Last updated
Cobble encrusted with halite evaporated from the Dead Sea, Israel HaliteEncrustedCobbleDeadSea.JPG
Cobble encrusted with halite evaporated from the Dead Sea, Israel

Evaporite ( /ɪˈvæpərt/ ) is the term for a water-soluble mineral sediment that results from concentration and crystallization by evaporation from an aqueous solution. [1] There are two types of evaporite deposits: marine, which can also be described as ocean deposits, and non-marine, which are found in standing bodies of water such as lakes. Evaporites are considered sedimentary rocks and are formed by chemical sediments.

Mineral Element or chemical compound that is normally crystalline and that has been formed as a result of geological processes

A mineral is, broadly speaking, a solid chemical compound that occurs naturally in pure form. A rock may consist of a single mineral, or may be an aggregate of two or more different minerals, spacially segregated into distinct phases. Compounds that occur only in living beings are usually excluded, but some minerals are often biogenic and/or are organic compounds in the sense of chemistry. Moreover, living beings often synthesize inorganic minerals that also occur in rocks.

Sedimentary rock Rock formed by the deposition and subsequent cementation of material

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of small particles and subsequent cementation of mineral or organic particles on the floor of oceans or other bodies of water at the Earth's surface. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. Before being deposited, the geological detritus was formed by weathering and erosion from the source area, and then transported to the place of deposition by water, wind, ice, mass movement or glaciers, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.


Crystallization is the process by which a solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some of the ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas. Attributes of the resulting crystal depend largely on factors such as temperature, air pressure, and in the case of liquid crystals, time of fluid evaporation.


Formation of evaporite rocks

Although all water bodies on the surface and in aquifers contain dissolved salts, the water must evaporate into the atmosphere for the minerals to precipitate. For this to happen, the water body must enter a restricted environment where water input into this environment remains below the net rate of evaporation. This is usually an arid environment with a small basin fed by a limited input of water. When evaporation occurs, the remaining water is enriched in salts, and they precipitate when the water becomes supersaturated.

Arid severe lack of available water

A region is arid when it is characterized by a severe lack of available water, to the extent of hindering or preventing the growth and development of plant and animal life. Environments subject to arid climates tend to lack vegetation and are called xeric or desertic. Most "arid" climates straddle the Equator; these places include parts of Africa, South America, Central America, and Australia.

Evaporite depositional environments

Marine evaporites

Anhydrite Anhydrite HMNH1.jpg

Marine evaporites tend to have thicker deposits and are usually the focus of more extensive research. [2] They also have a system of evaporation. When scientists evaporate ocean water in a laboratory, the minerals are deposited in a defined order that was first demonstrated by Usiglio in 1884. [2] The first phase of the experiment begins when about 50% of the original water depth remains. At this point, minor carbonates begin to form. [2] The next phase in the sequence comes when the experiment is left with about 20% of its original level. At this point, the mineral gypsum begins to form, which is then followed by halite at 10%, [2] excluding carbonate minerals that tend not to be evaporites. The most common minerals that are generally considered to be the most representative of marine evaporites are calcite, gypsum and anhydrite, halite, sylvite, carnallite, langbeinite, polyhalite, and kainite. Kieserite (MgSO4) may also be included, which often will make up less than four percent of the overall content. [2] However, there are approximately 80 different minerals that have been reported found in evaporite deposits (Stewart,1963;Warren,1999), though only about a dozen are common enough to be considered important rock formers. [2]

Carbonate Salt or ester of carbonic acid

In chemistry, a carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula of CO2−
. The name may also refer to a carbonate ester, an organic compound containing the carbonate group C(=O)(O–)2.

Gypsum mineral, calcium sulfate with bounded water

Gypsum is a soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula CaSO4·2H2O. It is widely mined and is used as a fertilizer and as the main constituent in many forms of plaster, blackboard chalk and wallboard. A massive fine-grained white or lightly tinted variety of gypsum, called alabaster, has been used for sculpture by many cultures including Ancient Egypt, Mesopotamia, Ancient Rome, the Byzantine Empire and the Nottingham alabasters of Medieval England. Gypsum also crystallizes as beautiful translucent crystals of selenite (mineral). It also forms as an evaporite mineral and as a hydration product of anhydrite.


Halite, commonly known as rock salt, is a type of salt, the mineral (natural) form of sodium chloride (NaCl). Halite forms isometric crystals. The mineral is typically colorless or white, but may also be light blue, dark blue, purple, pink, red, orange, yellow or gray depending on inclusion of other materials, impurities, and structural or isotopic abnormalities in the crystals. It commonly occurs with other evaporite deposit minerals such as several of the sulfates, halides, and borates. The name halite is derived from the Ancient Greek word for salt, ἅλς (háls).

Non-marine evaporites

Non-marine evaporites are usually composed of minerals that are not common in marine environments because in general the water from which non-marine evaporite precipitates has proportions of chemical elements different from those found in the marine environments. [2] Common minerals that are found in these deposits include blödite, borax, epsomite, gaylussite, glauberite, mirabilite, thenardite and trona. Non-marine deposits may also contain halite, gypsum, and anhydrite, and may in some cases even be dominated by these minerals, although they did not come from ocean deposits. This, however, does not make non-marine deposits any less important; these deposits often help to paint a picture into past Earth climates. Some particular deposits even show important tectonic and climatic changes. These deposits also may contain important minerals that help in today's economy. [3] Thick non-marine deposits that accumulate tend to form where evaporation rates will exceed the inflow rate, and where there is sufficient soluble supplies. The inflow also has to occur in a closed basin, or one with restricted outflow, so that the sediment has time to pool and form in a lake or other standing body of water. [3] Primary examples of this are called "saline lake deposits". [3] Saline lakes includes things such as perennial lakes, which are lakes that are there year-round, playa lakes, which are lakes that appear only during certain seasons, or any other terms that are used to define places that hold standing bodies of water intermittently or year-round. Examples of modern non-marine depositional environments include the Great Salt Lake in Utah and the Dead Sea, which lies between Jordan and Israel.

Blödite sulfate mineral

Blödite or bloedite is a hydrated sodium magnesium sulfate mineral with formula: Na2Mg(SO4)2·4H2O. The mineral is clear to yellow in color often darkened by inclusions and forms monoclinic crystals.

Borax boron compound, a mineral, and a salt of boric acid

Borax, also known as sodium borate, sodium tetraborate, or disodium tetraborate, is an important boron compound, a mineral, and a salt of boric acid. Powdered borax is white, consisting of soft colorless crystals that dissolve in water. A number of closely related minerals or chemical compounds that differ in their crystal water content are referred to as borax, but the word is usually used to refer to the octahydrate. Commercially sold borax is partially dehydrated.

Epsomite sulfate mineral

Epsomite is a hydrous magnesium sulfate mineral with formula MgSO4·7H2O.

Evaporite depositional environments that meet the above conditions include:

Graben Depressed block of planetary crust bordered by parallel faults

In geology, a graben is a depressed block of the crust of a planet bordered by parallel faults.


A half-graben is a geological structure bounded by a fault along one side of its boundaries, unlike a full graben where a depressed block of land is bordered by parallel faults.

Death Valley desert valley located in Eastern California

Death Valley is a desert valley located in Eastern California, in the northern Mojave Desert bordering the Great Basin Desert. It is one of the hottest places in the world along with deserts in the Middle East.

The most significant known evaporite depositions happened during the Messinian salinity crisis in the basin of the Mediterranean.

Evaporitic formations

Hopper crystal cast of halite in a Jurassic rock, Carmel Formation, southwestern Utah SaltCrystalCasts.JPG
Hopper crystal cast of halite in a Jurassic rock, Carmel Formation, southwestern Utah

Evaporite formations need not be composed entirely of halite salt. In fact, most evaporite formations do not contain more than a few percent of evaporite minerals, the remainder being composed of the more typical detrital clastic rocks and carbonates. Examples of evaporite formations include occurrences of evaporite sulfur in Eastern Europe and West Asia. [4]

For a formation to be recognised as evaporitic it may simply require recognition of halite pseudomorphs, sequences composed of some proportion of evaporite minerals, and recognition of mud crack textures or other textures.

Economic importance of evaporites

Evaporites are important economically because of their mineralogy, their physical properties in-situ, and their behaviour within the subsurface.

Evaporite minerals, especially nitrate minerals, are economically important in Peru and Chile. Nitrate minerals are often mined for use in the production on fertilizer and explosives.

Thick halite deposits are expected to become an important location for the disposal of nuclear waste because of their geologic stability, predictable engineering and physical behaviour, and imperviousness to groundwater.

Halite formations are famous for their ability to form diapirs, which produce ideal locations for trapping petroleum deposits.

Halite deposits are often mined for use as salt.

Major groups of evaporite minerals

Calcite Calcite-k270c.jpg

This is a chart that shows minerals that form the marine evaporite rocks, they are usually the most common minerals that appear in this kind of deposit.

Hanksite, Na22K(SO4)9(CO3)2Cl, one of the few minerals that is both a carbonate and a sulfate Hanksite.JPG
Hanksite, Na22K(SO4)9(CO3)2Cl, one of the few minerals that is both a carbonate and a sulfate

Evaporite minerals start to precipitate when their concentration in water reaches such a level that they can no longer exist as solutes.

The minerals precipitate out of solution in the reverse order of their solubilities, such that the order of precipitation from sea water is:

  1. Calcite (CaCO3) and dolomite (CaMg(CO3)2)
  2. Gypsum (CaSO4  2 H2O) and anhydrite (CaSO4).
  3. Halite (i.e. common salt, NaCl)
  4. Potassium and magnesium salts

The abundance of rocks formed by seawater precipitation is in the same order as the precipitation given above. Thus, limestone (calcite) and dolomite are more common than gypsum, which is more common than halite, which is more common than potassium and magnesium salts.

Evaporites can also be easily recrystallized in laboratories in order to investigate the conditions and characteristics of their formation.

See also

Related Research Articles

Kainite sulfate-chloride mineral

Kainite ( or ) (KMg(SO4)Cl·3H2O) is an evaporite mineral in the class of "Sulfates (selenates, etc.) with additional anions, with H2O" according to the Nickel-Strunz classification. It is a hydrated potassium-magnesium sulfate-chloride, naturally occurring in irregular granular masses or as crystalline coatings in cavities or fissures. This mineral is dull and soft, and is colored white, yellowish, grey, reddish, or blue to violet. Its name is derived from Greek καινος [kainos] ("(hitherto) unknown"), as it was the first mineral discovered that contained both sulfate and chloride as anions. Kainite forms monoclinic crystals.

Celestine (mineral) sulfate mineral

Celestine or celestite is a mineral consisting of strontium sulfate (SrSO4). The mineral is named for its occasional delicate blue color. Celestine and the carbonate mineral strontianite are the principal sources of the element strontium, commonly used in fireworks and in various metal alloys.

Brine A highly concentrated solution of a salt in water

Brine is a high-concentration solution of salt in water. In different contexts, brine may refer to salt solutions ranging from about 3.5% up to about 26%. Lower levels of concentration are called by different names: fresh water, brackish water, and saline water.

Ulexite nesoborate mineral

Ulexite (NaCaB5O6(OH)6·5H2O, hydrated sodium calcium borate hydroxide), sometimes known as TV rock, is a mineral occurring in silky white rounded crystalline masses or in parallel fibers. The natural fibers of ulexite conduct light along their long axes, by internal reflection. Ulexite was named for the German chemist Georg Ludwig Ulex (1811–1883) who first discovered it.

Kieserite sulfate mineral

Kieserite is the magnesium sulfate mineral (MgSO4·H2O) and is named after Dietrich Georg von Kieser (Jena, Germany 1862). It has a vitreous luster and it is colorless, grayish-white or yellowish. Its hardness is 3.5 and crystallizes in the monoclinic crystal system. Gunningite is the zinc member of the kieserite group of minerals.

Sylvite rocksalt group, halide mineral

Sylvite, or sylvine, is potassium chloride (KCl) in natural mineral form. It forms crystals in the isometric system very similar to normal rock salt, halite (NaCl). The two are, in fact, isomorphous. Sylvite is colorless to white with shades of yellow and red due to inclusions. It has a Mohs hardness of 2.5 and a specific gravity of 1.99. It has a refractive index of 1.4903. Sylvite has a salty taste with a distinct bitterness.

Anhydrite mineral, anhydrous calcium sulfate

Anhydrite, or anhydrous calcium sulfate, is a mineral with the chemical formula CaSO4. It is in the orthorhombic crystal system, with three directions of perfect cleavage parallel to the three planes of symmetry. It is not isomorphous with the orthorhombic barium (baryte) and strontium (celestine) sulfates, as might be expected from the chemical formulas. Distinctly developed crystals are somewhat rare, the mineral usually presenting the form of cleavage masses. The Mohs hardness is 3.5, and the specific gravity is 2.9. The color is white, sometimes greyish, bluish, or purple. On the best developed of the three cleavages, the lustre is pearly; on other surfaces it is glassy. When exposed to water, anhydrite readily transforms to the more commonly occurring gypsum, (CaSO4·2H2O) by the absorption of water. This transformation is reversible, with gypsum or calcium sulfate hemihydrate forming anhydrite by heating to around 200 °C (400 °F) under normal atmospheric conditions. Anhydrite is commonly associated with calcite, halite, and sulfides such as galena, chalcopyrite, molybdenite, and pyrite in vein deposits.

Aphthitalite sulfate mineral

Aphthitalite is a potassium sulfate mineral with the chemical formula: (K,Na)3Na(SO4)2.

Boracite tectoborate mineral

Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl. It occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic - pyramidal crystal system. Boracite also shows pseudo-isometric cubical and octahedral forms. These are thought to be the result of transition from an unstable high temperature isometric form on cooling. Penetration twins are not unusual. It occurs as well formed crystals and dispersed grains often embedded within gypsum and anhydrite crystals. It has a Mohs hardness of 7 to 7.5 and a specific gravity of 2.9. Refractive index values are nα = 1.658 - 1.662, nβ = 1.662 - 1.667 and nγ = 1.668 - 1.673. It has a conchoidal fracture and does not show cleavage. It is insoluble in water (not to be confused with borax, which is soluble in water).

Carnallite halide mineral

Carnallite (also carnalite) is an evaporite mineral, a hydrated potassium magnesium chloride with formula KMgCl3·6(H2O). It is variably colored yellow to white, reddish, and sometimes colorless or blue. It is usually massive to fibrous with rare pseudohexagonal orthorhombic crystals. The mineral is deliquescent (absorbs moisture from the surrounding air) and specimens must be stored in an airtight container.

Bristol Lake lake in United States of America

Bristol Lake is a dry lake in the Mojave Desert of San Bernardino County, California, 42 km (26 mi) northeast of Twentynine Palms.

Sabkha a salt lake above the tide line, formed along arid coastlines and characterized by evaporite-carbonate deposits with some siliciclastics

Sabkha is a phonetic translation of the Arabic word used to describe any form of salt flat. Geographically, sabkhas can be sub-divided into two broad categories.

The Muskeg Formation is a geologic formation of Middle Devonian (Givetian) age in the Western Canada Sedimentary Basin. It extends from the plains of northwestern Alberta to northeastern British Columbia, and includes important petroleum and natural gas reservoirs in the Zama lake and Rainbow Lake areas of northwestern Alberta.

Halide minerals Nickel–Strunz 9 ed mineral class number 3

The halide mineral class include those minerals with a dominant halide anion. Complex halide minerals may also have polyatomic anions in addition to or that include halides.

Shallow water marine environment

Shallow water marine environment refers to the area between the shore and deeper water, such as a reef wall or a shelf break. This environment is characterized by oceanic, geological and biological conditions, as described below. The water in this environment is shallow and clear, allowing the formation of different sedimentary structures, carbonate rocks, coral reefs, and allowing certain organisms to survive and become fossils.

The Prairie Evaporite Formation, also known as the Prairie Formation, is a geologic formation of Middle Devonian (Givetian) age that consists primarily of halite and other evaporite minerals. It is present beneath the plains of northern and eastern Alberta, southern Saskatchewan and southwestern Manitoba in Canada, and it extends into northwestern North Dakota and northeastern Montana in the United States.

Automicrite is autochthonous micrite, that is, a carbonate mud precipitated in situ and made up of fine-grained calcite or aragonite micron-sized crystals. It precipitates on the sea floor or within the sediment as an authigenic mud thanks to physicochemical, microbial, photosynthetic and biochemical processes. It has peculiar fabrics and uniform mineralogical and chemical composition.


  1. Jackson, Julia A., 1997, Glossary of Geology 4th edition, American Geologic Institute, Alexandria Virginia
  2. 1 2 3 4 5 6 7 Boggs, S., 2006, Principles of Sedimentology and Stratigraphy (4th ed.), Pearson Prentice Hall, Upper Saddle River, NJ, 662 p.
  3. 1 2 3 Melvin, J. L.(ed) 1991, Evaporites, petroleum and mineral resources; Elsevier, Amsterdam
  4. C.Michael Hogan. 2011. Sulfur. Encyclopedia of Earth, eds. A.Jorgensen and C.J.Cleveland, National Council for Science and the environment, Washington DC Archived October 28, 2012, at the Wayback Machine