An anode usually is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, which is usually an electrode of the device through which conventional current leaves the device. A common mnemonic is ACID, for "anode current into device". [1] The direction of conventional current (the flow of positive charges) in a circuit is opposite to the direction of electron flow, so (negatively charged) electrons flow from the anode of a galvanic cell, into an outside or external circuit connected to the cell. For example, the end of a household battery marked with a "+" is the cathode (while discharging).
In both a galvanic cell and an electrolytic cell, the anode is the electrode at which the oxidation reaction occurs. In a galvanic cell the anode is the wire or plate having excess negative charge as a result of the oxidation reaction. In an electrolytic cell, the anode is the wire or plate upon which excess positive charge is imposed. [2] As a result of this, anions will tend to move towards the anode where they will undergo oxidation.
Historically, the anode of a galvanic cell was also known as the zincode because it was usually composed of zinc. [3] [4] : pg. 209, 214
The terms anode and cathode are not defined by the voltage polarity of electrodes, but are usually defined by the direction of current through the electrode. An anode usually is the electrode of a device through which conventional current (positive charge) flows into the device from an external circuit, while a cathode usually is the electrode through which conventional current flows out of the device.
In general, if the current through the electrodes reverses direction, as occurs for example in a rechargeable battery when it is being charged, the roles of the electrodes as anode and cathode are reversed. [5] However, the definition of anode and cathode is different for electrical devices such as diodes and vacuum tubes where the electrode naming is fixed and does not depend on the actual charge flow (current). These devices usually allow substantial current flow in one direction but negligible current in the other direction. Therefore, the electrodes are named based on the direction of this "forward" current. In a diode the anode is the terminal through which current enters and the cathode is the terminal through which current leaves, when the diode is forward biased. The names of the electrodes do not change in cases where reverse current flows through the device. Similarly, in a vacuum tube only one electrode can thermionically emit electrons into the evacuated tube, so electrons can only enter the device from the external circuit through the heated electrode. Therefore, this electrode is permanently named the cathode, and the electrode through which the electrons exit the tube is named the anode. [5]
Conventional current depends not only on the direction the charge carriers move, but also the carriers' electric charge. The currents outside the device are usually carried by electrons in a metal conductor. Since electrons have a negative charge, the direction of electron flow is opposite to the direction of conventional current. Consequently, electrons leave the device through the anode and enter the device through the cathode. [5]
The polarity of voltage on an anode with respect to an associated cathode varies depending on the device type and on its operating mode. In the following examples, the anode is negative in a device that provides power, and positive in a device that consumes power:
In a discharging battery or galvanic cell (diagram on left), the anode is the negative terminal: it is where conventional current flows into the cell. This inward current is carried externally by electrons moving outwards.[ citation needed ]
In a recharging battery, or an electrolytic cell, the anode is the positive terminal imposed by an external source of potential difference. The current through a recharging battery is opposite to the direction of current during discharge; in other words, the electrode which was the cathode during battery discharge becomes the anode while the battery is recharging.[ citation needed ]
In battery engineering, it is common to designate one electrode of a rechargeable battery the anode and the other the cathode according to the roles the electrodes play when the battery is discharged. This is despite the fact that the roles are reversed when the battery is charged. When this is done, "anode" simply designates the negative terminal of the battery and "cathode" designates the positive terminal.
In a diode, the anode is the terminal represented by the tail of the arrow symbol (flat side of the triangle), where conventional current flows into the device. Note the electrode naming for diodes is always based on the direction of the forward current (that of the arrow, in which the current flows "most easily"), even for types such as Zener diodes or solar cells where the current of interest is the reverse current.[ citation needed ]
In vacuum tubes or gas-filled tubes, the anode is the terminal where current enters the tube.[ citation needed ]
The word was coined in 1834 from the Greek ἄνοδος (anodos), 'ascent', by William Whewell, who had been consulted [4] by Michael Faraday over some new names needed to complete a paper on the recently discovered process of electrolysis. In that paper Faraday explained that when an electrolytic cell is oriented so that electric current traverses the "decomposing body" (electrolyte) in a direction "from East to West, or, which will strengthen this help to the memory, that in which the sun appears to move", the anode is where the current enters the electrolyte, on the East side: "ano upwards, odos a way; the way which the sun rises". [6] [7]
The use of 'East' to mean the 'in' direction (actually 'in' → 'East' → 'sunrise' → 'up') may appear contrived. Previously, as related in the first reference cited above, Faraday had used the more straightforward term "eisode" (the doorway where the current enters). His motivation for changing it to something meaning 'the East electrode' (other candidates had been "eastode", "oriode" and "anatolode") was to make it immune to a possible later change in the direction convention for current, whose exact nature was not known at the time. The reference he used to this effect was the Earth's magnetic field direction, which at that time was believed to be invariant. He fundamentally defined his arbitrary orientation for the cell as being that in which the internal current would run parallel to and in the same direction as a hypothetical magnetizing current loop around the local line of latitude which would induce a magnetic dipole field oriented like the Earth's. This made the internal current East to West as previously mentioned, but in the event of a later convention change it would have become West to East, so that the East electrode would not have been the 'way in' any more. Therefore, "eisode" would have become inappropriate, whereas "anode" meaning 'East electrode' would have remained correct with respect to the unchanged direction of the actual phenomenon underlying the current, then unknown but, he thought, unambiguously defined by the magnetic reference. In retrospect the name change was unfortunate, not only because the Greek roots alone do not reveal the anode's function any more, but more importantly because as we now know, the Earth's magnetic field direction on which the "anode" term is based is subject to reversals whereas the current direction convention on which the "eisode" term was based has no reason to change in the future.[ citation needed ]
Since the later discovery of the electron, an easier to remember and more durably correct technically although historically false, etymology has been suggested: anode, from the Greek anodos, 'way up', 'the way (up) out of the cell (or other device) for electrons'.[ citation needed ]
In electrochemistry, the anode is where oxidation occurs and is the positive polarity contact in an electrolytic cell. [8] At the anode, anions (negative ions) are forced by the electrical potential to react chemically and give off electrons (oxidation) which then flow up and into the driving circuit. Mnemonics: LEO Red Cat (Loss of Electrons is Oxidation, Reduction occurs at the Cathode), or AnOx Red Cat (Anode Oxidation, Reduction Cathode), or OIL RIG (Oxidation is Loss, Reduction is Gain of electrons), or Roman Catholic and Orthodox (Reduction – Cathode, anode – Oxidation), or LEO the lion says GER (Losing electrons is Oxidation, Gaining electrons is Reduction).
This process is widely used in metals refining. For example, in copper refining, copper anodes, an intermediate product from the furnaces, are electrolysed in an appropriate solution (such as sulfuric acid) to yield high purity (99.99%) cathodes. Copper cathodes produced using this method are also described as electrolytic copper.
Historically, when non-reactive anodes were desired for electrolysis, graphite (called plumbago in Faraday's time) or platinum were chosen. [9] They were found to be some of the least reactive materials for anodes. Platinum erodes very slowly compared to other materials, and graphite crumbles and can produce carbon dioxide in aqueous solutions but otherwise does not participate in the reaction.[ citation needed ]
In a battery or galvanic cell, the anode is the negative electrode from which electrons flow out towards the external part of the circuit. Internally the positively charged cations are flowing away from the anode (even though it is negative and therefore would be expected to attract them, this is due to electrode potential relative to the electrolyte solution being different for the anode and cathode metal/electrolyte systems); but, external to the cell in the circuit, electrons are being pushed out through the negative contact and thus through the circuit by the voltage potential as would be expected.
Battery manufacturers may regard the negative electrode as the anode, [10] particularly in their technical literature. Though from an electrochemical viewpoint incorrect, it does resolve the problem of which electrode is the anode in a secondary (or rechargeable) cell. Using the traditional definition, the anode switches ends between charge and discharge cycles. [11]
In electronic vacuum devices such as a cathode-ray tube, the anode is the positively charged electron collector. In a tube, the anode is a charged positive plate that collects the electrons emitted by the cathode through electric attraction. It also accelerates the flow of these electrons.[ citation needed ]
In a semiconductor diode, the anode is the P-doped layer which initially supplies holes to the junction. In the junction region, the holes supplied by the anode combine with electrons supplied from the N-doped region, creating a depleted zone. As the P-doped layer supplies holes to the depleted region, negative dopant ions are left behind in the P-doped layer ('P' for positive charge-carrier ions). This creates a base negative charge on the anode. When a positive voltage is applied to anode of the diode from the circuit, more holes are able to be transferred to the depleted region, and this causes the diode to become conductive, allowing current to flow through the circuit. The terms anode and cathode should not be applied to a Zener diode, since it allows flow in either direction, depending on the polarity of the applied potential (i.e. voltage).[ citation needed ]
In cathodic protection, a metal anode that is more reactive to the corrosive environment than the metal system to be protected is electrically linked to the protected system. As a result, the metal anode partially corrodes or dissolves instead of the metal system. As an example, an iron or steel ship's hull may be protected by a zinc sacrificial anode, which will dissolve into the seawater and prevent the hull from being corroded. Sacrificial anodes are particularly needed for systems where a static charge is generated by the action of flowing liquids, such as pipelines and watercraft. Sacrificial anodes are also generally used in tank-type water heaters.
In 1824 to reduce the impact of this destructive electrolytic action on ships hulls, their fastenings and underwater equipment, the scientist-engineer Humphry Davy developed the first and still most widely used marine electrolysis protection system. Davy installed sacrificial anodes made from a more electrically reactive (less noble) metal attached to the vessel hull and electrically connected to form a cathodic protection circuit.
A less obvious example of this type of protection is the process of galvanising iron. This process coats iron structures (such as fencing) with a coating of zinc metal. As long as the zinc remains intact, the iron is protected from the effects of corrosion. Inevitably, the zinc coating becomes breached, either by cracking or physical damage. Once this occurs, corrosive elements act as an electrolyte and the zinc/iron combination as electrodes. The resultant current ensures that the zinc coating is sacrificed but that the base iron does not corrode. Such a coating can protect an iron structure for a few decades, but once the protecting coating is consumed, the iron rapidly corrodes.[ citation needed ]
If, conversely, tin is used to coat steel, when a breach of the coating occurs it actually accelerates oxidation of the iron.[ citation needed ]
Another cathodic protection is used on the impressed current anode. [12] It is made from titanium and covered with mixed metal oxide. Unlike the sacrificial anode rod, the impressed current anode does not sacrifice its structure. This technology uses an external current provided by a DC source to create the cathodic protection. [13] Impressed current anodes are used in larger structures like pipelines, boats, city water tower, water heaters and more. [14]
The opposite of an anode is a cathode. When the current through the device is reversed, the electrodes switch functions, so the anode becomes the cathode and the cathode becomes anode, as long as the reversed current is applied. The exception is diodes where electrode naming is always based on the forward current direction.[ citation needed ]
A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic CCD for Cathode Current Departs. A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit. For example, the end of a household battery marked with a + (plus) is the cathode.
Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit. Electrodes are essential parts of batteries that can consist of a variety of materials (chemicals) depending on the type of battery.
An electrochemical cell is a device that generates electrical energy from chemical reactions. Electrical energy can also be applied to these cells to cause chemical reactions to occur. Electrochemical cells that generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells.
The voltaic pile was the first electrical battery that could continuously provide an electric current to a circuit. It was invented by Italian chemist Alessandro Volta, who published his experiments in 1799. Its invention can be traced back to an argument between Volta and Luigi Galvani, Volta's fellow Italian scientist who had conducted experiments on frogs' legs. Use of the voltaic pile enabled a rapid series of other discoveries, including the electrical decomposition (electrolysis) of water into oxygen and hydrogen by William Nicholson and Anthony Carlisle (1800), and the discovery or isolation of the chemical elements sodium (1807), potassium (1807), calcium (1808), boron (1808), barium (1808), strontium (1808), and magnesium (1808) by Humphry Davy.
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."
In electromagnetism and electronics, electromotive force is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical transducers provide an emf by converting other forms of energy into electrical energy. Other types of electrical equipment also produce an emf, such as batteries, which convert chemical energy, and generators, which convert mechanical energy. This energy conversion is achieved by physical forces applying physical work on electric charges. However, electromotive force itself is not a physical force, and ISO/IEC standards have deprecated the term in favor of source voltage or source tension instead.
A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: over the following 30 years, their volumetric energy density increased threefold while their cost dropped tenfold. In late 2024 global demand passed 1 Terawatt-hour per year, while production capacity was more than twice that.
A lemon battery is a simple battery often made for the purpose of education. Typically, a piece of zinc metal and a piece of copper are inserted into a lemon and connected by wires. Power generated by reaction of the metals is used to power a small device such as a light-emitting diode (LED).
A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous oxidation–reduction reactions. An example of a galvanic cell consists of two different metals, each immersed in separate beakers containing their respective metal ions in solution that are connected by a salt bridge or separated by a porous membrane.
An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would otherwise not occur. The external energy source is a voltage applied between the cell's two electrodes; an anode and a cathode, which are immersed in an electrolyte solution. This is in contrast to a galvanic cell, which itself is a source of electrical energy and the foundation of a battery. The net reaction taking place in an electrolytic cell is a non-spontaneous reaction(reverse of a spontaneous reaction), i.e., the Gibbs free energy is +ve, while the net reaction taking place in a galvanic cell is a spontaneous reaction, i.e., the Gibbs free energy is - ve.
A primary battery or primary cell is a battery that is designed to be used once and discarded, and it is not rechargeable unlike a secondary cell. In general, the electrochemical reaction occurring in the cell is not reversible, rendering the cell unrechargeable. As a primary cell is used, chemical reactions in the battery use up the chemicals that generate the power; when they are gone, the battery stops producing electricity. In contrast, in a secondary cell, the reaction can be reversed by running a current into the cell with a battery charger to recharge it, regenerating the chemical reactants. Primary cells are made in a range of standard sizes to power small household appliances such as flashlights and portable radios.
A zinc–air battery is a metal–air electrochemical cell powered by the oxidation of zinc with oxygen from the air. During discharge, a mass of zinc particles forms a porous anode, which is saturated with an electrolyte. Oxygen from the air reacts at the cathode and forms hydroxyl ions which migrate into the zinc paste and form zincate, releasing electrons to travel to the cathode. The zincate decays into zinc oxide and water returns to the electrolyte. The water and hydroxyl from the anode are recycled at the cathode, so the water is not consumed. The reactions produce a theoretical voltage of 1.65 Volts, but is reduced to 1.35–1.4 V in available cells.
A zinc–carbon battery (or carbon zinc battery in U.S. English) is a dry cell primary battery that provides direct electric current from the electrochemical reaction between zinc (Zn) and manganese dioxide (MnO2) in the presence of an ammonium chloride (NH4Cl) electrolyte. It produces a voltage of about 1.5 volts between the zinc anode, which is typically constructed as a cylindrical container for the battery cell, and a carbon rod surrounded by a compound with a higher Standard electrode potential (positive polarity), known as the cathode, that collects the current from the manganese dioxide electrode. The name "zinc-carbon" is slightly misleading as it implies that carbon is acting as the oxidizing agent rather than the manganese dioxide.
A mercury battery is a non-rechargeable electrochemical battery, a primary cell. Mercury batteries use a reaction between mercuric oxide and zinc electrodes in an alkaline electrolyte. The voltage during discharge remains practically constant at 1.35 volts, and the capacity is much greater than that of a similarly sized zinc-carbon battery. Mercury batteries were used in the shape of button cells for watches, hearing aids, cameras and calculators, and in larger forms for other applications.
Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.
Batteries provided the main source of electricity before the development of electric generators and electrical grids around the end of the 19th century. Successive improvements in battery technology facilitated major electrical advances, from early scientific studies to the rise of telegraphs and telephones, eventually leading to portable computers, mobile phones, electric cars, and many other electrical devices.
An electric battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons. When a battery is connected to an external electric load, those negatively charged electrons flow through the circuit and reach to the positive terminal, thus cause a redox reaction by attracting positively charged ions, cations. Thus converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy. Historically the term "battery" specifically referred to a device composed of multiple cells; however, the usage has evolved to include devices composed of a single cell.
The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.
Galvanic corrosion is an electrochemical process in which one metal corrodes preferentially when it is in electrical contact with another, in the presence of an electrolyte. A similar galvanic reaction is exploited in primary cells to generate a useful electrical voltage to power portable devices. This phenomenon is named after Italian physician Luigi Galvani (1737–1798).