Lustre (British English) or luster (American English; see spelling differences) is the way light interacts with the surface of a crystal, rock, or mineral. The word traces its origins back to the Latin lux, meaning "light", and generally implies radiance, gloss, or brilliance.
A range of terms are used to describe lustre, such as earthy, metallic, greasy, and silky. Similarly, the term vitreous (derived from the Latin for glass, vitrum) refers to a glassy lustre. A list of these terms is given below.
Lustre varies over a wide continuum, and so there are no rigid boundaries between the different types of lustre. (For this reason, different sources can often describe the same mineral differently. This ambiguity is further complicated by lustre's ability to vary widely within a particular mineral species). The terms are frequently combined to describe intermediate types of lustre (for example, a "vitreous greasy" lustre).
Some minerals exhibit unusual optical phenomena, such as asterism (the display of a star-shaped luminous area) or chatoyancy (the display of luminous bands, which appear to move as the specimen is rotated). A list of such phenomena is given below.
Adamantine minerals possess a superlative[ clarification needed ] lustre, which is most notably seen in diamond. [1] Such minerals are transparent or translucent, and have a high refractive index (of 1.9 or more). [2] Minerals with a true adamantine lustre are uncommon, with examples including cerussite, zircon, and cubic zirconia. [2]
Minerals with a lesser (but still relatively high) degree of lustre are referred to as subadamantine, with some examples being garnet and corundum. [1]
Dull (or earthy) minerals exhibit little to no lustre, due to coarse granulations which scatter light in all directions, approximating a Lambertian reflector. An example is kaolinite. [3] A distinction is sometimes drawn between dull minerals and earthy minerals, [4] with the latter being coarser, and having even less lustre.
Greasy minerals resemble fat or grease. A greasy lustre often occurs in minerals containing a great abundance of microscopic inclusions, with examples including opal and cordierite, jadeite. [2] Many minerals with a greasy lustre also feel greasy to the touch. [5]
Metallic (or splendent) minerals have the lustre of polished metal, and with ideal surfaces will work as a reflective surface. Examples include galena, [6] pyrite [7] and magnetite. [8]
Pearly minerals consist of thin transparent co-planar sheets. Light reflecting from these layers give them a lustre reminiscent of pearls. [9] Such minerals possess perfect cleavage, with examples including muscovite and stilbite. [2]
Resinous minerals have the appearance of resin, chewing gum or (smooth-surfaced) plastic. A principal example is amber, which is a form of fossilized resin. [10]
Silky minerals have a parallel arrangement of extremely fine fibres, [2] giving them a lustre reminiscent of silk. Examples include asbestos, ulexite and the satin spar variety of gypsum. A fibrous lustre is similar, but has a coarser texture.
Submetallic minerals have similar lustre to metal, but are duller and less reflective. A submetallic lustre often occurs in near-opaque minerals with very high refractive indices, [2] such as sphalerite, cinnabar, anthracite, and cuprite.
Vitreous minerals have the lustre of glass. (The term is derived from the Latin for glass, vitrum.) This type of lustre is one of the most commonly seen, [9] and occurs in transparent or translucent minerals with relatively low refractive indices. [2] Common examples include calcite, quartz, topaz, beryl, tourmaline and fluorite, among others.
Waxy minerals have a lustre resembling wax. Examples include jade [11] and chalcedony. [12]
Asterism is the display of a star-shaped luminous area. It is seen in some sapphires and rubies, where it is caused by impurities of rutile. [12] [13] It can also occur in garnet, diopside and spinel.
Aventurescence (or aventurization) is a reflectance effect like that of glitter. It arises from minute, preferentially oriented mineral platelets within the material. These platelets are so numerous that they also influence the material's body colour. In aventurine quartz, chrome-bearing fuchsite makes for a green stone and various iron oxides make for a red stone. [12]
Chatoyant minerals display luminous bands, which appear to move as the specimen is rotated. Such minerals are composed of parallel fibers (or contain fibrous voids or inclusions), which reflect light into a direction perpendicular to their orientation, thus forming narrow bands of light. The most famous examples are tiger's eye and cymophane, but the effect may also occur in other minerals such as aquamarine, moonstone and tourmaline.
Colour change is most commonly found in alexandrite, a variety of chrysoberyl gemstones. Other gems also occur in colour-change varieties, including (but not limited to) sapphire, garnet, spinel. Alexandrite displays a colour change dependent upon light, along with strong pleochroism. The gem results from small-scale replacement of aluminium by chromium oxide, which is responsible for alexandrite's characteristic green to red colour change. Alexandrite from the Ural Mountains in Russia is green by daylight and red by incandescent light. Other varieties of alexandrite may be yellowish or pink in daylight and a columbine or raspberry red by incandescent light. The optimum or "ideal" colour change would be fine emerald green to fine purplish red, but this is rare.
Iridescence is the 'play' or 'fire' of rainbow-coloured light caused by very thin regular structures or layers beneath the surface of a gemstone. Similar to a thin film of oil on water, these layers interfere with the rays of reflected light, reinforcing some colours and cancelling others. Iridescence is seen at its best in precious opal. [14]
Schiller (German, literally "shimmer"), is the metallic iridescence originating from below the surface of a stone that occurs when light is reflected between layers of minerals. It is seen in moonstone and labradorite and is very similar to adularescence and aventurescence. [15]
A gemstone is a piece of mineral crystal which, when cut or polished, is used to make jewelry or other adornments. Certain rocks and occasionally organic materials that are not minerals may also be used for jewelry and are therefore often considered to be gemstones as well. Most gemstones are hard, but some softer minerals such as brazilianite may be used in jewelry because of their color or luster or other physical properties that have aesthetic value. However, generally speaking, soft minerals are not typically used as gemstones by virtue of their brittleness and lack of durability.
Garnets are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives.
Peridot, sometimes called chrysolite, is a yellow-green transparent variety of olivine. Peridot is one of the few gemstones that occur in only one color.
The mineral or gemstone chrysoberyl is an aluminate of beryllium with the formula BeAl2O4. The name chrysoberyl is derived from the Greek words χρυσός chrysos and βήρυλλος beryllos, meaning "a gold-white spar". Despite the similarity of their names, chrysoberyl and beryl are two completely different gemstones, although they both contain beryllium. Chrysoberyl is the third-hardest frequently encountered natural gemstone and lies at 8.5 on the Mohs scale of mineral hardness, between corundum (9) and topaz (8).
Gemology or gemmology is the science dealing with natural and artificial gemstone materials. It is a specific interdisciplinary branch of mineralogy. Some jewelers are academically trained gemologists and are qualified to identify and evaluate gems.
Pleochroism is an optical phenomenon in which a substance has different colors when observed at different angles, especially with polarized light.
Tanzanite is the blue and violet variety of the mineral zoisite, caused by small amounts of vanadium. Tanzanite belongs to the epidote mineral group. Tanzanite is only found in Simanjiro District of Manyara Region in Tanzania, in a very small mining area approximately 7 km (4.3 mi) long and 2 km (1.2 mi) wide near the Mererani Hills.
In gemology, chatoyancy, also called chatoyance or the cat's eye effect, is an optical reflectance effect seen in certain gemstones, woods, and carbon fiber. Coined from the French œil de chat, meaning 'cat's eye'. The chatoyant effect is typically characterized by one or more well-defined bands of reflected light, reminiscent of a cat's eye, which appear to glide across the material's surface as the chatoyant object or observer shifts position.
In gemology, aventurescence is an optical reflectance effect seen in certain gems. The effect amounts to a metallic glitter, arising from minute, preferentially oriented mineral platelets within the material. These platelets are so numerous that they also influence the material's body colour. In aventurine quartz chrome-bearing fuchsite produces a green stone, and various iron oxides produce a red stone.
Anglesite is a lead sulfate mineral with the chemical formula PbSO4. It occurs as an oxidation product of primary lead sulfide ore, galena. Anglesite occurs as prismatic orthorhombic crystals and earthy masses, and is isomorphous with barite and celestine. It contains 74% of lead by mass and therefore has a high specific gravity of 6.3. Anglesite's color is white or gray with pale yellow streaks. It may be dark gray if impure.
An asterism is a star-shaped concentration of light reflected or refracted from a gemstone. It can appear when a suitable stone is cut en cabochon.
Cordierite (mineralogy) or iolite (gemology) is a magnesium iron aluminium cyclosilicate. Iron is almost always present, and a solid solution exists between Mg-rich cordierite and Fe-rich sekaninaite with a series formula: (Mg,Fe)2Al3(Si5AlO18) to (Fe,Mg)2Al3(Si5AlO18). A high-temperature polymorph exists, indialite, which is isostructural with beryl and has a random distribution of Al in the (Si,Al)6O18 rings. Cordierite is also synthesized and used in high temperature applications such as catalytic converters and pizza stones.
Almandine, also known as almandite, is a species of mineral belonging to the garnet group. The name is a corruption of alabandicus, which is the name applied by Pliny the Elder to a stone found or worked at Alabanda, a town in Caria in Asia Minor. Almandine is an iron alumina garnet, of deep red color, inclining to purple. It is frequently cut with a convex face, or en cabochon, and is then known as carbuncle. Viewed through the spectroscope in a strong light, it generally shows three characteristic absorption bands.
Sapphirine is a rare mineral, a silicate of magnesium and aluminium, with the chemical formula 8(Al,Si)6O20. Named for its sapphire-like colour, sapphirine is primarily of interest to researchers and collectors: well-formed crystals are treasured and occasionally cut into gemstones. Sapphirine has also been synthesized for experimental purposes via a hydrothermal process.
Demantoid is the green gemstone variety of the mineral andradite, a member of the garnet group of minerals. Andradite is a calcium- and iron-rich garnet. The chemical formula is Ca3Fe2(SiO4)3 with chromium substitution as the cause of the demantoid green color. Ferric iron is the cause of the yellow in the stone.
Spessartine is a nesosilicate, manganese aluminium garnet species, Mn2+3Al2(SiO4)3. This mineral is sometimes mistakenly referred to as spessartite.
Grossular is a calcium-aluminium species of the garnet group of minerals. It has the chemical formula of Ca3Al2(SiO4)3 but the calcium may, in part, be replaced by ferrous iron and the aluminium by ferric iron. The name grossular is derived from the botanical name for the gooseberry, grossularia, in reference to the green garnet of this composition that is found in Siberia. Other shades include cinnamon brown (cinnamon stone variety), red, and yellow. Grossular is a gemstone.
Ammolite is an opal-like organic gemstone found primarily along the eastern slopes of the Rocky Mountains of North America. It is made of the fossilized shells of ammonites, which in turn are composed primarily of aragonite, the same mineral contained in nacre, with a microstructure inherited from the shell. It is one of few biogenic gemstones; others include amber and pearl. In 1981, ammolite was given official gemstone status by the World Jewellery Confederation (CIBJO), the same year commercial mining of ammolite began. It was designated the official gemstone of Lethbridge, Alberta, Canada in 2007, and was subsequently designated as Alberta's official gemstone in April 2022.
Grandidierite is a rare mineral that was first discovered in 1902 in southern Madagascar. The mineral was named in honor of French explorer Alfred Grandidier (1836–1912) who studied the natural history of Madagascar.
The Alexandrite effect describes the phenomenon of light-induced colour changes in certain minerals. The effect was named after the alexandrite mineral, but it is also used to refer to similar processes in other minerals. The effect is thought to be caused by a combination of specific light characteristics, the spectral absorption of the mineral, and the sensitivity of the human eye to different wavelengths of light.
{{cite book}}
: CS1 maint: multiple names: authors list (link)