose of Brine Waste". Desalitech. Archived from the original on 27 September 2017. Retrieved 18 July 2017.
  49. 5. A. Giwa, V. Dufour, F. Al Marzooqi, M. Al Kaabi, S.W. Hasan, "Brine management methods: Recent innovations and current status", Desalination, Volume 407, 2017, pp. 1–23
  50. "Reverse Osmosis Desalination: Brine disposal". Lenntech. Retrieved 18 July 2017.
  51. "Novel Technology for Concentration of Brine Using Membrane-Based System" (PDF). Water Today. Retrieved 31 August 2019.