Pyrolite

Last updated

Pyrolite is a term used to characterize a model composition of the Earth's mantle. This model is based on that a pyrolite source can produce the Mid-Ocean Ridge Basalt by partial melting. [1] [2] It was first proposed by Ted Ringwood (1962) [3] as being 1 part basalt and 4 parts harzburgite, but later was revised to being 1 part tholeiitic basalt and 3 parts dunite. [1] [4] The term is derived from the mineral names PYR-oxene and OL-ivine. [5] However, whether pyrolite is representative of the Earth's mantle remains debated. [6]

Contents

Chemical composition and phase transition

Fig.1 The mineral volume fraction in a pyrolitic mantle up to 1000 km depth. Ol: olivine; Opx: orthopyroxene; Cpx: clinopyroxene; Gt: garnet; Wad: wadsleyite; Ring: ringwoodite; Pv: perovskite; Fp: ferropericlase; Ca-Pv: calcium perovskite. Phase diagram of pyrolite .jpg
Fig.1 The mineral volume fraction in a pyrolitic mantle up to 1000 km depth. Ol: olivine; Opx: orthopyroxene; Cpx: clinopyroxene; Gt: garnet; Wad: wadsleyite; Ring: ringwoodite; Pv: perovskite; Fp: ferropericlase; Ca-Pv: calcium perovskite.


The major elements composition of pyrolite is about 44.71 molar percent (mol%) SiO2, 3.98 % Al2O3, 8.18 % FeO, 3.17 % CaO, 38.73 % MgO, 0.13 % Na2O. [9]

1) A pyrolitic Upper Mantle is mainly composed of olivine (~60 volume percent (vol%)), clinopyroxene, orthopyroxene, and garnet. [7] Pyroxene would gradually dissolved into garnet and form majoritic garnet. [10]

2) A pyrolitic Mantle Transition Zone is mainly composed of 60 vol% olivine-polymorphs (wadsleyite, ringwoodite) and ~40 vol% majoritic garnet. The top and bottom boundary of the Mantle Transition zone are mainly marked by olivine-wadsleyite transition and ringwoodite-perovskite transition, respectively.

3) A pyrolitic Lower Mantle is mainly composed of magnesium perovskite (~80 vol%), ferroperclase (~13 vol%), and calcium perovskite (~7%). In addition, post-perovskite may present at the bottom of the Lower Mantle.

Seismic velocity and density properties

Fig. 2 Vp and Vs profiles of pyrolite along the 1600 K adiabatic geotherm Seismic velocities of pyrolite along the 1600 K adiabatic geotherm .jpg
Fig. 2 Vp and Vs profiles of pyrolite along the 1600 K adiabatic geotherm
Fig. 3 Density profile of pyrolite along the 1600 K adiabatic geotherm Densities of pyrolite.jpg
Fig. 3 Density profile of pyrolite along the 1600 K adiabatic geotherm

The P-wave and S-wave velocities (Vp and Vs) of pyrolite along the 1600 K adiabatic geotherm are shown in Fig. 2, [2] and its density profile is shown in Fig. 3. [2]

At the boundary between the Upper Mantle and the Mantle Transition Zone (~410 km), Vp, Vs, and density jump by ~6%, ~6%, and ~4% in a pyrolite model, [2] respectively, which are mainly attributed to the olivine-wadsleyite phase transition. [11]

At the boundary between the Mantle Transition Zone and the Lower Mantle, Vp, Vs, and density jump by ~3%, ~6%, and ~6% in a pyrolite model, respectively. [2] With more elasticity parameters available, the Vp, Vs, and density profiles of pyrolite would be updated.

Shortcomings

Whether pyrolite could represent the ambient mantle remains debated.

In the geochemical aspect, it does not satisfy trace elements or isotopic data of Mid-Ocean Ridge Basalts because the pyrolite hypothesis is based on major elements and some arbitrary assumptions (e.g. amounts of basalt and melting in the source). [1] It may also violate mantle heterogeneity. [12]

In the geophysical aspect, some studies suggest that seismic velocities of pyrolite do not match well with the observed global seismic models (such as PREM) in the Earth's interior, [6] whereas some studies support the pyrolite model. [13]

Other Mantle Rock models

Fig. 4. Mineral proportion of a MORB-transformed eclogite at 250-500 km depth Eclogite phase proportion.jpg
Fig. 4. Mineral proportion of a MORB-transformed eclogite at 250-500 km depth

There are other rock models for the Earth's mantle:

(1) Piclogite: by contrast to the olivine-enriched pyrolite, piclogite is an olivine-poor model (~20% olivine) proposed to provide a better match to the seismic velocity observations in the transition zone. [15] [16] The piclogite phase composition is similar as 20% olivine + 80% eclogite. [17]

(2) Eclogite, it is transformed from the Mid-Ocean Ridge Basalt at a depth of ~60 km,[ citation needed ] exists in the Earth's mantle mainly within the subducted slabs. It is mainly composed of garnet and clinopyroxene (mainly omphacite) up to ~500 km depth (Fig. 4).

(3) Harzburgite, it mainly exists under the Mid-Ocean Ridge basalt layer of the oceanic lithosphere, and can enter into the deep mantle along with the subducted oceanic lithosphere. Its phase composition is similar as pyrolite, but shows higher olivine proportion (~70 vol%) than pyrolite. [18]

Overall, pyrolite and piclogite are both rock models for the ambient mantle, eclogite and harzburgite are rock models for subducted oceanic lithosphere. Formed from partial melting of pyrolite, the oceanic lithosphere is mainly composed of the basalt layer, harzburgite layer, and depleted pyrolite from top to bottom. [19] The subducted oceanic lithospheres contribute to the heterogeneity in the Earth's mantle because they have different composition (eclogite and harzburgite) from the ambient mantle (pyrolite). [2] [14]

See also

Related Research Articles

<span class="mw-page-title-main">Lithosphere</span> Outermost shell of a terrestrial-type planet or natural satellite

A lithosphere is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the lithospheric mantle, the topmost portion of the upper mantle that behaves elastically on time scales of up to thousands of years or more. The crust and upper mantle are distinguished on the basis of chemistry and mineralogy.

<span class="mw-page-title-main">Asthenosphere</span> Highly viscous, mechanically weak, and ductile region of Earths mantle

The asthenosphere is the mechanically weak and ductile region of the upper mantle of Earth. It lies below the lithosphere, at a depth between ~80 and 200 km below the surface, and extends as deep as 700 km (430 mi). However, the lower boundary of the asthenosphere is not well defined.

<span class="mw-page-title-main">Subduction</span> A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year.

<span class="mw-page-title-main">Mantle plume</span> Upwelling of abnormally hot rock within Earths mantle

A mantle plume is a proposed mechanism of convection within the Earth's mantle, hypothesized to explain anomalous volcanism. Because the plume head partially melts on reaching shallow depths, a plume is often invoked as the cause of volcanic hotspots, such as Hawaii or Iceland, and large igneous provinces such as the Deccan and Siberian Traps. Some such volcanic regions lie far from tectonic plate boundaries, while others represent unusually large-volume volcanism near plate boundaries.

<span class="mw-page-title-main">Peridotite</span> Coarse-grained ultramafic igneous rock type

Peridotite ( PERR-ih-doh-tyte, pə-RID-ə-) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

<span class="mw-page-title-main">Eclogite</span> A dense metamorphic rock formed under high pressure

Eclogite is a metamorphic rock containing garnet (almandine-pyrope) hosted in a matrix of sodium-rich pyroxene (omphacite). Accessory minerals include kyanite, rutile, quartz, lawsonite, coesite, amphibole, phengite, paragonite, zoisite, dolomite, corundum and, rarely, diamond. The chemistry of primary and accessory minerals is used to classify three types of eclogite. The broad range of eclogitic compositions has led to a longstanding debate on the origin of eclogite xenoliths as subducted, altered oceanic crust.

<span class="mw-page-title-main">Earth's mantle</span> A layer of silicate rock between Earths crust and its outer core

Earth's mantle is a layer of silicate rock between the crust and the outer core. It has a mass of 4.01×1024 kg (8.84×1024 lb) and thus makes up 67% of the mass of Earth. It has a thickness of 2,900 kilometers (1,800 mi) making up about 46% of Earth's radius and 84% of Earth's volume. It is predominantly solid but, on geologic time scales, it behaves as a viscous fluid, sometimes described as having the consistency of caramel. Partial melting of the mantle at mid-ocean ridges produces oceanic crust, and partial melting of the mantle at subduction zones produces continental crust.

<span class="mw-page-title-main">Iceland hotspot</span> Hotspot partly responsible for volcanic activity forming the Iceland Plateau and island

The Iceland hotspot is a hotspot which is partly responsible for the high volcanic activity which has formed the Iceland Plateau and the island of Iceland.

<span class="mw-page-title-main">Omphacite</span> Member of the clinopyroxene group of silicate minerals

Omphacite is a member of the clinopyroxene group of silicate minerals with formula: (Ca, Na)(Mg, Fe2+, Al)Si2O6. It is a variably deep to pale green or nearly colorless variety of clinopyroxene. It normally appears in eclogite, which is the high-pressure metamorphic rock of basalt. Omphacite is the solid solution of Fe-bearing diopside and jadeite. It crystallizes in the monoclinic system with prismatic, typically twinned forms, though usually anhedral. Its space group can be P2/n or C2/c depending on the thermal history. It exhibits the typical near 90° pyroxene cleavage. It is brittle with specific gravity of 3.29 to 3.39 and a Mohs hardness of 5 to 6.

The transition zone is part of the Earth's mantle, and is located between the lower mantle and the upper mantle, between a depth of 410 and 660 km. The Earth's mantle, including the transition zone, consists primarily of peridotite, an ultramafic igneous rock.

<span class="mw-page-title-main">Sanukitoid</span>

Sanukitoids are a variety of high-Mg granitoid found in convergent margin settings. The term "sanukitoid" was originally used to define a variety of Archean plutonic rock, but now also includes younger rocks with similar geochemical characteristics. They are called "sanukitoid" because of their similarity in bulk chemical composition to high-magnesium andesite from the Setouchi Peninsula of Japan, known as "sanukites" or "setouchites". Sanukite rocks are an andesite characterized by orthopyroxene as the mafic mineral, andesine as the plagioclase, and a glassy groundmass. Rocks formed by processes similar to those of sanukite may have compositions outside the sanukitoid field.

<span class="mw-page-title-main">Mantle convection</span> Gradual movement of the planets mantle

Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. Mantle convection causes tectonic plates to move around the Earth's surface.

<span class="mw-page-title-main">Wadsleyite</span> Mineral thought to be abundant in the Earths mantle

Wadsleyite is an orthorhombic mineral with the formula β-(Mg,Fe)2SiO4. It was first found in nature in the Peace River meteorite from Alberta, Canada. It is formed by a phase transformation from olivine (α-(Mg,Fe)2SiO4) under increasing pressure and eventually transforms into spinel-structured ringwoodite (γ-(Mg,Fe)2SiO4) as pressure increases further. The structure can take up a limited amount of other bivalent cations instead of magnesium, but contrary to the α and γ structures, a β structure with the sum formula Fe2SiO4 is not thermodynamically stable. Its cell parameters are approximately a = 5.7 Å, b = 11.71 Å and c = 8.24 Å.

<span class="mw-page-title-main">Ringwoodite</span> High-pressure phase of magnesium silicate

Ringwoodite is a high-pressure phase of Mg2SiO4 (magnesium silicate) formed at high temperatures and pressures of the Earth's mantle between 525 and 660 km (326 and 410 mi) depth. It may also contain iron and hydrogen. It is polymorphous with the olivine phase forsterite (a magnesium iron silicate).

Non-volcanic passive margins (NVPM) constitute one end member of the transitional crustal types that lie beneath passive continental margins; the other end member being volcanic passive margins (VPM). Transitional crust welds continental crust to oceanic crust along the lines of continental break-up. Both VPM and NVPM form during rifting, when a continent rifts to form a new ocean basin. NVPM are different from VPM because of a lack of volcanism. Instead of intrusive magmatic structures, the transitional crust is composed of stretched continental crust and exhumed upper mantle. NVPM are typically submerged and buried beneath thick sediments, so they must be studied using geophysical techniques or drilling. NVPM have diagnostic seismic, gravity, and magnetic characteristics that can be used to distinguish them from VPM and for demarcating the transition between continental and oceanic crust.

<span class="mw-page-title-main">Slab (geology)</span> The portion of a tectonic plate that is being subducted

In geology, the slab is a significant constituent of subduction zones.

<span class="mw-page-title-main">Crustal recycling</span> Tectonic recycling process

Crustal recycling is a tectonic process by which surface material from the lithosphere is recycled into the mantle by subduction erosion or delamination. The subducting slabs carry volatile compounds and water into the mantle, as well as crustal material with an isotopic signature different from that of primitive mantle. Identification of this crustal signature in mantle-derived rocks is proof of crustal recycling.

<span class="mw-page-title-main">Large low-shear-velocity provinces</span> Structures of the Earths mantle

Large low-shear-velocity provinces, LLSVPs, also called LLVPs or superplumes, are characteristic structures of parts of the lowermost mantle, the region surrounding the outer core deep inside the Earth. These provinces are characterized by slow shear wave velocities and were discovered by seismic tomography of deep Earth. There are two main provinces: the African LLSVP and the Pacific LLSVP. Both extend laterally for thousands of kilometers and possibly up to 1,000 kilometres vertically from the core–mantle boundary. The Pacific LLSVP is 3,000 kilometers across and underlies four hotspots on Earth's crust that suggest multiple mantle plumes underneath. These zones represent around 8% of the volume of the mantle, or 6% of the entire Earth.

The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust and ends at the top of the lower mantle at 670 km (420 mi). Temperatures range from approximately 500 K at the upper boundary with the crust to approximately 1,200 K at the boundary with the lower mantle. Upper mantle material that has come up onto the surface comprises about 55% olivine, 35% pyroxene, and 5 to 10% of calcium oxide and aluminum oxide minerals such as plagioclase, spinel, or garnet, depending upon depth.

<span class="mw-page-title-main">Seismic velocity structure</span> Seismic wave velocity variation

Seismic velocity structure is the distribution and variation of seismic wave speeds within Earth's and other planetary bodies' subsurface. It is reflective of subsurface properties such as material composition, density, porosity, and temperature. Geophysicists rely on the analysis and interpretation of the velocity structure to develop refined models of the subsurface geology, which are essential in resource exploration, earthquake seismology, and advancing our understanding of Earth's geological development.

References

  1. 1 2 3 Anderson, Don L. (1989-01-01). Theory of the Earth. Boston, MA: Blackwell Scientific Publications. ISBN   978-0-86542-335-0.
  2. 1 2 3 4 5 6 7 8 Xu, Wenbo; Lithgow-Bertelloni, Carolina; Stixrude, Lars; Ritsema, Jeroen (October 2008). "The effect of bulk composition and temperature on mantle seismic structure". Earth and Planetary Science Letters. 275 (1–2): 70–79. Bibcode:2008E&PSL.275...70X. doi:10.1016/j.epsl.2008.08.012. ISSN   0012-821X.
  3. Ringwood, A. E. (Feb 1962). "A model for the upper mantle". Journal of Geophysical Research. 67 (2): 857–867. Bibcode:1962JGR....67..857R. doi:10.1029/jz067i002p00857. ISSN   0148-0227.
  4. Ringwood, A.E.; Major, Alan (Sep 1966). "High-pressure transformations in pyroxenes". Earth and Planetary Science Letters. 1 (5): 351–357. Bibcode:1966E&PSL...1..351R. doi:10.1016/0012-821x(66)90023-9. ISSN   0012-821X.
  5. D.H. Green. Pyrolite. In: Petrology. Encyclopedia of Earth Science. Springer, 1989
  6. 1 2 Katsura, Tomoo; Shatskiy, Anton; Manthilake, M. A. Geeth M.; Zhai, Shuangmeng; Yamazaki, Daisuke; Matsuzaki, Takuya; Yoshino, Takashi; Yoneda, Akira; Ito, Eiji; Sugita, Mitsuhiro; Tomioka, Natotaka (2009-06-12). "P-V-Trelations of wadsleyite determined by in situ X-ray diffraction in a large-volume high-pressure apparatus". Geophysical Research Letters. 36 (11). Bibcode:2009GeoRL..3611307K. doi: 10.1029/2009gl038107 . ISSN   0094-8276.
  7. 1 2 Frost, Daniel J. (2008-06-01). "The Upper Mantle and Transition Zone". Elements. 4 (3): 171–176. doi:10.2113/GSELEMENTS.4.3.171. ISSN   1811-5209. S2CID   129527426.
  8. Stixrude, Lars; Lithgow‐Bertelloni, Carolina (2005). "Mineralogy and elasticity of the oceanic upper mantle: Origin of the low-velocity zone". Journal of Geophysical Research: Solid Earth. 110 (B3). Bibcode:2005JGRB..110.3204S. doi: 10.1029/2004JB002965 . hdl: 2027.42/94924 . ISSN   2156-2202.
  9. Workman, Rhea K.; Hart, Stanley R. (Feb 2005). "Major and trace element composition of the depleted MORB mantle (DMM)". Earth and Planetary Science Letters. 231 (1–2): 53–72. Bibcode:2005E&PSL.231...53W. doi:10.1016/j.epsl.2004.12.005. ISSN   0012-821X.
  10. Irifune, Tetsuo (May 1987). "An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle". Physics of the Earth and Planetary Interiors. 45 (4): 324–336. Bibcode:1987PEPI...45..324I. doi:10.1016/0031-9201(87)90040-9. ISSN   0031-9201.
  11. SAWAMOTO, H.; WEIDNER, D. J.; SASAKI, S.; KUMAZAWA, M. (1984-05-18). "Single-Crystal Elastic Properties of the Modified Spinel (Beta) Phase of Magnesium Orthosilicate". Science. 224 (4650): 749–751. Bibcode:1984Sci...224..749S. doi:10.1126/science.224.4650.749. ISSN   0036-8075. PMID   17780624. S2CID   6602306.
  12. Don L. Anderson, New Theory of the Earth, Cambridge University Press, 2nd ed. 2007, p. 193 ISBN   978-0-521-84959-3
  13. Irifune, T.; Higo, Y.; Inoue, T.; Kono, Y.; Ohfuji, H.; Funakoshi, K. (2008). "Sound velocities of majorite garnet and the composition of the mantle transition region". Nature. 451 (7180): 814–817. Bibcode:2008Natur.451..814I. doi:10.1038/nature06551. ISSN   0028-0836. PMID   18273016. S2CID   205212051.
  14. 1 2 Hao, Ming; Zhang, Jin S.; Pierotti, Caroline E.; Zhou, Wen-Yi; Zhang, Dongzhou; Dera, Przemyslaw (Aug 2020). "The seismically fastest chemical heterogeneity in the Earth's deep upper mantle—implications from the single-crystal thermoelastic properties of jadeite". Earth and Planetary Science Letters. 543: 116345. Bibcode:2020E&PSL.54316345H. doi: 10.1016/j.epsl.2020.116345 . ISSN   0012-821X.
  15. Bass, Jay D.; Anderson, Don L. (Mar 1984). "Composition of the upper mantle: Geophysical tests of two petrological models". Geophysical Research Letters. 11 (3): 229–232. Bibcode:1984GeoRL..11..229B. doi:10.1029/gl011i003p00229. ISSN   0094-8276.
  16. Bass, Jay D.; Anderson, Don L. (1988), "Composition of the upper mantle: Geophysical tests of two petrological models", Elastic Properties and Equations of State, Washington, D. C.: American Geophysical Union, pp. 513–516, doi:10.1029/sp026p0513, ISBN   0-87590-240-5 , retrieved 2020-10-03
  17. Irifunea, T.; Ringwood, A. E. (1987), "Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications", High‐Pressure Research in Mineral Physics: A Volume in Honor of Syun‐iti Akimoto, Washington, D. C.: American Geophysical Union, vol. 39, pp. 231–242, Bibcode:1987GMS....39..231I, doi:10.1029/gm039p0231, ISBN   0-87590-066-6 , retrieved 2020-10-03
  18. Ishii, Takayuki; Kojitani, Hiroshi; Akaogi, Masaki (Apr 2019). "Phase Relations of Harzburgite and MORB up to the Uppermost Lower Mantle Conditions: Precise Comparison With Pyrolite by Multisample Cell High‐Pressure Experiments With Implication to Dynamics of Subducted Slabs". Journal of Geophysical Research: Solid Earth. 124 (4): 3491–3507. Bibcode:2019JGRB..124.3491I. doi:10.1029/2018jb016749. ISSN   2169-9313. S2CID   146787786.
  19. Ringwood, A. E.; Irifune, T. (Jan 1988). "Nature of the 650–km seismic discontinuity: implications for mantle dynamics and differentiation". Nature. 331 (6152): 131–136. Bibcode:1988Natur.331..131R. doi:10.1038/331131a0. ISSN   1476-4687. S2CID   4323081.