Plating

Last updated

Plating is a finishing process in which a metal is deposited on a surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.

Contents

Thin-film deposition has plated objects as small as an atom, [1] therefore plating finds uses in nanotechnology.

There are several plating methods, and many variations. In one method, a solid surface is covered with a metal sheet, and then heat and pressure are applied to fuse them (a version of this is Sheffield plate). Other plating techniques include electroplating, vapor deposition under vacuum and sputter deposition. Recently, plating often refers to using liquids. Metallizing refers to coating metal on non-metallic objects.

Electroplating

In electroplating, an ionic metal is supplied with electrons to form a non-ionic coating on a substrate. A common system involves a chemical solution with the ionic form of the metal, an anode (positively charged) which may consist of the metal being plated (a soluble anode) or an insoluble anode (usually carbon, platinum, titanium, lead, or steel), and finally, a cathode (negatively charged) where electrons are supplied to produce a film of non-ionic metal.

Electroless deposition

Electroless deposition, also known as chemical or auto-catalytic plating, is a non-galvanic plating method that involves several simultaneous reactions in an aqueous solution, which occur without the use of external electrical power. The reaction is accomplished when hydrogen is released by a reducing agent, normally sodium hypophosphite (Note: the hydrogen leaves as a hydride ion) or thiourea, and oxidized, thus producing a negative charge on the surface of the part. The most common electroless deposition method is electroless nickel plating, although silver, gold and copper layers can also be applied in this manner, as in the technique of angel gilding.

Specific cases

Gold plating

Gold plating is a method of depositing a thin layer of gold on the surface of glass or metal, most often copper or silver.

Gold plating is often used in electronics, to provide a corrosion-resistant electrically conductive layer on copper, typically in electrical connectors and printed circuit boards. With direct gold-on-copper plating, the copper atoms have the tendency to diffuse through the gold layer, causing tarnishing of its surface and formation of an oxide/sulfide layer. Therefore, a layer of a suitable barrier metal, usually nickel, has to be deposited on the copper substrate, forming a copper-nickel-gold sandwich.

Metals and glass may also be coated with gold for ornamental purposes, using a number of different processes usually referred to as gilding .

Sapphires, plastics, and carbon fiber are some other materials that are able to be plated using advance plating techniques. The substrates that can be used are almost limitless. [2]

Silver plating

A silver-plated alto saxophone KeilwerthAltoSax.JPG
A silver-plated alto saxophone
This bracelet has zircon gemstones. The metal is zinc alloy base with silver coating. Zircon Bracelet.jpg
This bracelet has zircon gemstones. The metal is zinc alloy base with silver coating.

Silver plating has been used since the 18th century to provide cheaper versions of household items that would otherwise be made of solid silver, including cutlery, vessels of various kinds, and candlesticks. In the UK the assay offices, and silver dealers and collectors, use the term "silver plate" for items made from solid silver, derived long before silver plating was invented from the Spanish word for silver "plata", seizures of silver from Spanish ships carrying silver from America being a large source of silver at the time. This can cause confusion when talking about silver items; plate or plated. In the UK it is illegal to describe silver-plated items as "silver". It is not illegal to describe silver-plated items as "silver plate", although this is ungrammatical.

The earliest form of silver plating was Sheffield Plate, where thin sheets of silver are fused to a layer or core of base metal, but in the 19th century new methods of production (including electroplating) were introduced. Britannia metal is an alloy of tin, antimony and copper developed as a base metal for plating with silver.

Another method that can be used to apply a thin layer of silver to objects such as glass, is to place Tollens' reagent in a glass, add glucose/dextrose, and shake the bottle to promote the reaction.

AgNO3 + KOH → AgOH + KNO3
AgOH + 2 NH3 → [Ag(NH3)2]+ + [OH] (Note: see Tollens' reagent)
[Ag(NH3)2]+ + [OH] + aldehyde (usually glucose/dextrose) → Ag + 2 NH3 + H2O

For applications in electronics, silver is sometimes used for plating copper, as its electrical resistance is lower (see Resistivity of various materials); more so at higher frequencies due to the skin effect. Variable capacitors are considered of the highest quality when they have silver-plated plates. Similarly, silver-plated, or even solid silver cables, are prized in audiophile applications; however some experts consider that in practice the plating is often poorly implemented, making the result inferior to similarly priced copper cables. [3]

Care should be used for parts exposed to high humidity environments because in such environments, when the silver layer is porous or contains cracks, the underlying copper undergoes rapid galvanic corrosion, flaking off the plating and exposing the copper itself; a process known as red plague. Silver plated copper maintained in a moisture-free environment will not undergo this type of corrosion.

Copper plating

Copper plating is the process of electrolytically forming a layer of copper on the surface of an item. It is commonly used as an even cheaper alternative to silver plating as it is much cheaper than silver.

Rhodium plating

Rhodium plating is occasionally used on white gold, silver or copper and its alloys. A barrier layer of nickel is usually deposited on silver first, though in this case it is not to prevent migration of silver through rhodium, but to prevent contamination of the rhodium bath with silver and copper, which slightly dissolve in the sulfuric acid usually present in the bath composition. [4]

Chrome plating

Chrome plating is a finishing treatment using the electrolytic deposition of chromium. The most common form of chrome plating is the thin, decorative bright chrome, which is typically a 10-μm layer over an underlying nickel plate. When plating on iron or steel, an underlying plating of copper allows the nickel to adhere. The pores (tiny holes) in the nickel and chromium layers work to alleviate stress caused by thermal expansion mismatch but also hurt the corrosion resistance of the coating. Corrosion resistance relies on what is called the passivation layer, which is determined by the chemical composition and processing, and is damaged by cracks and pores. In a special case, micropores can help distribute the electrochemical potential that accelerates galvanic corrosion between the layers of nickel and chromium. Depending on the application, coatings of different thicknesses will require different balances of the aforementioned properties. Thin, bright chrome imparts a mirror-like finish to items such as metal furniture frames and automotive trim. Thicker deposits, up to 1000 μm, are called hard chrome and are used in industrial equipment to reduce friction and wear.

The traditional solution used for industrial hard chrome plating is made up of about 250 g/L of CrO3 and about 2.5 g/L of SO4. In solution, the chrome exists as chromic acid, known as hexavalent chromium. A high current is used, in part to stabilize a thin layer of chromium(+2) at the surface of the plated work. Acid chrome has poor throwing power, fine details or holes are further away and receive less current resulting in poor plating.

Zinc plating

Zinc coatings prevent oxidation of the protected metal by forming a barrier and by acting as a sacrificial anode if this barrier is damaged. Zinc oxide is a fine white dust that (in contrast to iron oxide) does not cause a breakdown of the substrate's surface integrity as it is formed. Indeed, the zinc oxide, if undisturbed, can act as a barrier to further oxidation, in a way similar to the protection afforded to aluminum and stainless steels by their oxide layers. The majority of hardware parts are zinc-plated, rather than cadmium-plated. [5]

Zinc-nickel plating

Zinc-nickel plating is one of the best corrosion resistant finishes available offering over 5 times the protection of conventional zinc plating and up to 1,500 hours of neutral salt spray test performance. This plating is a combination of a high-nickel zinc-nickel alloy (10–15% nickel) and some variation of chromate. The most common mixed chromates include hexavalent iridescent, trivalent or black trivalent chromate. Used to protect steel, cast iron, brass, copper, and other materials, this acidic plating is an environmentally safe option. [6] Hexavalent chromate has been classified as a human carcinogen by the EPA and OSHA. [7] [8]

Tin plating

The tin-plating process is used extensively to protect both ferrous and nonferrous surfaces. Tin is a useful metal for the food processing industry since it is non-toxic, ductile and corrosion resistant. The excellent ductility of tin allows a tin coated base metal sheet to be formed into a variety of shapes without damage to the surface tin layer. It provides sacrificial protection for copper, nickel and other non-ferrous metals, but not for steel.

Tin is also widely used in the electronics industry because of its ability to protect the base metal from oxidation thus preserving its solderability. In electronic applications, 3% to 7% lead may be added to improve solderability and to prevent the growth of metallic "whiskers" in compression stressed deposits, which would otherwise cause electrical shorting. However, RoHS (Restriction of Hazardous Substances) regulations enacted beginning in 2006 require that no lead be added intentionally and that the maximum percentage not exceed 1%. Some exemptions have been issued to RoHS requirements in critical electronics applications due to failures which are known to have occurred as a result of tin whisker formation.

Alloy plating

In some cases, it is desirable to co-deposit two or more metals resulting in an electroplated alloy deposit. Depending on the alloy system, an electroplated alloy may be solid solution strengthened or precipitation hardened by heat treatment to improve the plating's physical and chemical properties. Nickel-Cobalt is a common electroplated alloy.

Composite plating

Metal matrix composite plating can be manufactured when a substrate is plated in a bath containing a suspension of ceramic particles. Careful selection of the size and composition of the particles can fine-tune the deposit for wear resistance, high temperature performance, or mechanical strength. Tungsten carbide, silicon carbide, chromium carbide, and aluminum oxide (alumina) are commonly used in composite electroplating.

Cadmium plating

Cadmium plating is under scrutiny because of the environmental toxicity of the cadmium metal. Cadmium plating is widely used in some applications in the aerospace, military, and aviation fields. However, it is being phased out due to its toxicity. [9] Military and Aerospace components manufacturers, such as Amphenol Aerospace, have recently been exploring drop-in electroplating replacements for use with currently fielded equipment in order to support the phaseout of the dangerous finish. [10]

Cadmium plating (or cad. plating) offers a long list of technical advantages such as excellent corrosion resistance even at relatively low thickness and in salt atmospheres, softness and malleability, freedom from sticky and/or bulky corrosion products, galvanic compatibility with aluminum, freedom from stick-slip thus allowing reliable torquing of plated threads, can be dyed to many colors and clear, has good lubricity and solderability, and works well either as a final finish or as a paint base. [5] [11]

If environmental concerns matter, in most aspects cadmium plating can be directly replaced with gold plating as it shares most of the material properties, but gold is more expensive and cannot serve as a paint base.

Nickel plating

Nickel is electroplated by using a Watts bath, an electrolytic cell having a nickel anode and electrolyte containing nickel sulfate, nickel chloride, and boric acid. [12] Other nickel salts such as nickel ammonium sulfate are sometimes used instead of nickel sulfate.

Electroless nickel plating

Electroless nickel plating, also known as enickel and NiP, offers many advantages: uniform layer thickness over most complicated surfaces, direct plating of ferrous metals (steel), superior wear and corrosion resistance compared to electroplated nickel or chrome. Much of the chrome plating done in aerospace industry can be replaced with electroless nickel plating, again environmental costs, costs of hexavalent chromium waste disposal and notorious tendency of uneven current distribution favor electroless nickel plating. [13]

Electroless nickel plating is self-catalyzing process, the resultant nickel layer is NiP compound, with 7–11% phosphorus content. Properties of the resultant layer hardness and wear resistance are greatly altered with bath composition and deposition temperature, which should be regulated with 1 °C precision, typically at 91 °C.

During bath circulation, any particles in it will become also nickel-plated; this effect is used to advantage in processes which deposit plating with particles like silicon carbide (SiC) or polytetrafluoroethylene (PTFE). While superior compared to many other plating processes, it is expensive because the process is complex. Moreover, the process is lengthy even for thin layers. When only corrosion resistance or surface treatment is of concern, very strict bath composition and temperature control is not required and the process is used for plating many tons in one bath at once.

Electroless nickel plating layers are known to provide extreme surface adhesion when plated properly. Electroless nickel plating is non-magnetic and amorphous. Electroless nickel plating layers are not easily solderable, nor do they seize with other metals or another electroless nickel-plated workpiece under pressure. This effect benefits electroless nickel-plated screws made out of malleable materials like titanium. Electrical resistance is higher compared to pure metal plating.

Aluminum plating

"Aluminum plating" can refer to either plating on aluminum [14] or the plating of aluminum on other materials. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Chromium</span> Chemical element with atomic number 24 (Cr)

Chromium is a chemical element; it has symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.

<span class="mw-page-title-main">Solder</span> Alloy used to join metal pieces

Solder is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable for use as solder should have a lower melting point than the pieces to be joined. The solder should also be resistant to oxidative and corrosive effects that would degrade the joint over time. Solder used in making electrical connections also needs to have favorable electrical characteristics.

<span class="mw-page-title-main">Electroplating</span> Creation of protective or decorative metallic coating on other metal with electric current

Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be coated acts as the cathode of an electrolytic cell; the electrolyte is a solution of a salt of the metal to be coated, and the anode is usually either a block of that metal, or of some inert conductive material. The current is provided by an external power supply.

In physical chemistry and engineering, passivation is coating a material so that it becomes "passive", that is, less readily affected or corroded by the environment. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shield against corrosion. Passivation of silicon is used during fabrication of microelectronic devices. Undesired passivation of electrodes, called "fouling", increases the circuit resistance so it interferes with some electrochemical applications such as electrocoagulation for wastewater treatment, amperometric chemical sensing, and electrochemical synthesis.

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

<span class="mw-page-title-main">Chrome plating</span> Technique of electroplating

Chrome plating is a technique of electroplating a thin layer of chromium onto a metal object. A chrome plated part is called chrome, or is said to have been chromed. The chromium layer can be decorative, provide corrosion resistance, facilitate cleaning, and increase surface hardness. Sometimes, a less expensive substitute for chrome, such as nickel may be used for aesthetic purposes.

<span class="mw-page-title-main">Anodizing</span> Metal treatment process

Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.

<span class="mw-page-title-main">Copper electroplating</span> Process of electroplating copper

Copper electroplating is the process of electroplating a layer of copper onto the surface of a metal object. Copper is used both as a standalone coating and as an undercoat onto which other metals are subsequently plated. The copper layer can be decorative, provide corrosion resistance, increase electrical and thermal conductivity, or improve the adhesion of additional deposits to the substrate.

<span class="mw-page-title-main">Gold plating</span> Coating an object with a thin layer of gold

Gold plating is a method of depositing a thin layer of gold onto the surface of another metal, most often copper or silver, by a chemical or electrochemical (electroplating) process. Plating refers to modern coating methods, such as the ones used in the electronics industry, whereas gilding is the decorative covering of an object with gold, which typically involve more traditional methods and much larger objects.

<span class="mw-page-title-main">Metallizing</span>

Metallizing is the general name for the technique of coating metal on the surface of objects. Metallic coatings may be decorative, protective or functional.

<span class="mw-page-title-main">Electroless deposition</span>

Electroless deposition (ED) or electroless plating is defined as the autocatalytic process through which metals and metal alloys are deposited onto conductive and nonconductive surfaces. These nonconductive surfaces include plastics, ceramics, and glass etc., which can then become decorative, anti-corrosive, and conductive depending on their final functions. Electroplating, unlike electroless deposition, only deposits on other conductive or semi-conductive materials when an external current is applied. Electroless deposition deposits metals onto 2D and 3D structures such as screws, nanofibers, and carbon nanotubes, unlike other plating methods such as Physical Vapor Deposition ( PVD), Chemical Vapor Deposition (CVD), and electroplating, which are limited to 2D surfaces. Commonly the surface of the substrate is characterized via pXRD, SEM-EDS, and XPS which relay set parameters based their final funtionality. These parameters are referred to a Key Performance Indicators crucial for a researcher’ or company's purpose. Electroless deposition continues to rise in importance within the microelectronic industry, oil and gas, and aerospace industry.

<span class="mw-page-title-main">Chromate conversion coating</span> Chemical treatment of metals

Chromate conversion coating or alodine coating is a type of conversion coating used to passivate steel, aluminium, zinc, cadmium, copper, silver, titanium, magnesium, and tin alloys. The coating serves as a corrosion inhibitor, as a primer to improve the adherence of paints and adhesives, as a decorative finish, or to preserve electrical conductivity. It also provides some resistance to abrasion and light chemical attack on soft metals.

<span class="mw-page-title-main">Electroless nickel-phosphorus plating</span> Chemical-induced nickel coating of a surface

Electroless nickel-phosphorus plating, also referred to as E-nickel, is a chemical process that deposits an even layer of nickel-phosphorus alloy on the surface of a solid substrate, like metal or plastic. The process involves dipping the substrate in a water solution containing nickel salt and a phosphorus-containing reducing agent, usually a hypophosphite salt. It is the most common version of electroless nickel plating and is often referred by that name. A similar process uses a borohydride reducing agent, yielding a nickel-boron coating instead.

Electrogalvanizing is a process in which a layer of zinc is bonded to steel in order to protect against corrosion. The process involves electroplating, running a current of electricity through a saline/zinc solution with a zinc anode and steel conductor. Such Zinc electroplating or Zinc alloy electroplating maintains a dominant position among other electroplating process options, based upon electroplated tonnage per annum. According to the International Zinc Association, more than 5 million tons are used yearly for both hot dip galvanizing and electroplating. The plating of zinc was developed at the beginning of the 20th century. At that time, the electrolyte was cyanide based. A significant innovation occurred in the 1960s, with the introduction of the first acid chloride based electrolyte. The 1980s saw a return to alkaline electrolytes, only this time, without the use of cyanide. The most commonly used electrogalvanized cold rolled steel is SECC, acronym of "Steel, Electrogalvanized, Cold-rolled, Commercial quality". Compared to hot dip galvanizing, electroplated zinc offers these significant advantages:

Electroless nickel immersion gold (ENIG or ENi/IAu), also known as immersion gold (Au), chemical Ni/Au or soft gold, is a metal plating process used in the manufacture of printed circuit boards (PCBs), to avoid oxidation and improve the solderability of copper contacts and plated through-holes. It consists of an electroless nickel plating, covered with a thin layer of gold, which protects the nickel from oxidation. The gold is typically applied by quick immersion in a solution containing gold salts. Some of the nickel is oxidized to Ni2+ while the gold is reduced to metallic state. A variant of this process adds a thin layer of electroless palladium over the nickel, a process known by the acronym ENEPIG.

Nickel electroplating is a technique of electroplating a thin layer of nickel onto a metal object. The nickel layer can be decorative, provide corrosion resistance, wear resistance, or used to build up worn or undersized parts for salvage purposes.

<span class="mw-page-title-main">Materials for use in vacuum</span>

Materials for use in vacuum are materials that show very low rates of outgassing in vacuum and, where applicable, are tolerant to bake-out temperatures. The requirements grow increasingly stringent with the desired degree of vacuum to be achieved in the vacuum chamber. The materials can produce gas by several mechanisms. Molecules of gases and water can be adsorbed on the material surface. Materials may sublimate in vacuum. Or the gases can be released from porous materials or from cracks and crevices. Traces of lubricants, residues from machining, can be present on the surfaces. A specific risk is outgassing of solvents absorbed in plastics after cleaning.

<span class="mw-page-title-main">Chemical coloring of metals</span> Process of changing the color of metal surfaces with different chemical solutions

Chemical coloring of metals is the process of changing the color of metal surfaces with different chemical solutions.

<span class="mw-page-title-main">Electrochemical coloring of metals</span>

Electrochemical coloring of metals is a process in which the surface color of metal is changed by electrochemical techniques, i.e. cathodic or anodic polarization. The first method of electrochemical coloring of metals are certainly Nobili's colored rings, discovered by Leopoldo Nobili, an Italian physicist in 1826. In addition to the multicolored coatings mentioned, he has also been able to obtain monochrome coatings, and he called that technique metallocromia. Electrochemical coloring of metals based processes are black, green and blue nickel plating, black chromium plating, black rhodium plating and black ruthenium plating. Anodic oxidation of aluminum, titanium, niobium, tantalum and stainless steel are also electrochemical colouring processes. Multi-colored and green electrolytic patinas for copper and its alloys are also significant.

References

  1. Kuo, Hong-Shi; Hwang, Ing-Shouh; Fu, Tsu-Yi; Lin, Yu-Chun; Chang, Che-Cheng; Tsong, Tien T. (7 November 2006). "Noble Metal/W(111) Single-Atom Tips and Their Field Electron and Ion Emission Characteristics". Japanese Journal of Applied Physics. 45 (11): 8972–8983. Bibcode:2006JaJAP..45.8972K. doi:10.1143/JJAP.45.8972.
  2. "Plating on Plastics". Epner Technology, Inc. Archived from the original on 2013-11-01. Retrieved 2013-10-30.
  3. Clint DeBoer (2009-07-23). "Silver Saboteurs - Are Silver Audio Cables Better?". Audioholics. Archived from the original on 2012-01-30. Retrieved 2011-12-11.
  4. Pushpavanam, M; Raman, V; Shenoi, B (1981). "Rhodium — Electrodeposition and applications". Surface Technology. 12 (4): 351. doi:10.1016/0376-4583(81)90029-7.
  5. 1 2 "Cadmium vs. Zinc vs. Nickel Plating Comparison Archived 2009-05-15 at the Wayback Machine " Finishing.com
  6. Inc., Gatto Industrial Platers. "Zinc Nickel Plating - Zinc Nickel Electroplating - Gatto Industrial Platers, Inc". www.gattoplaters.com. Archived from the original on 2016-02-07.{{cite web}}: |last= has generic name (help)
  7. "Health Effects Notebook for Hazardous Air Pollutants". EPA.gov. 25 April 2016. Retrieved 2020-03-03.
  8. "Chemical Sampling Information - Chromium (VI) (Hexavalent Chromium) - Occupational Safety and Health Administration". www.osha.gov. Archived from the original on 2016-03-05.
  9. Why use cadmium plated fasteners in the aeronautical field Archived 2008-07-02 at the Wayback Machine . finishing.com
  10. "Summary of Cadmium's Compatibility with Dissimilar Metal Finishes".
  11. Cadmium plating Archived 2008-10-01 at the Wayback Machine . Erie Plating Company
  12. "Watts Nickel Bath: Basis for Modern Nickel Plating". Asterion Inc. Retrieved 6 July 2022.
  13. Kanigen Archived 2011-07-20 at the Wayback Machine . schnarr.eu
  14. "Plating on Aluminum Base Materials". SPC Surface Treatment Experts.
  15. "Materials Plated". AlumiPlate.