Porphyritic

Last updated
Porphyritic texture in a granite. This is an intrusive porphyritic rock. The white, square feldspar phenocrysts are much larger than crystals in the surrounding matrix; eastern Sierra Nevada, Rock Creek Canyon, California. FeldsparsGranite.JPG
Porphyritic texture in a granite. This is an intrusive porphyritic rock. The white, square feldspar phenocrysts are much larger than crystals in the surrounding matrix; eastern Sierra Nevada, Rock Creek Canyon, California.
A porphyritic volcanic sand grain, as seen under the petrographic microscope. The large grain in the middle is of a much different size class than the small needle-like crystals around it. Scale box in millimeters. LvMS-Lvl&Lvsm.jpg
A porphyritic volcanic sand grain, as seen under the petrographic microscope. The large grain in the middle is of a much different size class than the small needle-like crystals around it. Scale box in millimeters.

Porphyritic is an adjective used in geology to describe igneous rocks with a distinct difference in the size of mineral crystals, with the larger crystals known as phenocrysts. Both extrusive and intrusive rocks can be porphyritic, meaning all types of igneous rocks can display some degree of porphyritic texture. [1] [2] Most porphyritic rocks have bimodal size ranges, meaning the rock is composed of two distinct sizes of crystal. [3]

In extrusive rocks, the phenocrysts are surrounded by a fine-grained (aphanitic) matrix or groundmass of volcanic glass or non-visible crystals, commonly seen in porphyritic basalt. Porphyritic intrusive rocks have a matrix with individual crystals easily distinguished with the eye, but one group of crystals appearing clearly much bigger than the rest, as in a porphyritic granite.

The term comes from the Ancient Greek πορφύρα (porphyra), meaning "purple". Purple was the color of royalty, and the "imperial porphyry" was a deep purple igneous rock with large crystals of plagioclase, prized for monuments and building projects due to its hardness. Subsequently, the name was adapted to describe any igneous rocks with a similar texture. [4]

Formation

Andesite porphyry from summit of O'Leary Peak. This is an extrusive porphyritic rock, as the pink (and black) phenocrysts are clearly visible, in contrast to the grey groundmass with its microscopic crystals. Olearyandesite.jpg
Andesite porphyry from summit of O'Leary Peak. This is an extrusive porphyritic rock, as the pink (and black) phenocrysts are clearly visible, in contrast to the grey groundmass with its microscopic crystals.

Porphyritic rocks are a product of igneous differentiation, and are generally formed when a column of rising magma is cooled in two stages: In the first stage, the magma is cooled slowly deep in the crust, creating the large crystal grains, with a diameter of 2mm or more. In the final stage, the magma is cooled rapidly at relatively shallow depth or as it erupts from a volcano, creating small grains that are usually invisible to the unaided eye, typically referred to as the matrix or groundmass. [5]

The formation of large phenocrysts is due to fractional crystallization. As the melt cools, it begins crystallizing the highest melting point minerals closest to the overall composition first. This forms large, well-shaped euhedral phenocrysts. If these phenocrysts are different in density to the remaining melt, they usually settle out of solution, eventually creating cumulates. However, when this is interrupted by sudden eruption of the melt as lava, or when the density of the crystals and remaining melt remains similar, they become entrapped in the final rock. [5]

This can also occur when the chemical composition of the remaining melt is close to the eutectic point as it cools, resulting in multiple different minerals solidifying at once and filling the remaining space simultaneously, limiting their size and shape. [5]

Related Research Articles

<span class="mw-page-title-main">Rhyolite</span> Igneous, volcanic rock, of felsic (silica-rich) composition

Rhyolite is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained groundmass. The mineral assemblage is predominantly quartz, sanidine, and plagioclase. It is the extrusive equivalent to granite.

<span class="mw-page-title-main">Dacite</span> Volcanic rock intermediate in composition between andesite and rhyolite

Dacite is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. It is composed predominantly of plagioclase feldspar and quartz.

<span class="mw-page-title-main">Trachyte</span> Extrusive igneous rock

Trachyte is an extrusive igneous rock composed mostly of alkali feldspar. It is usually light-colored and aphanitic (fine-grained), with minor amounts of mafic minerals, and is formed by the rapid cooling of lava enriched with silica and alkali metals. It is the volcanic equivalent of syenite.

<span class="mw-page-title-main">Andesite</span> Type of volcanic rock

Andesite is a volcanic rock of intermediate composition. In a general sense, it is the intermediate type between silica-poor basalt and silica-rich rhyolite. It is fine-grained (aphanitic) to porphyritic in texture, and is composed predominantly of sodium-rich plagioclase plus pyroxene or hornblende.

<span class="mw-page-title-main">Aphanite</span> Igneous rock composed of very small crystals invisible to the naked eye

Aphanites are igneous rocks that are so fine-grained that their component mineral crystals are not visible to the naked eye. This geological texture results from rapid cooling in volcanic or hypabyssal environments. As a rule, the texture of these rocks is not the same as that of volcanic glass, with volcanic glass being non-crystalline (amorphous), and having a glass-like appearance.

<span class="mw-page-title-main">Porphyry (geology)</span> Textural form of igneous rock with large grained crystals in a fine matrix

Porphyry is the name given to decorative granites or igneous rocks with coarse-grained crystals such as feldspar or quartz dispersed in a fine-grained silicate-rich, generally aphanitic matrix or groundmass. The larger crystals are called phenocrysts. In its non-geologic, traditional use, the term porphyry usually refers to the purple-red form of this stone, valued for its appearance, but other colours of decorative porphyry are also used such as "green", "black" and "grey".

<span class="mw-page-title-main">Extrusive rock</span> Mode of igneous volcanic rock formation

Extrusive rock refers to the mode of igneous volcanic rock formation in which hot magma from inside the Earth flows out (extrudes) onto the surface as lava or explodes violently into the atmosphere to fall back as pyroclastics or tuff. In contrast, intrusive rock refers to rocks formed by magma which cools below the surface.

<span class="mw-page-title-main">Volcanic rock</span> Rock formed from lava erupted from a volcano

Volcanic rock is a rock formed from lava erupted from a volcano. Like all rock types, the concept of volcanic rock is artificial, and in nature volcanic rocks grade into hypabyssal and metamorphic rocks and constitute an important element of some sediments and sedimentary rocks. For these reasons, in geology, volcanics and shallow hypabyssal rocks are not always treated as distinct. In the context of Precambrian shield geology, the term "volcanic" is often applied to what are strictly metavolcanic rocks. Volcanic rocks and sediment that form from magma erupted into the air are called "pyroclastics," and these are also technically sedimentary rocks.

<span class="mw-page-title-main">Matrix (geology)</span> Finer-grained material in a rock within which coarser material is embedded

The matrix or groundmass of a rock is the finer-grained mass of material in which larger grains, crystals, or clasts are embedded.

<span class="mw-page-title-main">Phenocryst</span> Crystal larger than the rock grains that surround it in an igneous rock

A phenocryst is an early forming, relatively large and usually conspicuous crystal distinctly larger than the grains of the rock groundmass of an igneous rock. Such rocks that have a distinct difference in the size of the crystals are called porphyries, and the adjective porphyritic is used to describe them. Phenocrysts often have euhedral forms, either due to early growth within a magma, or by post-emplacement recrystallization. Normally the term phenocryst is not used unless the crystals are directly observable, which is sometimes stated as greater than .5 millimeter in diameter. Phenocrysts below this level, but still larger than the groundmass crystals, are termed microphenocrysts. Very large phenocrysts are termed megaphenocrysts. Some rocks contain both microphenocrysts and megaphenocrysts. In metamorphic rocks, crystals similar to phenocrysts are called porphyroblasts.

<span class="mw-page-title-main">Intrusive rock</span> Magmatic rock formed below the surface

Intrusive rock is formed when magma penetrates existing rock, crystallizes, and solidifies underground to form intrusions, such as batholiths, dikes, sills, laccoliths, and volcanic necks.

<span class="mw-page-title-main">Lamprophyre</span> Ultrapotassic igneous rocks

Lamprophyres are uncommon, small-volume ultrapotassic igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks, and small intrusions. They are alkaline silica-undersaturated mafic or ultramafic rocks with high magnesium oxide, >3% potassium oxide, high sodium oxide, and high nickel and chromium.

<span class="mw-page-title-main">Quartz-porphyry</span> Type of volcanic rock containing large porphyritic crystals of quartz

Quartz-porphyry, in layman's terms, is a type of volcanic (igneous) rock containing large porphyritic crystals of quartz. These rocks are classified as hemi-crystalline acid rocks.

In geology, igneous differentiation, or magmatic differentiation, is an umbrella term for the various processes by which magmas undergo bulk chemical change during the partial melting process, cooling, emplacement, or eruption. The sequence of magmas produced by igneous differentiation is known as a magma series.

<span class="mw-page-title-main">Texture (geology)</span>

In geology, texture or rock microstructure refers to the relationship between the materials of which a rock is composed. The broadest textural classes are crystalline, fragmental, aphanitic, and glassy. The geometric aspects and relations amongst the component particles or crystals are referred to as the crystallographic texture or preferred orientation. Textures can be quantified in many ways. The most common parameter is the crystal size distribution. This creates the physical appearance or character of a rock, such as grain size, shape, arrangement, and other properties, at both the visible and microscopic scale.

<span class="mw-page-title-main">Igneous textures</span>

Igneous textures include the rock textures occurring in igneous rocks. Igneous textures are used by geologists in determining the mode of origin of igneous rocks and are used in rock classification. The six main types of textures are phaneritic, aphanitic, porphyritic, glassy, pyroclastic, and pegmatitic.

<span class="mw-page-title-main">Cathedral Peak Granodiorite</span> Suite of intrusive rock in the Sierra Nevada

The Cathedral Peak Granodiorite (CPG) was named after its type locality, Cathedral Peak in Yosemite National Park, California. The granodiorite forms part of the Tuolumne Intrusive Suite, one of the four major intrusive suites within the Sierra Nevada. It has been assigned radiometric ages between 88 and 87 million years and therefore reached its cooling stage in the Coniacian.

<span class="mw-page-title-main">Igneous rock</span> Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.

Monte Muambe is a volcanic caldera located south-east of Moatize in Tete Province of Mozambique.

References

  1. Dietrich, R. and Skinner, B. (1979). Rocks and Rock Minerals. See p. 108.
  2. Cvancara, Alan M. (1995). A field manual for the amateur geologist (Rev. ed.). New York: Wiley. p. 181. ISBN   0-471-04430-X. OCLC   30508970.
  3. "ignchrt.html". www.appstate.edu. Retrieved 2022-01-07.
  4. "porphyry". Oxford Dictionary of Byzantium . New York & Oxford: Oxford University Press. 1991. p. 1701. ISBN   0195046528.
  5. 1 2 3 Wilson, Majorie (1993). "Magmatic differentiation". Journal of the Geological Society. London. 150: 611–624.