Obsidian | |
---|---|
General | |
Category | Volcanic glass |
Identification | |
Color | usually black; sometimes green or brown; rarely yellow, orange, red or blue [1] |
Fracture | Conchoidal |
Mohs scale hardness | 5–6 [2] |
Luster | Vitreous |
Specific gravity | c. 2.4 [3] |
Optical properties | Translucent |
Other characteristics | Texture: Smooth; glassy |
References | [4] |
Obsidian ( /əbˈsɪdi.ən,ɒb-/ əb-SID-ee-ən ob-) [5] is a naturally occurring volcanic glass formed when lava extruded from a volcano cools rapidly with minimal crystal growth. It is an igneous rock. [6]
Obsidian is produced from felsic lava, rich in the lighter elements such as silicon, oxygen, aluminum, sodium, and potassium. It is commonly found within the margins of rhyolitic lava flows known as obsidian flows. These flows have a high content of silica, giving them a high viscosity. The high viscosity inhibits diffusion of atoms through the lava, which inhibits the first step (nucleation) in the formation of mineral crystals. Together with rapid cooling, this results in a natural glass forming from the lava. [7]
Obsidian is hard, brittle, and amorphous; it therefore fractures with sharp edges. In the past, it was used to manufacture cutting and piercing tools, and it has been used experimentally as surgical scalpel blades. [8]
The Natural History by the Roman writer Pliny the Elder includes a few sentences about a volcanic glass called obsidian (lapis obsidianus), discovered in Ethiopia by Obsidius, a Roman explorer. [9] [10] [11] [12]
Obsidian is formed from quickly cooled lava, which is the parent material. [13] [14] [15] Extrusive formation of obsidian may occur when felsic lava cools rapidly at the edges of a felsic lava flow or volcanic dome, or when lava cools during sudden contact with water or air. Intrusive formation of obsidian may occur when felsic lava cools along the edges of a dike. [16] [17]
Tektites were once thought by many to be obsidian produced by lunar volcanic eruptions, [18] though few scientists now adhere to this hypothesis. [19]
Obsidian is mineral-like, but not a true mineral because, as a glass, it is not crystalline; in addition, its composition is too variable to be classified as a mineral. It is sometimes classified as a mineraloid. [20] Though obsidian is usually dark in color, similar to mafic rocks such as basalt, the composition of obsidian is extremely felsic. Obsidian consists mainly of SiO2 (silicon dioxide), usually 70% by weight or more; the remainder consists of variable amounts of other oxides, mostly oxides of aluminum, iron, potassium, sodium and calcium. [21] [22] Crystalline rocks with a similar composition include granite and rhyolite. Because obsidian is metastable at the Earth's surface (over time the glass devitrifies, becoming fine-grained mineral crystals), obsidian older than Miocene in age is rare. Exceptionally old obsidians include a Cretaceous welded tuff and a partially devitrified Ordovician perlite. [23] This transformation of obsidian is accelerated by the presence of water. Although newly formed obsidian has a low water content, typically less than 1% water by weight, [24] it becomes progressively hydrated when exposed to groundwater, forming perlite.
Pure obsidian is usually dark in appearance, though the color varies depending on the impurities present. Iron and other transition elements may give the obsidian a dark brown to black color. Most black obsidians contain nanoinclusions of magnetite, an iron oxide. [25] Very few samples of obsidian are nearly colorless. In some stones, the inclusion of small, white, radially clustered crystals (spherulites) of the mineral cristobalite in the black glass produce a blotchy or snowflake pattern (snowflake obsidian). Obsidian may contain patterns of gas bubbles remaining from the lava flow, aligned along layers created as the molten rock was flowing before being cooled. These bubbles can produce interesting effects such as a golden sheen (sheen obsidian). An iridescent, rainbow-like sheen (fire obsidian) is caused by inclusions of magnetite nanoparticles creating thin-film interference. [26] Colorful, striped obsidian (rainbow obsidian) from Mexico contains oriented nanorods of hedenbergite, which cause the rainbow striping effects by thin-film interference. [25]
Obsidian is found near volcanoes in locations which have undergone rhyolitic eruptions. It can be found in Argentina, Armenia, Azerbaijan, Australia, [27] Canada, Chile, Georgia, Ecuador, El Salvador, Greece, Guatemala, Hungary, Iceland, Indonesia, Italy, Japan, Kenya, Mexico, New Zealand, Papua New Guinea, Peru, Russia, Scotland, the Canary Islands, Turkey and the United States. Obsidian flows which are so large that they can be hiked on are found within the calderas of Newberry Volcano (Big Obsidian Flow, [28] 700 acres) and Medicine Lake Volcano in the Cascade Range of western North America, and at Inyo Craters east of the Sierra Nevada in California. Yellowstone National Park has a mountainside containing obsidian located between Mammoth Hot Springs and the Norris Geyser Basin, and deposits can be found in many other western U.S. states including Arizona, Colorado, New Mexico, Texas, Utah, and Washington, [29] Oregon [30] and Idaho.
There are only four major deposit areas in the central Mediterranean: Lipari, Pantelleria, Palmarola and Monte Arci (Sardinia). [31]
Ancient sources in the Aegean were Milos and Gyali. [32]
Acıgöl town and the Göllü Dağ volcano were the most important sources in central Anatolia, one of the more important source areas in the prehistoric Near East. [33] [34] [35]
The first known archaeological evidence of usage was in Kariandusi (Kenya) and other sites of the Acheulian age (beginning 1.5 million years BP) dated 700,000 BC, although only very few objects have been found at these sites relative to the Neolithic. [36] [37] [38] [39] [40] Manufacture of obsidian bladelets at Lipari had reached a high level of sophistication by the late Neolithic, and was traded as far as Sicily, the southern Po river valley, and Croatia. [41] Obsidian bladelets were used in ritual circumcisions and cutting of umbilical cords of newborns. [42] Anatolian sources of obsidian are known to have been the material used in the Levant and modern-day Iraqi Kurdistan from a time beginning sometime about 12,500 BC. [43] Obsidian artifacts are common at Tell Brak, one of the earliest Mesopotamian urban centers, dating to the late fifth millennium BC. [44] Obsidian was valued in Stone Age cultures because, like flint, it could be fractured to produce sharp blades or arrowheads in a process called knapping. Like all glass and some other naturally occurring rocks, obsidian breaks with a characteristic conchoidal fracture. It was also polished to create early mirrors. Modern archaeologists have developed a relative dating system, obsidian hydration dating, to calculate the age of obsidian artifacts.
Obsidian artifacts first appeared in the European continent in Central Europe in the Middle Paleolithic and had become common by the Upper Paleolithic, although there are exceptions to this. Obsidian played an important role in the transmission of Neolithic knowledge and experiences. The material was mainly used for production of chipped tools which were very sharp due to its nature. Artifacts made of obsidian can be found in many Neolithic cultures across Europe. The source of obsidian for cultures inhabiting the territory of and around Greece was the island of Milos; the Starčevo–Körös–Criș culture obtained obsidian from sources in Hungary and Slovakia, while the Cardium-Impresso cultural complex acquired obsidian from the island outcrops of the central Mediterranean. Through trade, these artifacts ended up in lands thousands of kilometers away from the original source; this indicates that they were a highly valued commodity. [45] John Dee had a mirror, made of obsidian, which was brought from Mexico to Europe between 1527 and 1530 after Hernando Cortés's conquest of the region. [46]
In the Ubaid in the 5th millennium BC, blades were manufactured from obsidian extracted from outcrops located in modern-day Turkey. [47] Ancient Egyptians used obsidian imported from the eastern Mediterranean and southern Red Sea regions. In the eastern Mediterranean area the material was used to make tools, mirrors and decorative objects. [48]
The use of obsidian tools was present in Japan near areas of volcanic activity. [49] [50] Obsidian was mined during the Jōmon period.
Obsidian has also been found in Gilat, a site in the western Negev in Israel. Eight obsidian artifacts dating to the Chalcolithic Age found at this site were traced to obsidian sources in Anatolia. Neutron activation analysis (NAA) on the obsidian found at this site helped to reveal trade routes and exchange networks previously unknown. [51]
Lithic analysis helps to understand pre-Hispanic groups in Mesoamerica. A careful analysis of obsidian in a culture or place can be of considerable use to reconstruct commerce, production, and distribution, and thereby understand economic, social and political aspects of a civilization. This is the case in Yaxchilán, a Maya city where even warfare implications have been studied linked with obsidian use and its debris. [52] Another example is the archeological recovery at coastal Chumash sites in California, indicating considerable trade with the distant site of Casa Diablo Hot Springs in the Sierra Nevada. [53]
Pre-Columbian Mesoamericans' use of obsidian was extensive and sophisticated; including carved and worked obsidian for tools and decorative objects. Mesoamericans also made a type of sword with obsidian blades mounted in a wooden body. Called a macuahuitl , the weapon could inflict terrible injuries, combining the sharp cutting edge of an obsidian blade with the ragged cut of a serrated weapon. The polearm version of this weapon was called tepoztopilli .
Obsidian mirrors were used by some Aztec priests to conjure visions and make prophecies. They were connected with Tezcatlipoca, god of obsidian and sorcery, whose name can be translated from the Nahuatl language as 'Smoking Mirror'. [46]
Indigenous people traded obsidian throughout the Americas. Each volcano and in some cases each volcanic eruption produces a distinguishable type of obsidian allowing archaeologists to use methods such as non-destructive energy dispersive X-ray fluorescence to select minor element compositions from both the artifact and geological sample to trace the origins of a particular artifact. [54] Similar tracing techniques have also allowed obsidian in Greece to be identified as coming from Milos, Nisyros or Gyali, islands in the Aegean Sea. Obsidian cores and blades were traded great distances inland from the coast. [55]
In Chile obsidian tools from Chaitén Volcano have been found as far away as in Chan-Chan 400 km (250 mi) north of the volcano, and also in sites 400 km south of it. [56] [57]
The Lapita culture, active across a large area of the Pacific Ocean around 1000 BC, made widespread use of obsidian tools and engaged in long distance obsidian trading. The complexity of the production technique for these tools, and the care taken in their storage, may indicate that beyond their practical use they were associated with prestige or high status. [58]
Obsidian was also used on Rapa Nui (Easter Island) for edged tools such as Mataia and the pupils of the eyes of their Moai (statues), which were encircled by rings of bird bone. [59] Obsidian was used to inscribe the Rongorongo glyphs.
Obsidian can be used to make extremely sharp knives, and obsidian blades are a type of glass knife made using naturally occurring obsidian instead of manufactured glass. Obsidian is used by some surgeons for scalpel blades, although this is not approved by the US Food and Drug Administration (FDA) for use on humans. [60] Well-crafted obsidian blades, like any glass knife, can have a cutting edge many times sharper than high-quality steel surgical scalpels: the cutting edge of the blade is only about three nanometers thick. [61] All metal knives have a jagged, irregular blade when viewed under a strong enough microscope; however, obsidian blades are still smooth, even when examined under an electron microscope. [62] One study found that obsidian incisions produced fewer inflammatory cells and less granulation tissue in a group of rats after seven days but the differences disappeared after twenty-one days. [63] Don Crabtree has produced surgical obsidian blades and written articles on the subject. [61] Obsidian scalpels may be purchased for surgical use on research animals. [64]
The major disadvantage of obsidian blades is their brittleness compared to those made of metal, [65] thus limiting the surgical applications for obsidian blades to a variety of specialized uses where this is not a concern. [61]
Obsidian is also used for ornamental purposes and as a gemstone. [66] It presents a different appearance depending on how it is cut: in one direction it is jet black, while in another it is glistening gray. "Apache tears" are small rounded obsidian nuggets often embedded within a grayish-white perlite matrix.
Plinths for audio turntables have been made of obsidian since the 1970s, such as the grayish-black SH-10B3 plinth by Technics.
A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. The process that forms volcanoes is called volcanism.
Magma is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles.
Basalt is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron exposed at or very near the surface of a rocky planet or moon. More than 90% of all volcanic rock on Earth is basalt. Rapid-cooling, fine-grained basalt is chemically equivalent to slow-cooling, coarse-grained gabbro. The eruption of basalt lava is observed by geologists at about 20 volcanoes per year. Basalt is also an important rock type on other planetary bodies in the Solar System. For example, the bulk of the plains of Venus, which cover ~80% of the surface, are basaltic; the lunar maria are plains of flood-basaltic lava flows; and basalt is a common rock on the surface of Mars.
Rhyolite is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained groundmass. The mineral assemblage is predominantly quartz, sanidine, and plagioclase. It is the extrusive equivalent of granite.
A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and solidifies before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica, with lesser amounts of less viscous mafic magma. Extensive felsic lava flows are uncommon, but have traveled as far as 15 km (9 mi).
Volcanic glass is the amorphous (uncrystallized) product of rapidly cooling magma. Like all types of glass, it is a state of matter intermediate between the closely packed, highly ordered array of a crystal and the highly disordered array of liquid. Volcanic glass may refer to the interstitial material, or matrix, in an aphanitic (fine-grained) volcanic rock, or to any of several types of vitreous igneous rocks.
A scalpel, lancet, or bistoury is a small and extremely sharp bladed instrument used for surgery, anatomical dissection, podiatry and various handicrafts. A lancet is a double-edged scalpel.
Volcanic rocks are rocks formed from lava erupted from a volcano. Like all rock types, the concept of volcanic rock is artificial, and in nature volcanic rocks grade into hypabyssal and metamorphic rocks and constitute an important element of some sediments and sedimentary rocks. For these reasons, in geology, volcanics and shallow hypabyssal rocks are not always treated as distinct. In the context of Precambrian shield geology, the term "volcanic" is often applied to what are strictly metavolcanic rocks. Volcanic rocks and sediment that form from magma erupted into the air are called "pyroclastics," and these are also technically sedimentary rocks.
Obsidian is a naturally formed volcanic glass that was an important part of the material culture of Pre-Columbian Mesoamerica. Obsidian was a highly integrated part of daily and ritual life, and its widespread and varied use may be a significant contributor to Mesoamerica's lack of metallurgy. Lithic and contextual analysis of obsidian, including source studies, are important components of archaeological studies of past Mesoamerican cultures and inform scholars on economy, technological organization, long-distance trade, ritual organization, and socio-cultural structure.
In archaeology, a blade is a type of stone tool created by striking a long narrow flake from a stone core. This process of reducing the stone and producing the blades is called lithic reduction. Archaeologists use this process of flintknapping to analyze blades and observe their technological uses for historical purposes.
Apache tears are rounded pebbles of obsidian or "obsidianites" composed of black or dark-colored natural volcanic glass, usually of rhyolitic composition and bearing conchoidal fracture. Also known by the lithologic term marekanite, this variety of obsidian occurs as subrounded to subangular bodies up to about 2 in (51 mm) in diameter, often bearing indented surfaces. Internally the pebbles sometimes contain fine bands or microlites and though in reflected light they appear black and opaque, they may be translucent in transmitted light. Apache tears fall between 5 and 5.5 in hardness on the Mohs scale.
Gyali is a Greek volcanic island in the Dodecanese, located halfway between the south coast of Kos (Kardamaina) and Nisyros. It consists of rhyolitic obsidian lava domes and pumice deposits. No historical eruptions are known, but the most recent pumice eruptions overlie soils containing pottery and obsidian artifacts from the Neolithic period. The island has two distinct segments, with the northeastern part almost entirely made of obsidian and the southwestern part of pumice. These are connected by a narrow isthmus and beach made of modern reef sediments. Anciently, the island was known as Istros.
Mount Edziza, sometimes called Edziza Mountain or Edziza Peak, is a stratovolcano in Cassiar Land District of northwestern British Columbia, Canada. It is located on the Big Raven Plateau of the Tahltan Highland which extends along the western side of the Stikine Plateau. The mountain has an elevation of 2,786 metres, making it the highest volcano of the Mount Edziza volcanic complex. However, it had an elevation of at least 3,396 metres before its original summit was likely destroyed by a violent, climactic eruption in the geologic past; its current flat summit contains an ice-filled, 2-kilometre (1.2-mile) in diameter crater. Mount Edziza contains several lava domes, cinder cones and lava fields on its flanks, as well as an ice cap that is characterized by several outlet glaciers stretching out to lower altitudes. All sides of the mountain are drained by tributaries of Mess Creek and Kakiddi Creek which are situated within the Stikine River watershed.
The Itcha Range, also known as the Itchas, is a small isolated mountain range in the West-Central Interior of British Columbia, Canada. It is located 40 km (25 mi) northeast of the community of Anahim Lake. With a maximum elevation of 2,375 m (7,792 ft), it is the lowest of three mountain ranges on the Chilcotin Plateau extending east from the Coast Mountains. Two mountains are named in the Itcha Range; Mount Downton and Itcha Mountain. A large provincial park surrounds the Itcha Range and other features in its vicinity. More than 15 animal species are known to exist in the Itcha Range area, as well as a grassland community that is limited only to this location of British Columbia. The Itcha Range is within territory which has been occupied by aboriginal peoples for millennia. This area has a relatively dry environment compared to the Coast Mountains in the west.
Errett Callahan was an American archaeologist, flintknapper, and pioneer in the fields of experimental archaeology and lithic replication studies.
The Mount Edziza volcanic complex is a group of volcanoes and associated lava flows in northwestern British Columbia, Canada. Located on the Tahltan Highland, it is 40 kilometres southeast of Telegraph Creek and 85 kilometres southwest of Dease Lake. The complex encompasses a broad, steep-sided lava plateau that extends over 1,000 square kilometres. Its highest summit is 2,786 metres in elevation, making the MEVC the highest of four large complexes in an extensive north–south trending volcanic region. It is obscured by an ice cap characterized by several outlet glaciers that stretch out to lower altitudes.
Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or underwater, usually at temperatures from 800 to 1,200 °C. The volcanic rock resulting from subsequent cooling is also often called lava.
Ḥarrat Khaybar is a volcanic field located north of Medina in the Hejaz, Saudi Arabia. It covers an area approximately 12,000 km2 (4,600 sq mi). The most recent eruption occurred between 600 and 700 AD. Man-made stone structures dating to the Neolithic period have been studied in Harrat Khaybar.
The geology of Ascension Island is the geologically young, exposed part of a large volcano, 80 kilometers west of the Mid-Atlantic Ridge. The island formed within the last six to seven million years and is primarily mafic rock with some felsic rock.
Archean felsic volcanic rocks are felsic volcanic rocks that were formed in the Archean Eon. The term "felsic" means that the rocks have silica content of 62–78%. Given that the Earth formed at ~4.5 billion year ago, Archean felsic volcanic rocks provide clues on the Earth's first volcanic activities on the Earth's surface started 500 million years after the Earth's formation.
{{cite journal}}
: CS1 maint: DOI inactive as of September 2024 (link)