Orthoclase

Last updated
Orthoclase
OrthoclaseBresil.jpg
General
Category Silicate mineral
Formula
(repeating unit)
KAlSi3O8
IMA symbol Or [1]
Strunz classification 9.FA.30
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H–M symbol)
Space group C2/m
Identification
ColorColorless, greenish, greyish yellow, white, pink
Crystal habit Can be anhedral or euhedral. Grains are commonly elongate with a tabular appearance.
Twinning Typically displays Carlsbad twinning. Baveno and manebach twins have also been reported in orthoclase.
Cleavage Has perfect cleavage on {001} and good cleavage on {010}. Cleavages intersect at 90°. It can be difficult to see cleavage in thin section due to orthoclase's low relief.
Fracture Uneven
Mohs scale hardness6 (defining mineral)
Luster Vitreous, pearly on cleavage surfaces
Streak White
Diaphaneity Transparent to translucent
Specific gravity 2.55–2.63
Optical propertiesBiaxial (−), 2V = 65–75
Refractive index nα = 1.518–1.520
nβ = 1.522–1.524
nγ = 1.522–1.525
Birefringence 0.0050–0.0060
Dispersion Relatively strong
ExtinctionParallel to cleavage
Length fast/slowNo slow or fast length
Diagnostic featuresDistinguishable from microcline by a lack in gridiron twinning. Distinguishable from sanidine by a larger 2Vx.
Other characteristicsLow negative relief;
alters to sericite or clay (commonly)
References [2] [3] [4]

Orthoclase, or orthoclase feldspar (endmember formula K Al Si 3 O 8), is an important tectosilicate mineral which forms igneous rock. The name is from the Ancient Greek for "straight fracture", because its two cleavage planes are at right angles to each other. It is a type of potassium feldspar, also known as K-feldspar. The gem known as moonstone (see below) is largely composed of orthoclase.

Contents

Formation and subtypes

Orthoclase is a common constituent of most granites and other felsic igneous rocks and often forms huge crystals and masses in pegmatite.

Typically, the pure potassium endmember of orthoclase forms a solid solution with albite, the sodium endmember (NaAlSi3O8), of plagioclase. While slowly cooling within the earth, sodium-rich albite lamellae form by exsolution, enriching the remaining orthoclase with potassium. The resulting intergrowth of the two feldspars is called perthite.

Adularia (
.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}
KAlSi3O8) with pyrite (
FeS2) incrustations Adularia with Pyrite mg 7940.jpg
Adularia (KAlSi3O8) with pyrite (FeS2) incrustations

The higher-temperature polymorph of KAlSi3O8 is sanidine. Sanidine is common in rapidly cooled volcanic rocks such as obsidian and felsic pyroclastic rocks, and is notably found in trachytes of the Drachenfels, Germany. The lower-temperature polymorph of KAlSi3O8 is microcline.

Adularia is a low temperature form of either microcline or orthoclase originally reported from the low temperature hydrothermal deposits in the Adula Alps of Switzerland. [5] It was first described by Ermenegildo Pini in 1781. [6] The optical effect of adularescence in moonstone is typically due to adularia. [7]

The largest documented single crystal of orthoclase was found in the Ural mountains in Russia. It measured around 10 m × 10 m × 0.4 m (33 ft × 33 ft × 1 ft) and weighed around 100 tonnes (110 short tons). [8]

Uses

Together with the other potassium feldspars, orthoclase is a common raw material for the manufacture of some glasses and some ceramics such as porcelain, and as a constituent of scouring powder.

Some intergrowths of orthoclase and albite have an attractive pale luster and are called moonstone when used in jewellery. Most moonstones are translucent and white, although grey and peach-colored varieties also occur. In gemology, their luster is called adularescence and is typically described as creamy or silvery white with a "billowy" quality. It is the state gem of Florida.

The gemstone commonly called rainbow moonstone is more properly a colorless form of labradorite and can be distinguished from "true" moonstone by its greater transparency and play of color, although their value and durability do not greatly differ.

Orthoclase is one of the ten defining minerals of the Mohs scale of mineral hardness, on which it is listed as having a hardness of 6.

NASA's Curiosity rover discovery of high levels of orthoclase in Martian sandstones suggested that some Martian rocks may have experienced complex geological processing, such as repeated melting. [9]

See also

Amethystre sceptre2.jpg  Mineralsportal

Related Research Articles

<span class="mw-page-title-main">Feldspar</span> Group of rock-forming minerals

Feldspars are a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the plagioclase (sodium-calcium) feldspars and the alkali (potassium-sodium) feldspars. Feldspars make up about 60% of the Earth's crust, and 41% of the Earth's continental crust by weight.

<span class="mw-page-title-main">Microcline</span> Igneous rock-forming tectosilicate mineral

Microcline (KAlSi3O8) is an important igneous rock-forming tectosilicate mineral. It is a potassium-rich alkali feldspar. Microcline typically contains minor amounts of sodium. It is common in granite and pegmatites. Microcline forms during slow cooling of orthoclase; it is more stable at lower temperatures than orthoclase. Sanidine is a polymorph of alkali feldspar stable at yet higher temperature. Microcline may be clear, white, pale-yellow, brick-red, or green; it is generally characterized by cross-hatch twinning that forms as a result of the transformation of monoclinic orthoclase into triclinic microcline.

<span class="mw-page-title-main">Anorthoclase</span>

The mineral anorthoclase ((Na,K)AlSi3O8) is a crystalline solid solution in the alkali feldspar series, in which the sodium-aluminium silicate member exists in larger proportion. It typically consists of between 10 and 36 percent of KAlSi3O8 and between 64 and 90 percent of NaAlSi3O8.

<span class="mw-page-title-main">Plagioclase</span> Type of feldspar

Plagioclase is a series of tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continuous solid solution series, more properly known as the plagioclase feldspar series. This was first shown by the German mineralogist Johann Friedrich Christian Hessel (1796–1872) in 1826. The series ranges from albite to anorthite endmembers (with respective compositions NaAlSi3O8 to CaAl2Si2O8), where sodium and calcium atoms can substitute for each other in the mineral's crystal lattice structure. Plagioclase in hand samples is often identified by its polysynthetic crystal twinning or "record-groove" effect.

<span class="mw-page-title-main">Augite</span> Common rock-forming pyroxene mineral

Augite is a common rock-forming pyroxene mineral with formula (Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6. The crystals are monoclinic and prismatic. Augite has two prominent cleavages, meeting at angles near 90 degrees.

<span class="mw-page-title-main">Nepheline</span> Silica-undersaturated aluminosilicate mineral

Nepheline, also called nephelite (from Ancient Greek νεφέλη (nephélē) 'cloud'), is a rock-forming mineral in the feldspathoid group – a silica-undersaturated aluminosilicate, Na3KAl4Si4O16, that occurs in intrusive and volcanic rocks with low silica, and in their associated pegmatites. It is used in glass and ceramic manufacturing and other industries, and has been investigated as an ore of aluminium.

<span class="mw-page-title-main">Nepheline syenite</span> Holocrystalline plutonic rock

Nepheline syenite is a holocrystalline plutonic rock that consists largely of nepheline and alkali feldspar. The rocks are mostly pale colored, grey or pink, and in general appearance they are not unlike granites, but dark green varieties are also known. Phonolite is the fine-grained extrusive equivalent.

Potassium feldspar refers to a number of minerals in the feldspar group, and containing potassium:

<span class="mw-page-title-main">Albite</span> Mineral, Na-feldspar, Na-silicate, tectosilicate

Albite is a plagioclase feldspar mineral. It is the sodium endmember of the plagioclase solid solution series. It represents a plagioclase with less than 10% anorthite content. The pure albite endmember has the formula NaAlSi
3
O
8
. It is a tectosilicate. Its color is usually pure white, hence its name from Latin, albus. It is a common constituent in felsic rocks.

<span class="mw-page-title-main">Charnockite</span> Type of granite containing orthopyroxene

Charnockite is any orthopyroxene-bearing quartz-feldspar rock formed at high temperature and pressure, commonly found in granulite facies’ metamorphic regions, sensu stricto as an endmember of the charnockite series.

<span class="mw-page-title-main">Perthite</span> Intergrowth of two feldspars

Perthite is used to describe an intergrowth of two feldspars: a host grain of potassium-rich alkali feldspar (near K-feldspar, KAlSi3O8, in composition) includes exsolved lamellae or irregular intergrowths of sodic alkali feldspar (near albite, NaAlSi3O8, in composition). Typically, the host grain is orthoclase or microcline, and the lamellae are albite. If sodic feldspar is the dominant phase, the result is an antiperthite and where the feldspars are in roughly equal proportions the result is a mesoperthite.

<span class="mw-page-title-main">Oligoclase</span> Sodium-rich plagioclase feldspar mineral

Oligoclase is a rock-forming mineral belonging to the plagioclase feldspars. In chemical composition and in its crystallographic and physical characters it is intermediate between albite (NaAlSi3O8) and anorthite (CaAl2Si2O8). The albite:anorthite molar ratio of oligoclase ranges from 90:10 to 70:30.

<span class="mw-page-title-main">Sanidine</span>

Sanidine is the high temperature form of potassium feldspar with a general formula K(AlSi3O8). Sanidine is found most typically in felsic volcanic rocks such as obsidian, rhyolite and trachyte. Sanidine crystallizes in the monoclinic crystal system. Orthoclase is a monoclinic polymorph stable at lower temperatures. At yet lower temperatures, microcline, a triclinic polymorph of potassium feldspar, is stable.

<span class="mw-page-title-main">Aegirine</span> Member of the clinopyroxene group of inosilicate mineral

Aegirine is a member of the clinopyroxene group of inosilicate minerals. Aegirine is the sodium endmember of the aegirine-augite series. Aegirine has the chemical formula NaFeSi2O6 in which the iron is present as Fe3+. In the aegirine-augite series the sodium is variably replaced by calcium with iron(II) and magnesium replacing the iron(III) to balance the charge. Aluminium also substitutes for the iron(III). Acmite is a fibrous, green-colored variety.

<span class="mw-page-title-main">Celsian</span>

Celsian is an uncommon feldspar mineral, barium aluminosilicate, BaAl2Si2O8. The mineral occurs in contact metamorphic rocks with significant barium content. Its crystal system is monoclinic, and it is white, yellow, or transparent in appearance. In pure form, it is transparent. Synthetic barium aluminosilicate is used as a ceramic in dental fillings and other applications.

<span class="mw-page-title-main">Myrmekite</span> Tiny intergrowths of quartz and feldspar in rocks

Myrmekite is a vermicular, or wormy, intergrowth of quartz in plagioclase. The intergrowths are microscopic in scale, typically with maximum dimensions less than 1 millimeter. The plagioclase is sodium-rich, usually albite or oligoclase. These quartz-plagioclase intergrowths are associated with and commonly in contact with potassium feldspar. Myrmekite is formed under metasomatic conditions, usually in conjunction with tectonic deformations. It has to be clearly separated from micrographic and granophyric intergrowths, which are magmatic.

In petrology, micrographic texture is a fine-grained intergrowth of quartz and alkali feldspar, interpreted as the last product of crystallization in some igneous rocks which contain high or moderately high percentages of silica. Micropegmatite is an outmoded terminology for micrographic texture.

<span class="mw-page-title-main">Moonstone (gemstone)</span> Semi-precious gemstone

Moonstone is a sodium potassium aluminium silicate ((Na,K)AlSi3O8) of the feldspar group that displays a pearly and opalescent schiller. An alternative name for moonstone is hecatolite.

<span class="mw-page-title-main">Metamorphic facies</span> Set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures

A metamorphic facies is a set of mineral assemblages in metamorphic rocks formed under similar pressures and temperatures. The assemblage is typical of what is formed in conditions corresponding to an area on the two dimensional graph of temperature vs. pressure. Rocks which contain certain minerals can therefore be linked to certain tectonic settings, times and places in the geological history of the area. The boundaries between facies are wide because they are gradational and approximate. The area on the graph corresponding to rock formation at the lowest values of temperature and pressure is the range of formation of sedimentary rocks, as opposed to metamorphic rocks, in a process called diagenesis.

<span class="mw-page-title-main">Rubicline</span>

Rubicline, also referred to as Rb-microcline, is the rubidium analogue of microcline, an important tectosilicate mineral. Its chemical formula is (Rb, K)[AlSi3O8] with an ideal composition of RbAlSi3O8. Chemical analysis by electron microprobe indicated the average weight of the crystal is 56.66% SiO2, 16.95% Al2O3, and 23.77% Rb2O, along with trace amounts of caesium oxide (Cs2O) and iron(III) oxide (Fe2O3).

References

  1. Warr, L. N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. "Orthoclase: Orthoclase mineral information and data". www.mindat.org. Retrieved 17 April 2018.
  3. "Handbook of Mineralogy" (PDF).
  4. Barthelmy, Dave. "Orthoclase Mineral Data". www.webmineral.com. Retrieved 17 April 2018.
  5. "Adularia: Adularia mineral information and data". www.mindat.org. Retrieved 17 April 2018.
  6. Roth, Philippe (2006). "The early history of Tremolite" (PDF). Axis. 2 (3): 1–10.
  7. "Moonstone Value, Price, and Jewelry Information". gemsociety.org. Retrieved 17 April 2018.
  8. P. C. Rickwood (1981). "The largest crystals" (PDF). American Mineralogist. 66: 885–907.
  9. "NASA's Mars Curiosity Rover Marks First Martian Year with Mission Successes". 23 June 2014.