Rapakivi granite is a hornblende-biotite granite containing large round crystals of orthoclase each with a rim of oligoclase (a variety of plagioclase). The name has come to be used most frequently as a textural term where it implies plagioclase rims around orthoclase in plutonic rocks. Rapakivi is a Finnish compound of "rapa" (meaning "mud" or "sand") and "kivi" (meaning "rock"), [1] because the different heat expansion coefficients of the component minerals make exposed rapakivi crumble easily into sand. [2]
Rapakivi was first described by Finnish petrologist Jakob Sederholm in 1891. [3] Since then, southern Finland's rapakivi granite intrusions have been the type locality of this variety of granite. [4]
Rapakivi is a fairly uncommon type of granite, but has been described from localities in North and South America (Illescas Batholith, Uruguay, [5] Rondônia, Brazil [6] ) parts of the Baltic Shield, southern Greenland, southern Africa, India and China. Most of these examples are found within Proterozoic metamorphic belts, although both Archaean and Phanerozoic examples are known.
Rapakivi granites have formation ages from Archean to recent and are usually attributed to anorogenic tectonic settings. They have formed in shallow (a few km deep) sills of up to 10 km thickness.[ citation needed ]
Rapakivi granites are often found associated with intrusions of anorthosite, norite, charnockite and mangerite. It has been suggested that the entire suite results from the fractional crystallization of a single parental magma. [7] [note 1]
Rapakivi is enriched in K, Rb, Pb, Nb, Ta, Zr, Hf, Zn, Ga, Sn, Th, U, F and rare earth elements, and poor in Ca, Mg, Al, P and Sr. Fe/Mg, K/Na and Rb/Sr ratios are high. SiO2 content is 70.5%, which makes rapakivi an acidic granite. [9]
Rapakivi is high in fluoride, ranging 0.04–1.53%, compared to other similar rocks at around 0.35%. Consequently, groundwater in rapakivi zones is high in fluoride (1–2 mg/L), making the water naturally fluoridated. Some water companies actually have to remove fluoride from the water. [9] [10]
The uranium content of rapakivi is fairly high, up to 24 ppm. Thus, in rapakivi zones, the hazard from radon, a decay product of uranium, is elevated. Some indoor spaces surpass the 400 Bq/m3 safety limit. [11] [12]
Vorma (1976) states that rapakivi granites can be defined as: [13]
A more recent definition by Haapala & Rämö states: [16]
Rapakivi granites are type-A granites, where at least in larger associated batholites have granites with rapakivi structures.
Rapakivi is the material used in Åland's mediaeval stone churches. [17] In 1770, a rapakivi granite monolith boulder, the "Thunder Stone", was used as the pedestal for the Bronze Horseman statue in Saint Petersburg, Russia. Weighing 1,250 tonnes, this boulder is claimed to be the largest stone ever moved by humans. [18] Modern building uses of rapakivi granites are in polished slabs used for covering buildings, floors, counter tops or pavements. As a building material, rapakivi granite of the wiborgite type is also known as "Baltic Brown". [19] [20]
Granite is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers.
Gabbro is a phaneritic (coarse-grained), mafic intrusive igneous rock formed from the slow cooling of magnesium-rich and iron-rich magma into a holocrystalline mass deep beneath the Earth's surface. Slow-cooling, coarse-grained gabbro is chemically equivalent to rapid-cooling, fine-grained basalt. Much of the Earth's oceanic crust is made of gabbro, formed at mid-ocean ridges. Gabbro is also found as plutons associated with continental volcanism. Due to its variant nature, the term gabbro may be applied loosely to a wide range of intrusive rocks, many of which are merely "gabbroic". By rough analogy, gabbro is to basalt as granite is to rhyolite.
Feldspar is a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the plagioclase (sodium-calcium) feldspars and the alkali (potassium-sodium) feldspars. Feldspars make up about 60% of the Earth's crust, and 41% of the Earth's continental crust by weight.
Plagioclase ( PLAJ-(ee)-ə-klayss, PLAYJ-, -klayz) is a series of tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continuous solid solution series, more properly known as the plagioclase feldspar series. This was first shown by the German mineralogist Johann Friedrich Christian Hessel (1796–1872) in 1826. The series ranges from albite to anorthite endmembers (with respective compositions NaAlSi3O8 to CaAl2Si2O8), where sodium and calcium atoms can substitute for each other in the mineral's crystal lattice structure. Plagioclase in hand samples is often identified by its polysynthetic crystal twinning or "record-groove" effect.
Anorthosite is a phaneritic, intrusive igneous rock characterized by its composition: mostly plagioclase feldspar (90–100%), with a minimal mafic component (0–10%). Pyroxene, ilmenite, magnetite, and olivine are the mafic minerals most commonly present.
A phenocryst is an early forming, relatively large and usually conspicuous crystal distinctly larger than the grains of the rock groundmass of an igneous rock. Such rocks that have a distinct difference in the size of the crystals are called porphyries, and the adjective porphyritic is used to describe them. Phenocrysts often have euhedral forms, either due to early growth within a magma, or by post-emplacement recrystallization. Normally the term phenocryst is not used unless the crystals are directly observable, which is sometimes stated as greater than 0.5 mm (0.020 in) in diameter. Phenocrysts below this level, but still larger than the groundmass crystals, are termed microphenocrysts. Very large phenocrysts are termed megaphenocrysts. Some rocks contain both microphenocrysts and megaphenocrysts. In metamorphic rocks, crystals similar to phenocrysts are called porphyroblasts.
Lamprophyres are uncommon, small-volume ultrapotassic igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks, and small intrusions. They are alkaline silica-undersaturated mafic or ultramafic rocks with high magnesium oxide, >3% potassium oxide, high sodium oxide, and high nickel and chromium.
Charnockite is any orthopyroxene-bearing quartz-feldspar rock formed at high temperature and pressure, commonly found in granulite facies’ metamorphic regions, sensu stricto as an endmember of the charnockite series.
Oligoclase is a rock-forming mineral belonging to the plagioclase feldspars. In chemical composition and in its crystallographic and physical characters it is intermediate between albite (NaAlSi3O8) and anorthite (CaAl2Si2O8). The albite:anorthite molar ratio of oligoclase ranges from 90:10 to 70:30.
Moon rock or lunar rock is rock originating from Earth's Moon. This includes lunar material collected during the course of human exploration of the Moon, and rock that has been ejected naturally from the Moon's surface and landed on Earth as meteorites.
Monzonite is an igneous intrusive rock, formed by slow cooling of underground magma that has a moderate silica content and is enriched in alkali metal oxides. Monzonite is composed mostly of plagioclase and alkali feldspar.
Myrmekite is a vermicular, or wormy, intergrowth of quartz in plagioclase. The intergrowths are microscopic in scale, typically with maximum dimensions less than 1 millimeter. The plagioclase is sodium-rich, usually albite or oligoclase. These quartz-plagioclase intergrowths are associated with and commonly in contact with potassium feldspar. Myrmekite is formed under metasomatic conditions, usually in conjunction with tectonic deformations. It has to be clearly separated from micrographic and granophyric intergrowths, which are magmatic.
The Damara orogeny was part of the Pan-African orogeny. The Damara orogeny occurred late in the creation of Gondwana, at the intersection of the Congo and the Kalahari cratons.
The Southern Oklahoma Aulacogen is a failed rift, or failed rift arm (aulacogen), of the triple junction that became the Iapetus Ocean spreading ridges. It is a significant geological feature in the Western and Southern United States. It formed sometime in the early to mid Cambrian Period and spans the Wichita Mountains, Taovayan Valley, Anadarko Basin, and Hardeman Basin in Southwestern Oklahoma. The Southern Oklahoma Aulacogen is primarily composed of basaltic dikes, gabbros, and units of granitic rock.
The Uruguayan dyke swarms consist of three groups of dykes of Precambrian age that intrude Río de la Plata Craton and Brasiliano Cycle continental crust in Uruguay. The dykes – including the Florida dyke swarm, the Nico Perez dyke swarm, and the Treinta y Tres dyke swarm – are of mafic to intermediate composition and each group lies in a separate tectono-stratigraphic terrane. The rocks of the Florida dyke swarm have been quarried since the 1960s and are used in the construction industry as black dimension stone of very high quality, being marketed as "black granite".
Illescas Batholith is a geological complex located in Uruguay made up of various plutons including rapakivi granite and quartz syenite. The batholith is of Late Paleoproterozoic age. The batholith originated and was emplaced in an anorogenic tectonic setting during a period of extensional tectonics. The batholith intrudes the Valentines Granulitic Complex of Nico Perez Terrane. The Florida dyke swarm is related to the Illescas Batholith.
Tonalite–trondhjemite–granodiorite (TTG) rocks are intrusive rocks with typical granitic composition but containing only a small portion of potassium feldspar. Tonalite, trondhjemite, and granodiorite often occur together in geological records, indicating similar petrogenetic processes. Post Archean TTG rocks are present in arc-related batholiths, as well as in ophiolites, while Archean TTG rocks are major components of Archean cratons.
The Siilinjärvi carbonatite complex is located in central Finland close to the city of Kuopio. It is named after the nearby town of Siilinjärvi, located approximately 5 km west of the southern extension of the complex. Siilinjärvi is the second largest carbonatite complex in Finland after the Sokli formation, and one of the oldest carbonatites on Earth at 2610±4 Ma. The carbonatite complex consists of a roughly 16 km long steeply dipping lenticular body surrounded by granite gneiss. The maximum width of the body is 1.5 km and the surface area is 14.7 km2. The complex was discovered in 1950 by the Geological Survey of Finland with help of local mineral collectors. The exploration drilling began in 1958 by Lohjan Kalkkitehdas Oy. Typpi Oy continued drilling between years 1964 and 1967, and Apatiitti Oy drilled from 1967 to 1968. After the drillings, the laboratory and pilot plant work were made. The mine was opened by Kemira Oyj in 1979 as an open pit. The operation was sold to Yara in 2007.
The Dharwar Craton is an Archean continental crust craton formed between 3.6-2.5 billion years ago (Ga), which is located in southern India and considered as the oldest part of the Indian peninsula.