A solid-state battery (SSB) is an electrical battery that uses a solid electrolyte for ionic conductions between the electrodes, instead of the liquid or gel polymer electrolytes found in conventional batteries. [1] Solid-state batteries theoretically offer much higher energy density than the typical lithium-ion or lithium polymer batteries. [2]
Specific energy | Thin film type: 300–900 Wh/kg (490–1,470 kJ/lb) Bulk type: 250–500 Wh/kg (410–820 kJ/lb) |
---|---|
Self-discharge rate | 6%ー85 °C (month) [3] |
Cycle durability | 10,000-100,000 cycles [3] |
Nominal cell voltage | Thin film type: 4.6 V [4] Bulk type: 2.5 V, [3] |
Operating temperature interval | -50 °C 〜 125 °C |
Charge temperature interval | -20 °C 〜 105 °C |
While solid electrolytes were first discovered in the 19th century, several problems prevented widespread application. Developments in the late 20th and early 21st century generated renewed interest in the technology, especially in the context of electric vehicles.
Solid-state batteries can use metallic lithium for the anode and oxides or sulfides for the cathode, increasing energy density. The solid electrolyte acts as an ideal separator that allows only lithium ions to pass through. For that reason, solid-state batteries can potentially solve many problems of currently used liquid electrolyte Li-ion batteries, such as flammability, limited voltage, unstable solid-electrolyte interface formation, poor cycling performance, and strength. [5]
Materials proposed for use as electrolytes include ceramics (e.g., oxides, sulfides, phosphates), and solid polymers. Solid-state batteries are found in pacemakers, and in RFID and wearable devices[ citation needed ]. Solid-state batteries are potentially safer, with higher energy densities. Challenges to widespread adoption include energy and power density, durability, material costs, sensitivity, and stability. [6]
Between 1831 and 1834, Michael Faraday discovered the solid electrolytes silver sulfide and lead(II) fluoride, which laid the foundation for solid-state ionics. [7] [8]
By the late 1950s, several silver-conducting electrochemical systems employed solid electrolytes, at the price of low energy density and cell voltages, and high internal resistance. [9] [10] In 1967, the discovery of fast ionic conduction β - alumina for a broad class of ions (Li+, Na+, K+, Ag+, and Rb+) kick-started the development of solid-state electrochemical devices with increased energy density. [11] [10] [12] Most immediately, molten sodium / β - alumina / sulfur cells were developed at Ford Motor Company in the US, [13] and NGK in Japan. [10] This excitement manifested in the discovery of new systems in both organics, i.e. poly(ethylene) oxide (PEO), and inorganics such as NASICON. [10] However, many of these systems required operation at elevated temperatures, and/or were expensive to produce, limiting commercial deployment. [10] A new class of solid-state electrolyte developed by Oak Ridge National Laboratory, lithium–phosphorus oxynitride (LiPON), emerged in the 1990s. LiPON was successfully used to make thin-film lithium-ion batteries, [14] although applications were limited due to the cost associated with deposition of the thin-film electrolyte, along with the small capacities that could be accessed using the thin-film format. [15] [16]
In 2011, Kamaya et al. demonstrated the first solid-electrolyte, Li10GeP2S12 (LGPS), capable of achieving a bulk ionic conductivity in excess of liquid electrolyte counterparts at room temperature. [17] With this, bulk solid-ion conductors could finally compete technologically with Li-ion counterparts.
Researchers and companies in the transportation industry revitalized interest in solid-state battery technologies. In 2011, Bolloré launched a fleet of their BlueCar model cars. The demonstration was meant to showcase the company's cells, and featured a 30 kWh lithium metal polymer (LMP) battery with a polymeric electrolyte, created by dissolving lithium salt in polyoxyethylene co-polymer.
In 2012, Toyota began conducting research into automotive applications. [18] At the same time, Volkswagen began partnering with small technology companies specializing in the technology.
In 2013, researchers at the University of Colorado Boulder announced the development of a solid-state lithium battery, with a solid iron–sulfur composite cathode that promised higher energy. [19]
In 2017, John Goodenough, the co-inventor of Li-ion batteries, unveiled a solid-state glass battery, using a glass electrolyte and an alkali-metal anode consisting of lithium, sodium or potassium. [20] Later that year, Toyota extended its decades-long partnership with Panasonic to include collaboration on solid-state batteries. [21] As of 2019 Toyota held the most SSB-related patents. [22] They were followed by BMW, [23] Honda, [24] Hyundai Motor Company., [25] and Nissan. [26]
In 2018, Solid Power, spun off from the University of Colorado Boulder, [27] received $20 million in funding from Samsung and Hyundai to establish a manufacturing line that could produce copies of its all-solid-state, rechargeable lithium-metal battery prototype, [28] with a predicted 10 megawatt hours of capacity per year. [29]
Qing Tao started the first Chinese production line of solid-state batteries in 2018 to supply SSBs for "special equipment and high-end digital products". [30]
QuantumScape is a solid-state battery startup that spun out of Stanford University. It went public on the NYSE on November 29, 2020, as part of a SPAC merger with Kensington Capital. [31] [32] In 2022 the company introduced its 24-layer A0 prototype cells. In Q1 2023, it introduced QSE-5, a 5 amp-hour lithium metal cell. Volkswagen's PowerCo stated that the A0 prototype had met the announced performance metrics. QuantumScape's FlexFrame design combines prismatic and pouch cell designs to accommodate the expansion and contraction of its cells during cycling. [33] [34]
In July 2021, Murata Manufacturing announced that it would begin mass production, targeting manufacturers of earphones and other wearables. [35] Cell capacity is up to 25 mAh at 3.8 V, [36] making it suitable for small mobile devices such as earbuds, but not for electric vehicles. Lithium-ion cells used in electric vehicles typically offer 2,000 to 5,000 mAh at a similar voltage: [37] an EV would need at least 100 times as many of the Murata cells to provide equivalent power.
Ford Motor Company and BMW funded the startup Solid Power with $130 million, and as of 2022 the company had raised $540 million. [38]
In September 2021, Toyota announced their plan to use a solid-state battery, starting with hybrid models in 2025. [39]
In February 2021, Hitachi Zosen announced demonstration experiments on the International Space Station. The Cygnus No. 17, launched on February 19, 2022, confirmed that all-solid-state batteries would be tested on the ISS. [40]
In January 2022, ProLogium signed a technical cooperation agreement with Mercedes-Benz. The investment will be used for solid-state battery development and production preparation. [41]
In early 2022, Swiss Clean Battery (SCB) announced plans to open the world's first factory for sustainable solid-state batteries in Frauenfeld by 2024 with an initial annual production of 1.2 GWh. [42]
In July 2022, Svolt announced the production of a 20 Ah electric battery with an energy density of 350-400 Wh/kg. [43]
In June 2023, Maxell Corporation began mass production of large-capacity solid-state batteries. This battery has a long life and heat resistance. Production of 200 mmAh cylindrical solid-state batteries was to begin in January 2024. Size: diameter 23 mm/height 27 mm. [44]
In September 2023, Panasonic unveiled a solid-state battery for drones. It can be charged from 10% to 80% in 3 minutes and lasts for 10,000 to 100,000 cycles at 25 °C. The battery was expected to be available in the late 2020s. [45]
In October 2023, Toyota announced a partnership with Idemitsu Kosan to produce solid-state batteries for their electric vehicles starting in 2028. [46]
In October 2023 Factorial Energy opened a battery manufacturing facility in Methuen, Massachusetts, and began shipping 100 Ah A-samples to automotive partners totaling over 1,000 A-sample cells to Mercedes-Benz. Its technology uses a lithium-metal anode, quasi-solid electrolyte and high-capacity cathode. Its energy density is 391 Wh/kg. [47]
In November 2023, Guangzhou Automobile Group announced that it would adopt solid-state batteries in 2026. The company also revealed that its battery has achieved 400 Wh/kg. Mass production was scheduled to begin in 2025. [48]
On December 28, 2023, Hyundai published its patent for an "all-solid-state battery system provided with pressurizing device". The cell is a solid-state battery that maintains constant pressure regardless of charging and discharging rates. The system includes an iso-temperature element. [49]
In January 2024, Volkswagen announced that test results of a prototype solid-state battery retained 95% of its capacity after 1000 charges (equivalent to driving 500,000 km). It also passed other performance tests. [50]
In April 2024, Factorial signed a memorandum of understanding with LG Chem. In June it sent its first 106 Ah B-samples to Mercedes-Benz for testing. [47]
Solid-state electrolytes (SSEs) candidate materials include ceramics such as lithium orthosilicate, [51] glass, [20] sulfides [52] and RbAg4I5. [53] [54] Mainstream oxide solid electrolytes include Li1.5Al0.5Ge1.5(PO4)3 (LAGP), Li1.4Al0.4Ti1.6(PO4)3 (LATP), perovskite-type Li3xLa2/3-xTiO3 (LLTO), and garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZO) with metallic Li. [55] The thermal stability versus Li of the four SSEs was in order of LAGP < LATP < LLTO < LLZO. Chloride superionic conductors have been proposed as another promising solid electrolyte. They are ionic conductive as well as deformable sulfides, but at the same time not troubled by the poor oxidation stability of sulfides. Other than that, their cost is considered lower than oxide and sulfide SSEs. [56] The present chloride solid electrolyte systems can be divided into two types: Li3MCl6 [57] [58] and Li2M2/3Cl4. [59] M Elements include Y, Tb-Lu, Sc, and In. The cathodes are lithium-based. Variants include LiCoO2, LiNi1/3Co1/3Mn1/3O2, LiMn2O4, and LiNi0.8Co0.15Al0.05O2. The anodes vary more and are affected by the type of electrolyte. Examples include In, Si, GexSi1−x, SnO–B2O3, SnS –P2S5, Li2FeS2, FeS, NiP2, and Li2SiS3. [60]
Lithium-ceramic batteries demonstrate potential improvements with the integration of single wall carbon nanotubes (SWCNTs). SWCNTs build durable, long-range conductive pathways between electrode particles, effectively reducing electrode resistance and enhancing energy density. [61]
One promising cathode material is Li–S, which (as part of a solid lithium anode/Li2S cell) has a theoretical specific capacity of 1,670 mAh g−1, "ten times larger than the effective value of LiCoO2". Sulfur makes an unsuitable cathode in liquid electrolyte applications because it is soluble in most liquid electrolytes, dramatically decreasing the battery's lifetime. Sulfur is studied in solid-state applications. [60] Recently, a ceramic textile was developed that showed promise in a Li–S solid-state battery. This textile facilitated ion transmission while also handling sulfur loading, although it did not reach the projected energy density. The result "with a 500-μm-thick electrolyte support and 63% utilization of electrolyte area" was "71 Wh/kg." while the projected energy density was 500 Wh/kg. [62]
Li-O2 also have high theoretical capacity. The main issue with these devices is that the anode must be sealed from ambient atmosphere, while the cathode must be in contact with it. [60]
A Li/LiFePO4 battery shows promise as a solid-state application for electric vehicles. A 2010 study presented this material as a safe alternative to rechargeable batteries for EV's that "surpass the USABC-DOE targets". [63]
A cell with a pure silicon μSi||SSE||NCM811 anode was assembled by Darren H.S Tan et al. using μSi anode (purity of 99.9 wt %), solid-state electrolyte (SSE) and lithium–nickel–cobalt–manganese oxide (NCM811) cathode. This kind of solid-state battery demonstrated a high current density up to 5 mA cm−2, a wide range of working temperature (-20 °C and 80 °C), and areal capacity (for the anode) of up to 11 mAh cm−2 (2,890 mAh/g). At the same time, after 500 cycles under 5 mA cm−2, the batteries still provide 80% of capacity retention, which is the best performance of μSi all solid-state battery reported so far. [64]
Chloride solid electrolytes also show promise over conventional oxide solid electrolytes owing to chloride solid electrolytes having theoretically higher ionic conductivity and better formability. [65] In addition chloride solid electrolyte's exceptionally high oxidation stability and high ductility add to its performance. In particular a lithium mixed-metal chloride family of solid electrolytes, Li2InxSc0.666-xCl4 developed by Zhou et al., show high ionic conductivity (2.0 mS cm−1) over a wide range of composition. This is owing to the chloride solid electrolyte being able to be used in conjunction with bare cathode active materials as opposed to coated cathode active materials and its low electronic conductivity. [66] Alternative cheaper chloride solid electrolyte compositions with lower, but still impressive, ionic conductivity can be found with an Li2ZrCl6 solid electrolyte. This particular chloride solid electrolyte maintains a high room temperature ionic conductivity (0.81 mS cm−1), deformability, and has a high humidity tolerance. [67]
Solid-state batteries are potentially useful in pacemakers, RFIDs, wearable devices, and electric vehicles. [68] [69]
Hybrid and plug-in electric vehicles have used a variety of battery technologies, including lead–acid, nickel–metal hydride (NiMH), lithium ion (Li-ion) and electric double-layer capacitor (or ultracapacitor), [70] with Li-ion batteries dominating the market due to their superior energy density. [71] Solid state batteries are desirable due to their lighter weight and higher energy density compared to batteries with liquid electrolytes, which can potentially increase a vehicle's range, reduce cost, and reduce curb weight, all of which are major challenges with current electric vehicles. [72]
Honda stated in 2022 that it planned to start operation of a demonstration line for the production of all-solid-state batteries in early 2024, [73] and Nissan announced that, by FY2028, it aims to launch an electric vehicle with all-solid-state batteries that are to be developed in-house. [74]
In June 2023, Toyota updated its strategy for battery electric vehicles, announcing that it will not use commercial solid-state batteries until at least 2027. [75] [76]
In January 2022, Mercedes-Benz invested significantly in ProLogium to codevelop next gen ceramic solid-state battery cell. The company also collaborates on solid-state technology and plans to construct eight gigafactories with partners. By December 2023, Mercedes-Benz had invested in US-based Factorial Energy, advancing its solid-state battery initiatives. [77]
The characteristics of high energy density and keeping high performance even in harsh environments are expected in realization of new wearable devices that are smaller and more reliable than ever. [68] [78]
In March 2021, industrial manufacturer Hitachi Zosen Corporation announced a solid-state battery they claimed has one of the highest capacities in the industry and has a wider operating temperature range, potentially suitable for harsh environments like space. [79] [80] A test mission was launched in February 2022, and in August, Japan Aerospace Exploration Agency (JAXA) announced [81] the solid-state batteries had properly operated in space, powering camera equipment in the Japanese Experiment Module Kibō on the International Space Station (ISS).
Solid-state batteries being lighter weight and more powerful than traditional lithium-ion batteries it is reasonable that commercial drones would benefit from them. Vayu Aerospace, a drone manufacturer and designer, noted an increased flight time after they incorporated them into their G1 long flight drone. [82] Another advantage of drones is that all solid battery can be charged quickly. In September 2023, Panasonic announced a prototype all-solid-state battery that can be charged from 10% to 80% in 3 minutes. [45]
All-solid-state batteries have long lifespans and excellent heat resistance. Therefore, it is expected to be used in harsh environments. Production of Maxell's all-solid-state batteries for use in industrial machinery has already begun.
In 2023, Yoshino become the first producer of solid-state portable solar generators, [83] 2.5 times higher energy density, double rated and surge AC output wattage of non-solid state lithium (NMC, LFP) generators. [84] [85] [86]
Thin-film solid-state batteries are expensive to make [87] and employ manufacturing processes thought to be difficult to scale, requiring expensive vacuum deposition equipment. [14] As a result, costs for thin-film solid-state batteries become prohibitive in consumer-based applications. It was estimated in 2012 that, based on then-current technology, a 20 Ah solid-state battery cell would cost US$100,000, and a high-range electric car would require between 800 and 1,000 of such cells. [14] Likewise, cost has impeded the adoption of thin-film solid-state batteries in other areas, such as smartphones. [68]
Low temperature operations may be challenging. [87] Solid-state batteries historically have had poor performance. [19]
Solid-state batteries with ceramic electrolytes require high pressure to maintain contact with the electrodes. [88] Solid-state batteries with ceramic separators may break from mechanical stress. [14]
In November 2022, Japanese research group, consisting of Kyoto University, Tottori University and Sumitomo Chemical, announced that they have managed to operate solid-state batteries stably without applying pressure with 230 Wh/kg capacity by using copolymerized new materials for electrolyte. [89]
In June 2023, Japanese research group of the Graduate School of Engineering at Osaka Metropolitan University announced that they have succeeded in stabilizing the high-temperature phase of Li3PS4 (α-Li3PS4) at room temperature. This was accomplished via rapid heating to crystallize the Li3PS4 glass. [90]
High interfacial resistance between a cathode and solid electrolyte has been a long-standing problem for all-solid-state batteries. [91]
The interfacial instability of the electrode-electrolyte has always been a serious problem in solid-state batteries. [92] After solid-state electrolyte contacts with the electrode, the chemical and/or electrochemical side reactions at the interface usually produce a passivated interface, which impedes the diffusion of Li+ across the electrode-SSE interface. Upon high-voltage cycling, some SSEs may undergo oxidative degradation.
Solid lithium (Li) metal anodes in solid-state batteries are replacement candidates in lithium-ion batteries for higher energy densities, safety, and faster recharging times. Such anodes tend to suffer from the formation and the growth of Li dendrites, non-uniform metal growths which penetrate the electrolyte leading to electrical short circuits. This shorting leads to energy discharge, overheating, and sometimes fires or explosions due to thermal runaway. [93] Li dendrites reduce coulombic efficiency. [94]
The exact mechanisms of dendrite growth remain a subject of research. Studies of metal dendrite growth in solid electrolytes began with research of molten sodium / sodium - β - alumina / sulfur cells at elevated temperature. In these systems, dendrites sometimes grow as a result of micro-crack extension due to the presence of plating-induced pressure at the sodium / solid electrolyte interface. [95] However, dendrite growth may also occur due to chemical degradation of the solid electrolyte. [96]
In Li-ion solid electrolytes apparently stable to Li metal, as visualized and measured using photoelasticity experiments, dendrites propagate primarily due to pressure build up at the electrode / solid electrolyte interface, leading to crack extension.[ clarification needed ] [97] Meanwhile, for solid electrolytes which are chemically unstable against their respective metal,[ further explanation needed ] interphase growth and eventual cracking often prevents dendrites from forming.[ further explanation needed ] [98]
Dendrite growth in solid-state Li-ion cells can be mitigated by operating the cells at elevated temperature, [99] or by using residual stresses to fracture-toughen electrolytes, [100] thereby deflecting dendrites and delaying dendrite induced short-circuiting. Aluminum-containing electronic rectifying interphases between the solid-state electrolyte and the lithium metal anode have also been shown to be effective in preventing dendrite growth. [101]
A common failure mechanism in solid-state batteries is mechanical failure through volume changes[ further explanation needed ] in the anode and cathode during charge and discharge due to the addition and removal of Li-ions from the host structures. [102]
Cathodes will typically consist of active cathode particles mixed with SSE particles to assist with ion conduction. As the battery charges/discharges, the cathode particles change in volume typically on the order of a few percent. [103] This volume change leads to the formation of interparticle voids which worsens contact between the cathode and SSE particles, resulting in a significant loss of capacity due to the restriction in ion transport. [102] [104] [105]
One proposed solution to this issue is to take advantage of the anisotropy of volume change in the cathode particles. As many cathode materials experience volume changes only along certain crystallographic directions, if the secondary cathode particles are grown along a crystallographic direction which does not expand greatly with charge/discharge, then the change in volume of the particles can be minimized. [106] [107] Another proposed solution is to mix different cathode materials which have opposite expansion trends in the proper ratio such that the net volume change of the cathode is zero. [103] For instance, LiCoO2 (LCO) and LiNi0.9Mn0.05Co0.05O2 (NMC) are two well-known cathode materials for Li-ion batteries. LCO has been shown to undergo volume expansion when discharged while NMC has been shown to undergo volume contraction when discharged. Thus, a composite cathode of LCO and NMC at the correct ratio could undergo minimal volume change under discharge as the contraction of NMC is compensated by the expansion of LCO.
Ideally a solid-state battery would use a pure lithium metal anode due to its high energy capacity. However, lithium undergoes a large increase of volume during charge at around 5 μm per 1 mAh/cm2 of plated Li. [102] For electrolytes with a porous microstructure, this expansion leads to an increase in pressure which can lead to creep of Li metal through the electrolyte pores and short of the cell. [108] Lithium metal has a relatively low melting point of 453K and a low activation energy for self-diffusion of 50 kJ/mol, indicating its high propensity to significantly creep at room temperature. [109] [110] It has been shown that at room temperature lithium undergoes power-law creep where the temperature is high enough relative to the melting point that dislocations in the metal can climb out of their glide plane to avoid obstacles. The creep stress under power-law creep is given by:
Where is the gas constant, is temperature, is the uniaxial strain rate, is the creep stress, and for lithium metal , , . [109]
For lithium metal to be used as an anode, great care must be taken to minimize the cell pressure to relatively low values on the order of its yield stress of 0.8 MPa. [111] The normal operating cell pressure for lithium metal anode is anywhere from 1-7 MPa. Some possible strategies to minimize stress on the lithium metal are to use cells with springs of a chosen spring constant or controlled pressurization of the entire cell. [102] Another strategy may be to sacrifice some energy capacity and use a lithium metal alloy anode which typically has a higher melting temperature than pure lithium metal, resulting in a lower propensity to creep. [112] [113] [114] While these alloys do expand quite a bit when lithiated, often to a greater degree than lithium metal, they also possess improved mechanical properties allowing them to operate at pressures around 50 MPa. [115] [116] This higher cell pressure also has the added benefit of possibly mitigating void formation in the cathode. [102]
Solid state batteries offer the potential for significantly higher energy densities compared to traditional lithium-ion batteries. This is largely due to the use of lithium metal anodes, which have a much higher charge capacity than the graphite anodes used in lithium-ion batteries. At a cell level, lithium-ion energy densities are generally below 300Wh/kg while solid-state battery energy densities are able to exceed 350 Wh/kg. [117] This energy density boost is especially beneficial for applications requiring longer-lasting and more compact batteries such as electric vehicles. [118]
One significant advantage of solid-state batteries is their improved safety profile. Solid electrolytes greatly reduce the risk of thermal runaway—a primary cause of battery fires. Because most solid electrolytes are nonflammable, solid-state batteries have a much lower fire risk and do not require as many safety systems, which can further increase energy density at the cell pack level. [2] [119] [118] Studies have shown that heat generation during thermal runaway is only about 20-30% of what is observed in conventional batteries with liquid electrolytes. [120]
Solid electrolytes enable a broader range of operating temperatures and voltages, which is crucial for high performance applications. [118] SSBs can operate at temperatures above 60 °C, where traditional are generally only able to operate from -20 to 60 °C. [121] [122]
Solid state batteries also support high-voltage cathode chemistries such as lithium nickel manganese oxide, lithium nickel phosphate, and lithium cobalt phosphate. This allows voltages to potentially exceed 5 V (vs. a Li/Li+ reference electrode) while traditional cathode chemistries in lithium-ion batteries are unable to exceed 4.5V (vs. a Li/Li+ reference electrode). [118] [123] [124]
The solid electrolyte and lithium metal anode combination enables faster ion transfer, which can reduce charging times compared to lithium-ion batteries. Furthermore, bipolar stacking of cells can be incorporated, allowing for reduced cell size and more compact battery packs. [125] This allows for improved overall energy efficiency and enables design flexibility for various applications. [126]
The earliest thin-film solid-state batteries is found by Keiichi Kanehori in 1986, [127] which is based on the Li electrolyte. However, at that time, the technology was insufficient to power larger electronic devices so it was not fully developed. During recent years, there has been much research in the field. Garbayo demonstrated that "polyamorphism" exists besides crystalline states for thin-film Li-garnet solid-state batteries in 2018, [128] Moran demonstrated that ample can manufacture ceramic films with the desired size range of 1–20 μm in 2021. [129]
Anode materials: Li is favored because of its storage properties, alloys of Al, Si and Sn are also suitable as anodes.
Cathode materials: require having light weight, good cyclical capacity and high energy density. Usually include LiCoO2, LiFePO4, TiS2, V2O5and LiMnO2. [119]
Some methods are listed below. [130]
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit. Electrodes are essential parts of batteries that can consist of a variety of materials (chemicals) depending on the type of battery.
A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: over the following 30 years, their volumetric energy density increased threefold while their cost dropped tenfold. In late 2024 global demand passed 1 Terawatt-hour per year, while production capacity was more than twice that.
A lithium-ion capacitor is a hybrid type of capacitor classified as a type of supercapacitor. It is called a hybrid because the anode is the same as those used in lithium-ion batteries and the cathode is the same as those used in supercapacitors. Activated carbon is typically used as the cathode. The anode of the LIC consists of carbon material which is often pre-doped with lithium ions. This pre-doping process lowers the potential of the anode and allows a relatively high output voltage compared to other supercapacitors.
Rechargeable lithium metal batteries are secondary lithium metal batteries. They have metallic lithium as a negative electrode. The high specific capacity of lithium metal, very low redox potential and low density make it the ideal negative material for high energy density battery technologies. Rechargeable lithium metal batteries can have a long run time due to the high charge density of lithium. Several companies and many academic research groups are currently researching and developing rechargeable lithium metal batteries as they are considered a leading pathway for development beyond lithium-ion batteries. Some rechargeable lithium metal batteries employ a liquid electrolyte and some employ a solid-state electrolyte.
The thin-film lithium-ion battery is a form of solid-state battery. Its development is motivated by the prospect of combining the advantages of solid-state batteries with the advantages of thin-film manufacturing processes.
Nanoarchitectures for lithium-ion batteries are attempts to employ nanotechnology to improve the design of lithium-ion batteries. Research in lithium-ion batteries focuses on improving energy density, power density, safety, durability and cost.
The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.
A metal–air electrochemical cell is an electrochemical cell that uses an anode made from pure metal and an external cathode of ambient air, typically with an aqueous or aprotic electrolyte.
A potassium-ion battery or K-ion battery is a type of battery and analogue to lithium-ion batteries, using potassium ions for charge transfer instead of lithium ions.
Aluminium-ion batteries are a class of rechargeable battery in which aluminium ions serve as charge carriers. Aluminium can exchange three electrons per ion. This means that insertion of one Al3+ is equivalent to three Li+ ions. Thus, since the ionic radii of Al3+ (0.54 Å) and Li+ (0.76 Å) are similar, significantly higher numbers of electrons and Al3+ ions can be accepted by cathodes with little damage. Al has 50 times (23.5 megawatt-hours m-3) the energy density of Li-ion batteries and is even higher than coal.
Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and reducing cost.
NASICON is an acronym for sodium (Na) super ionic conductor, which usually refers to a family of solids with the chemical formula Na1+xZr2SixP3−xO12, 0 < x < 3. In a broader sense, it is also used for similar compounds where Na, Zr and/or Si are replaced by isovalent elements. NASICON compounds have high ionic conductivities, on the order of 10−3 S/cm, which rival those of liquid electrolytes. They are caused by hopping of Na ions among interstitial sites of the NASICON crystal lattice.
Magnesium batteries are batteries that utilize magnesium cations as charge carriers and possibly in the anode in electrochemical cells. Both non-rechargeable primary cell and rechargeable secondary cell chemistries have been investigated. Magnesium primary cell batteries have been commercialised and have found use as reserve and general use batteries.
Calcium (ion) batteries are energy storage and delivery technologies (i.e., electro–chemical energy storage) that employ calcium ions (cations), Ca2+, as the active charge carrier. Calcium (ion) batteries remain an active area of research, with studies and work persisting in the discovery and development of electrodes and electrolytes that enable stable, long-term battery operation. Calcium batteries are rapidly emerging as a recognized alternative to Li-ion technology due to their similar performance, significantly greater abundance, and lower cost.
A polymer electrolyte is a polymer matrix capable of ion conduction. Much like other types of electrolyte—liquid and solid-state—polymer electrolytes aid in movement of charge between the anode and cathode of a cell. The use of polymers as an electrolyte was first demonstrated using dye-sensitized solar cells. The field has expanded since and is now primarily focused on the development of polymer electrolytes with applications in batteries, fuel cells, and membranes.
Lithium aluminium germanium phosphate, typically known with the acronyms LAGP or LAGPO, is an inorganic ceramic solid material whose general formula is Li
1+xAl
xGe
2-x(PO
4)
3. LAGP belongs to the NASICON family of solid conductors and has been applied as a solid electrolyte in all-solid-state lithium-ion batteries. Typical values of ionic conductivity in LAGP at room temperature are in the range of 10–5 - 10–4 S/cm, even if the actual value of conductivity is strongly affected by stoichiometry, microstructure, and synthesis conditions. Compared to lithium aluminium titanium phosphate (LATP), which is another phosphate-based lithium solid conductor, the absence of titanium in LAGP improves its stability towards lithium metal. In addition, phosphate-based solid electrolytes have superior stability against moisture and oxygen compared to sulfide-based electrolytes like Li
10GeP
2S
12 (LGPS) and can be handled safely in air, thus simplifying the manufacture process. Since the best performances are encountered when the stoichiometric value of x is 0.5, the acronym LAGP usually indicates the particular composition of Li
1.5Al
0.5Ge
1.5(PO
4)
3, which is also the typically used material in battery applications.
A solid-state silicon battery or silicon-anode all-solid-state battery is a type of rechargeable lithium-ion battery consisting of a solid electrolyte, solid cathode, and silicon-based solid anode.
This is a history of the lithium-ion battery.
Fluoride batteries are a rechargeable battery technology based on the shuttle of fluoride, the anion of fluorine, as ionic charge carriers.
An anode-free battery (AFB) is one that is manufactured without an anode. Instead, it creates a metal anode the first time it is charged. The anode is formed from charge carriers supplied by the cathode. As such, before charging, the battery consists of a cathode, current collectors, separator and electrolyte.
Solid state ionic devices such as high performance batteries...
Researchers have tried to get around these problems by using an electrolyte made out of solid materials, such as some ceramics.
Researchers investigate mechanics of lithium sulfides, which show promise as solid electrolytes.
{{cite web}}
: CS1 maint: numeric names: authors list (link)Many automakers have adopted lithium-ion (Li-ion) batteries as the preferred EDV energy storage option, capable of delivering the required energy and power density in a relatively small, lightweight package.