Helenite

Last updated
Helenite set in an earring Emerald Obsidianite Jewelry 600px.jpg
Helenite set in an earring

Helenite, also known as Mount St. Helens obsidian, emerald obsidianite, and ruby obsidianite, is an artificial glass made from the fused volcanic rock dust from Mount St. Helens and marketed as a gemstone. [1] [2] Helenite was first created accidentally after the eruption of Mount St. Helens in 1980. Workers from the Weyerhaeuser Timber Company were attempting to salvage equipment damaged after the volcanic eruption. Using acetylene torches, they noticed that the intense heat was melting the nearby volcanic ash and rock and turning it a greenish color. The silica, aluminium, iron, and trace amounts of chromium and copper present in the rocks and ash in the area, combined with the heat of the torches, transformed the volcanic particles into a compound that would be later commercially replicated as helenite. [3]

Contents

As word of the discovery spread, jewelry companies took note and began to find ways to reproduce the helenite. Helenite is made by heating rock dust and particles from the Mount St. Helens area in a furnace to a temperature of approximately 2,700 °F (1,480 °C). Although helenite and obsidian are both forms of glass, helenite differs from obsidian in that it is man-made. The stone has been marketed by the jewelry industry because of its emerald-like color, good refractive index, although its durability is low. It has a hardness of just 5 to 5 ½ and chips about as easily as obsidian or window glass. It is best used in earrings, pendants, brooches, and other types of jewelry where it will not encounter impact or abrasion. Even in these uses it should be considered to be a very delicate stone. If it is used as a ring stone, the facet edges will be easily abraded, the faces will be easily scratched, and the stone might be chipped with even a slight impact. [3] It is seen as an inexpensive alternative to naturally-occurring green gemstones, such as emerald and peridot. Helenite can also come in various red, green and blue varieties. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Gemstone</span> Piece of mineral crystal used to make jewelry

A gemstone is a piece of mineral crystal which, in cut and polished form, is used to make jewelry or other adornments. However, certain rocks and occasionally organic materials that are not minerals are also used for jewelry and are therefore often considered to be gemstones as well. Most gemstones are hard, but some soft minerals are used in jewelry because of their luster or other physical properties that have aesthetic value. Rarity and notoriety are other characteristics that lend value to gemstones.

<span class="mw-page-title-main">Obsidian</span> Naturally occurring volcanic glass

Obsidian is a naturally occurring volcanic glass formed when lava extruded from a volcano cools rapidly with minimal crystal growth. It is an igneous rock.

<span class="mw-page-title-main">Volcano</span> Rupture in the crust of a planet that allows lava, ash, and gases to escape from below the surface

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

<span class="mw-page-title-main">Mount St. Helens</span> Volcano in Skamania County, Washington, U.S.

Mount St. Helens is an active stratovolcano located in Skamania County, Washington, in the Pacific Northwest region of the United States. It lies 52 miles (83 km) northeast of Portland, Oregon, and 98 miles (158 km) south of Seattle. Mount St. Helens takes its English name from that of the British diplomat Lord St Helens, a friend of explorer George Vancouver who surveyed the area in the late 18th century. The volcano is part of the Cascade Volcanic Arc, a segment of the Pacific Ring of Fire.

<span class="mw-page-title-main">Tuff</span> Rock consolidated from volcanic ash

Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. Following ejection and deposition, the ash is lithified into a solid rock. Rock that contains greater than 75% ash is considered tuff, while rock containing 25% to 75% ash is described as tuffaceous. Tuff composed of sandy volcanic material can be referred to as volcanic sandstone.

<span class="mw-page-title-main">Rhyolite</span> Igneous, volcanic rock, of felsic (silica-rich) composition

Rhyolite is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained groundmass. The mineral assemblage is predominantly quartz, sanidine, and plagioclase. It is the extrusive equivalent to granite.

<span class="mw-page-title-main">Stratovolcano</span> Type of conical volcano composed of layers of lava and tephra

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high-to-intermediate levels of silica, with lesser amounts of less-viscous mafic magma. Extensive felsic lava flows are uncommon, but have travelled as far as 15 km (9 mi).

<span class="mw-page-title-main">Pumice</span> Light colored highly vesicular volcanic rock

Pumice, called pumicite in its powdered or dust form, is a volcanic rock that consists of highly vesicular rough-textured volcanic glass, which may or may not contain crystals. It is typically light-colored. Scoria is another vesicular volcanic rock that differs from pumice in having larger vesicles, thicker vesicle walls, and being dark colored and denser.

<span class="mw-page-title-main">Volcanic glass</span> Product of rapidly cooling magma

Volcanic glass is the amorphous (uncrystallized) product of rapidly cooling magma. Like all types of glass, it is a state of matter intermediate between the closely packed, highly ordered array of a crystal and the highly disordered array of liquid. Volcanic glass may refer to the interstitial material, or matrix, in an aphanitic (fine-grained) volcanic rock, or to any of several types of vitreous igneous rocks.

<span class="mw-page-title-main">Tephra</span> Fragmental material produced by a volcanic eruption

Tephra is fragmental material produced by a volcanic eruption regardless of composition, fragment size, or emplacement mechanism.

<span class="mw-page-title-main">Lapilli</span> Small pyroclast debris thrown in the air by a volcanic eruption

Lapilli is a size classification of tephra, which is material that falls out of the air during a volcanic eruption or during some meteorite impacts. Lapilli is Latin for "little stones".

<span class="mw-page-title-main">Scoria</span> Dark vesicular volcanic rock

Scoria is a pyroclastic, highly vesicular, dark-colored volcanic rock that was ejected from a volcano as a molten blob and cooled in the air to form discrete grains or clasts. It is typically dark in color, and basaltic or andesitic in composition. Scoria is relatively low in density as a result of its numerous macroscopic ellipsoidal vesicles, but in contrast to pumice, all scoria has a specific gravity greater than 1 and sinks in water.

<span class="mw-page-title-main">1980 eruption of Mount St. Helens</span> Major volcanic eruption in Skamania County, Washington, U.S.

On March 27, 1980, a series of volcanic explosions and pyroclastic flows began at Mount St. Helens in Skamania County, Washington, United States. A series of phreatic blasts occurred from the summit and escalated until a major explosive eruption took place on May 18, 1980, at 8:32 AM. The eruption, which had a Volcanic Explosivity Index of 5, was the most significant to occur in the contiguous United States since the much smaller 1915 eruption of Lassen Peak in California. It has often been declared the most disastrous volcanic eruption in U.S. history.

<span class="mw-page-title-main">2004–2008 volcanic activity of Mount St. Helens</span>

The 2004–2008 volcanic activity of Mount St. Helens in Washington, United States has been documented as a continuous eruption in the form of gradual extrusion of magma. Starting in October 2004 and ceasing in January 2008, a new lava dome was built up. The new dome did not rise above the rim of the crater created by the 1980 eruption of Mount St. Helens.

<span class="mw-page-title-main">Volcanic lightning</span> Lightning produced by a volcanic eruption

Volcanic lightning is an electrical discharge caused by a volcanic eruption rather than from an ordinary thunderstorm. Volcanic lightning arises from colliding, fragmenting particles of volcanic ash, which generate static electricity within the volcanic plume, leading to the name dirty thunderstorm. Moist convection and ice formation also drive the eruption plume dynamics and can trigger volcanic lightning. Unlike ordinary thunderstorms, volcanic lightning can also occur before any ice crystals have formed in the ash cloud.

<span class="mw-page-title-main">Maritime impacts of volcanic eruptions</span>

Volcanic eruptions can have various impacts on maritime transportation. When a volcano erupts, large amounts of noxious gases, steam, rock, and ash are released into the atmosphere; fine ash can be transported thousands of miles from the volcano, while high concentrations of coarse particles fall out of the air near the volcano. The high concentrations of hazardous toxic gases are localized in the immediate vicinity of the volcano.

<span class="mw-page-title-main">Volcanic hazards</span>

A volcanic hazard is the probability a volcanic eruption or related geophysical event will occur in a given geographic area and within a specified window of time. The risk that can be associated with a volcanic hazard depends on the proximity and vulnerability of an asset or a population of people near to where a volcanic event might occur.

The Mazama Ash is an extensive, geologically recent deposit of volcanic ash that is present throughout much of northern North America. The ash was ejected from Mount Mazama, a volcano in south-central Oregon, during its climactic eruption about 7640 ± 20 years ago when Crater Lake was formed by caldera collapse. The ash spread primarily to the north and east due to the prevailing winds, and remnants of the ash have been identified as far northeast as the Greenland ice sheet.

<span class="mw-page-title-main">Volcanic ash</span> Natural material created during volcanic eruptions

Volcanic ash consists of fragments of rock, mineral crystals, and volcanic glass, created during volcanic eruptions and measuring less than 2 mm (0.079 inches) in diameter. The term volcanic ash is also often loosely used to refer to all explosive eruption products, including particles larger than 2 mm. Volcanic ash is formed during explosive volcanic eruptions when dissolved gases in magma expand and escape violently into the atmosphere. The force of the gases shatters the magma and propels it into the atmosphere where it solidifies into fragments of volcanic rock and glass. Ash is also produced when magma comes into contact with water during phreatomagmatic eruptions, causing the water to explosively flash to steam leading to shattering of magma. Once in the air, ash is transported by wind up to thousands of kilometres away.

References

  1. "Mt St Helens Helenite (Obsidianite)". Pioneer Jewelers. Retrieved May 19, 2019.
  2. Lalaena Gonzalez-Figueroa (April 24, 2017). "What is Helenite?". Sciencing. Retrieved May 19, 2019.
  3. 1 2 3 Hobart M. King (2015). "Helenite". Geology.com. Retrieved May 19, 2019.