Phenocryst

Last updated
Granites often have large feldspathic phenocrysts. This granite, from the Swiss side of the Mont Blanc massif, has large white phenocrysts of plagioclase (that have trapezoid shapes when cut through). 1 euro coin (diameter 2.3 cm) for scale. Montblanc granite phenocrysts.JPG
Granites often have large feldspathic phenocrysts. This granite, from the Swiss side of the Mont Blanc massif, has large white phenocrysts of plagioclase (that have trapezoid shapes when cut through). 1 euro coin (diameter 2.3 cm) for scale.

A phenocryst is an early forming, relatively large and usually conspicuous crystal distinctly larger than the grains of the rock groundmass of an igneous rock. Such rocks that have a distinct difference in the size of the crystals are called porphyries, and the adjective porphyritic is used to describe them. Phenocrysts often have euhedral forms, either due to early growth within a magma, or by post-emplacement recrystallization. Normally the term phenocryst is not used unless the crystals are directly observable, which is sometimes stated as greater than 0.5 mm (0.020 in) in diameter. [1] Phenocrysts below this level, but still larger than the groundmass crystals, are termed microphenocrysts. Very large phenocrysts are termed megaphenocrysts. Some rocks contain both microphenocrysts and megaphenocrysts. [2] In metamorphic rocks, crystals similar to phenocrysts are called porphyroblasts.

Contents

Phenocrysts are more often found in the lighter (higher silica) igneous rocks such as felsites and andesites, although they occur throughout the igneous spectrum including in the ultramafics. The largest crystals found in some pegmatites are often phenocrysts being significantly larger than the other minerals.

Classification by phenocryst

Photomicrograph of a porphyritic-aphanitic felsic rock, from the Middle Eocene in the Blue Ridge Mountains of Virginia. Plagioclase phenocrysts (white) and hornblende phenocryst (dark; intergrown with plagioclase) are set in a fine matrix of plagioclase laths that show flow structure. Photomicrograph-porphyritic-aphanitic-felsic-rock-USGS.jpg
Photomicrograph of a porphyritic-aphanitic felsic rock, from the Middle Eocene in the Blue Ridge Mountains of Virginia. Plagioclase phenocrysts (white) and hornblende phenocryst (dark; intergrown with plagioclase) are set in a fine matrix of plagioclase laths that show flow structure.

Rocks can be classified according to the nature, size and abundance of phenocrysts, and the presence or absence of phenocrysts is often noted when a rock name is determined. Aphyric rocks are those that have no phenocrysts, [3] or more commonly where the rock consists of less than 1% phenocrysts (by volume); [4] while the adjective phyric is sometimes used instead of the term porphyritic to indicate the presence of phenocrysts. Porphyritic rocks are often named using mineral name modifiers, normally in decreasing order of abundance. Thus when olivine forms the primary phenocrysts in a basalt, the name may be refined from basalt to porphyritic olivine basalt or olivine phyric basalt. [5] Similarly, a basalt with olivine as the dominant phenocrysts, but with lesser amounts of plagioclase phenocrysts, might be termed an olivine-plagioclase phyric basalt.

In more complex nomenclature, a basalt with approximately 1% plagioclase phenocrysts, but 4% olivine microphenocrysts, might be termed an aphyric to sparsely plagioclase-olivine phyric basalt, where plagioclase is listed before the olivine because of its larger crystals. [6] Categorizing a rock as aphyric or as sparsely phyric is often a question of whether a significant number of crystals exceed the minimum size. [7]

Analysis using phenocrysts

Geologists use phenocrysts to help determine rock origins and transformations because crystal formation partly depends on pressure and temperature.

Other characteristics

Plagioclase phenocrysts often exhibit zoning with a more calcic core surrounded by progressively more sodic rinds. This zoning reflects the change in magma composition as crystallization progresses. [8] This is described as normal zoning if the rim of the crystal shows a lower-temperature composition than the core of the crystal. Reverse zoning describes the more unusual case where the rim shows a higher-temperature composition than the core. Oscillatory zoning shows period fluctuations between low- and high-temperature compositions. [9]

In rapakivi granites, phenocrysts of orthoclase are enveloped within rinds of sodic plagioclase such as oligoclase.

In shallow intrusives or volcanic flows phenocrysts which formed before eruption or shallow emplacement are surrounded by a fine-grained to glassy matrix. These volcanic phenocrysts often show flow banding, a parallel arrangement of lath-shaped crystals. These characteristics provide clues to the rocks' origins. Similarly, intragranular microfractures and any intergrowth among crystals provide additional clues. [10]

See also

Notes

  1. The minimum size boundary is arbitrary and not precise. It is based upon observation and may vary depending upon whether technical aids, such as a hand lens or a microscope are used or not. One analyst used a 100 µm limit on the size of crystals as that was the minimum that could be point-counted accurately by optical means. Murphy, M. D.; Sparks, R. S. J.; Barclay, J.; Carroll, M. R. & Brewer, T. S. (2000). "Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills Volcano, Montserrat, West Indies". Journal of Petrology. 41 (1): 21–42. doi: 10.1093/petrology/41.1.21 .
  2. Smith, George I. (1964). Geology and Volcanic Petrology of the Lava Mountains, San Bernardino County, California. United States Geological Survey professional paper 457. Washington, D.C.: United States Geological Survey. p.  39. OCLC   3598916.
  3. Gill, Robin (2011). Igneous Rocks and Processes: A Practical Guide. Hoboken, New Jersey: Wiley. p.  34. ISBN   978-1-4443-3065-6.
  4. Some use a 1% boundary condition, Sen, Bibhas; Sabale, A. B. & Sukumaran, P. V. (2012). "Lava channel of Khedrai Dam, northeast of Nasik in western Deccan Volcanic province: Detailed morphology and evidences of channel reactivation". Journal of the Geological Society of India. 80 (3): 314–328. doi:10.1007/s12594-012-0150-8. S2CID   128608511. and Ocean Drilling Program, Texas A & M University (1991). Proceedings of the Ocean Drilling Program. Part A, Initial report. Vol. 140. National Science Foundation (U.S.). p. 52., while others suggest a limit of 5%. Piccirillo, E. M. & Melford, A. J. (1988). The Mesozoic Flood Volcanism of the Paraná Basin: Petrogenetic and Geophysical Aspects. São Paulo, Brazil: Universidade de São Paulo, Instituto Astronômico e Geofísico. p. 49. ISBN   978-85-85047-04-7. and Moulton, B. J. A.; et al. (2008). Volcanology of the Felsic Volcanic Rocks of the Kidd-Munro assemblage in Prosser and Muro Townships and Premininary Correlations with the Kidd Creek Deposit, Abitibi Greenstone Belt, Ontario. Geological Survey of Canada, Current Research, No. 2008-18. Ottawa: Geological Survey of Canada. p.  19. ISBN   978-1-100-10649-6.
  5. Gill, Robin (2011). Igneous Rocks and Processes: A Practical Guide. Hoboken, New Jersey: Wiley. p.  21. ISBN   978-1-4443-3065-6.
  6. Byerly, Gary R. & Wright, Thomas L. (1978). "Origin of major element chemical trends in DSDP Leg 37 basalts, Mid-Atlantic Ridge". Journal of Volcanology and Geothermal Research. 3 (3–4): 229–279. Bibcode:1978JVGR....3..229B. doi:10.1016/0377-0273(78)90038-0.
  7. Gangopadhyay, A. M. I. T. A. V. A.; Sen, Gautam & Keshav, Shantanu (2003). "Experimental Crystallization of Deccan Basalts at Low Pressure: Effect of Contamination on Phase Equilibrium" (PDF). Indian Journal of Geology. 75 (1/4): 54.
  8. Williams, Howel; Turner, Francis J. & Gilbert, Charles M. (1954). Petrography: An introduction to the study of rocks in thin sections. San Francisco: W. H. Freeman. p. 102103. ISBN   978-0-7167-0206-1.
  9. "Crystal zoning." Oxford Reference. Accessed 8 Aug. 2020. https://www.oxfordreference.com/view/10.1093/oi/authority.20110803095651756.
  10. Cox, S. F. & Etheridge, M. A. (1983). "Crack-seal fibre growth mechanisms and their significance in the development of oriented layer silicate microstructures". Tectonophysics. 92 (1): 147–170. Bibcode:1983Tectp..92..147C. doi:10.1016/0040-1951(83)90088-4.

Related Research Articles

<span class="mw-page-title-main">Gabbro</span> Coarse-grained mafic intrusive rock

Gabbro is a phaneritic (coarse-grained), mafic intrusive igneous rock formed from the slow cooling of magnesium-rich and iron-rich magma into a holocrystalline mass deep beneath the Earth's surface. Slow-cooling, coarse-grained gabbro is chemically equivalent to rapid-cooling, fine-grained basalt. Much of the Earth's oceanic crust is made of gabbro, formed at mid-ocean ridges. Gabbro is also found as plutons associated with continental volcanism. Due to its variant nature, the term gabbro may be applied loosely to a wide range of intrusive rocks, many of which are merely "gabbroic". By rough analogy, gabbro is to basalt as granite is to rhyolite.

<span class="mw-page-title-main">Basalt</span> Magnesium- and iron-rich extrusive igneous rock

Basalt is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron exposed at or very near the surface of a rocky planet or moon. More than 90% of all volcanic rock on Earth is basalt. Rapid-cooling, fine-grained basalt is chemically equivalent to slow-cooling, coarse-grained gabbro. The eruption of basalt lava is observed by geologists at about 20 volcanoes per year. Basalt is also an important rock type on other planetary bodies in the Solar System. For example, the bulk of the plains of Venus, which cover ~80% of the surface, are basaltic; the lunar maria are plains of flood-basaltic lava flows; and basalt is a common rock on the surface of Mars.

<span class="mw-page-title-main">Rhyolite</span> Igneous, volcanic rock, of felsic (silica-rich) composition

Rhyolite is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained groundmass. The mineral assemblage is predominantly quartz, sanidine, and plagioclase. It is the extrusive equivalent of granite.

<span class="mw-page-title-main">Dacite</span> Volcanic rock intermediate in composition between andesite and rhyolite

Dacite is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. It is composed predominantly of plagioclase feldspar and quartz.

<span class="mw-page-title-main">Trachyte</span> Extrusive igneous rock

Trachyte is an extrusive igneous rock composed mostly of alkali feldspar. It is usually light-colored and aphanitic (fine-grained), with minor amounts of mafic minerals, and is formed by the rapid cooling of lava enriched with silica and alkali metals. It is the volcanic equivalent of syenite.

<span class="mw-page-title-main">Latite</span> Type of volcanic rock

Latite is an igneous, volcanic rock, with aphanitic-aphyric to aphyric-porphyritic texture. Its mineral assemblage is usually alkali feldspar and plagioclase in approximately equal amounts. Quartz is less than five percent and is absent in a feldspathoid-bearing latite, and olivine is absent in a quartz-bearing latite. When quartz content is greater than five percent the rock is classified as quartz latite. Biotite, hornblende, pyroxene and scarce olivine or quartz are common accessory minerals. Feldspathoid-bearing latite is sometimes referred to as tristanite.

<span class="mw-page-title-main">Andesite</span> Type of volcanic rock

Andesite is a volcanic rock of intermediate composition. In a general sense, it is the intermediate type between silica-poor basalt and silica-rich rhyolite. It is fine-grained (aphanitic) to porphyritic in texture, and is composed predominantly of sodium-rich plagioclase plus pyroxene or hornblende.

<span class="mw-page-title-main">Basanite</span> Type of volcanic rock

Basanite is an igneous, volcanic (extrusive) rock with aphanitic to porphyritic texture. It is composed mostly of feldspathoids, pyroxenes, olivine, and plagioclase and forms from magma low in silica and enriched in alkali metal oxides that solidifies rapidly close to the Earth's surface.

<span class="mw-page-title-main">Porphyry (geology)</span> Textural form of igneous rock with large grained crystals in a fine matrix

Porphyry is any of various granites or igneous rocks with coarse-grained crystals such as feldspar or quartz dispersed in a fine-grained silicate-rich, generally aphanitic matrix or groundmass. In its non-geologic, traditional use, the term porphyry usually refers to the purple-red form of this stone, valued for its appearance, but other colours of decorative porphyry are also used such as "green", "black" and "grey".

<span class="mw-page-title-main">Extrusive rock</span> Mode of igneous volcanic rock formation

Extrusive rock refers to the mode of igneous volcanic rock formation in which hot magma from inside the Earth flows out (extrudes) onto the surface as lava or explodes violently into the atmosphere to fall back as pyroclastics or tuff. In contrast, intrusive rock refers to rocks formed by magma which cools below the surface.

<span class="mw-page-title-main">Porphyritic</span> Igneous rock with large and small crystals

Porphyritic is an adjective used in geology to describe igneous rocks with a distinct difference in the size of mineral crystals, with the larger crystals known as phenocrysts. Both extrusive and intrusive rocks can be porphyritic, meaning all types of igneous rocks can display some degree of porphyritic texture. Most porphyritic rocks have bimodal size ranges, meaning the rock is composed of two distinct sizes of crystal.

<span class="mw-page-title-main">Volcanic rock</span> Rock formed from lava erupted from a volcano

Volcanic rock is a rock formed from lava erupted from a volcano. Like all rock types, the concept of volcanic rock is artificial, and in nature volcanic rocks grade into hypabyssal and metamorphic rocks and constitute an important element of some sediments and sedimentary rocks. For these reasons, in geology, volcanics and shallow hypabyssal rocks are not always treated as distinct. In the context of Precambrian shield geology, the term "volcanic" is often applied to what are strictly metavolcanic rocks. Volcanic rocks and sediment that form from magma erupted into the air are called "pyroclastics," and these are also technically sedimentary rocks.

<span class="mw-page-title-main">Intrusive rock</span> Magmatic rock formed below the surface

Intrusive rock is formed when magma penetrates existing rock, crystallizes, and solidifies underground to form intrusions, such as batholiths, dikes, sills, laccoliths, and volcanic necks.

<span class="mw-page-title-main">Lamprophyre</span> Ultrapotassic igneous rocks

Lamprophyres are uncommon, small-volume ultrapotassic igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks, and small intrusions. They are alkaline silica-undersaturated mafic or ultramafic rocks with high magnesium oxide, >3% potassium oxide, high sodium oxide, and high nickel and chromium.

<span class="mw-page-title-main">Picrite basalt</span> Variety of high-magnesium basalt that is very rich in the mineral olivine

Picrite basalt or picrobasalt is a variety of high-magnesium olivine basalt that is very rich in the mineral olivine. It is dark with yellow-green olivine phenocrysts (20-50%) and black to dark brown pyroxene, mostly augite.

<span class="mw-page-title-main">Cumulate rock</span> Igneous rocks formed by the accumulation of crystals from a magma either by settling or floating.

Cumulate rocks are igneous rocks formed by the accumulation of crystals from a magma either by settling or floating. Cumulate rocks are named according to their texture; cumulate texture is diagnostic of the conditions of formation of this group of igneous rocks. Cumulates can be deposited on top of other older cumulates of different composition and colour, typically giving the cumulate rock a layered or banded appearance.

The tholeiitic magma series is one of two main magma series in subalkaline igneous rocks, the other being the calc-alkaline series. A magma series is a chemically distinct range of magma compositions that describes the evolution of a mafic magma into a more evolved, silica rich end member. Rock types of the tholeiitic magma series include tholeiitic basalt, ferro-basalt, tholeiitic basaltic andesite, tholeiitic andesite, dacite and rhyolite. The variety of basalt in the series was originally called tholeiite but the International Union of Geological Sciences recommends that tholeiitic basalt be used in preference to that term.

<span class="mw-page-title-main">Texture (geology)</span>

In geology, texture or rock microstructure refers to the relationship between the materials of which a rock is composed. The broadest textural classes are crystalline, fragmental, aphanitic, and glassy. The geometric aspects and relations amongst the component particles or crystals are referred to as the crystallographic texture or preferred orientation. Textures can be quantified in many ways. The most common parameter is the crystal size distribution. This creates the physical appearance or character of a rock, such as grain size, shape, arrangement, and other properties, at both the visible and microscopic scale.

<span class="mw-page-title-main">Alkali basalt</span> Type of volcanic rock

Alkali basalt or alkali olivine basalt is a dark-colored, porphyritic volcanic rock usually found in oceanic and continental areas associated with volcanic activity, such as oceanic islands, continental rifts and volcanic fields. Alkali basalt is characterized by relatively high alkali (Na2O and K2O) content relative to other basalts and by the presence of olivine and titanium-rich augite in its groundmass and phenocrysts, and nepheline in its CIPW norm.

<span class="mw-page-title-main">Igneous rock</span> Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.

References