Overheating (electricity)

Last updated

Overheating is a phenomenon of rising temperatures in an electrical circuit. Overheating causes damage to the circuit components and can cause fire, explosion, and injury. Damage caused by overheating is usually irreversible; the only way to repair it is to replace some components.

Contents

Causes

When overheating, the temperature of the part rises above the operating temperature. Overheating can take place:

Overheating may be caused from any accidental fault of the circuit (such as short-circuit or spark-gap), or may be caused from a wrong design or manufacture (such as the lack of a proper heat dissipation system). Due to accumulation of heat, the system reaches an equilibrium of heat accumulation vs. dissipation at a much higher temperature than expected.

Preventive measures

Use of circuit breaker or fuse

Failed IC in a laptop. Wrong input voltage has caused massive overheating of the chip and melted the plastic casing. Failed SMPS controller IC ISL6251.jpg
Failed IC in a laptop. Wrong input voltage has caused massive overheating of the chip and melted the plastic casing.
Glitched and garbled display on a workstation laptop with a defective graphics card that underwent extensive overheating from use in a hot environment.jpg
Windows 10 BSOD.jpg
Glitched and garbled display on a workstation laptop with a defective graphics card that underwent extensive overheating from use in a hot environment.
The second image shows the same laptop failing to operate properly due to a graphics card defect, crashing the operating system and displaying a blue screen of death on the screen.

Circuit-breakers can be placed at portions of a circuit in series to the path of current it will affect. If more current than expected goes through the circuit-breaker, the circuit breaker "opens" the circuit and stops all current. A fuse is a common type of circuit breaker that involves direct effect of Joule-overheating. A fuse is always placed in series with the path of current it will affect. Fuses usually consist of a thin strand of wire of definite-material. When more that the rated current flows through the fuse, the wire melts and breaks the circuit.

Use of heat-dissipating systems

Many systems use ventilation holes or slits kept on the box of equipment to dissipate heat. Heat sinks are often attached to portions of the circuit that produce most heat or are vulnerable to heat. Fans are also often used. Some high-voltage instruments are kept immersed in oil. In some cases, to remove unwanted heat, a cooling system like air conditioning or refrigerating heat-pumps may be required.

Control within circuit-design

Sometimes, special circuits are built for the purpose of sensing and controlling the temperature or voltage status. Devices such as thermistors, voltage-dependent resistors, thermostats and sensors such as infrared thermometers are used to modify the current upon different conditions such as circuit-temperature and input voltage.

Proper manufacture

For certain purposes in an item of electrical equipment or a portion of it, definite type and size of materials with proper rating for voltage, current and temperature, are used. The circuit resistance never kept too low. Sometimes some parts placed inside the board and box, maintaining a proper distance from each other, to avoid heat damage and short-circuit damage. To prevent short circuit, appropriate types of electrical connectors and mechanical fasteners are used.

See also

Related Research Articles

<span class="mw-page-title-main">Resistor</span> Passive electrical component providing electrical resistance

A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements, or as sensing devices for heat, light, humidity, force, or chemical activity.

<span class="mw-page-title-main">Thermistor</span> Type of resistor whose resistance varies with temperature

A thermistor is a semiconductor type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of thermal and resistor.

<span class="mw-page-title-main">Electrical resistance and conductance</span> Opposition to the passage of an electric current

The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is electrical conductance, measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels with mechanical friction. The SI unit of electrical resistance is the ohm, while electrical conductance is measured in siemens (S).

<span class="mw-page-title-main">Varistor</span> Electronic component

A varistor is a surge protecting electronic component with an electrical resistance that varies with the applied voltage. It has a nonlinear, non-ohmic current–voltage characteristic that is similar to that of a diode. Unlike a diode however, it has the same characteristic for both directions of traversing current. Traditionally, varistors were indeed constructed by connecting two rectifiers, such as the copper-oxide or germanium-oxide rectifier in antiparallel configuration. At low voltage the varistor has a high electrical resistance which decreases as the voltage is raised. Modern varistors are primarily based on sintered ceramic metal-oxide materials which exhibit directional behavior only on a microscopic scale. This type is commonly known as the metal-oxide varistor (MOV).

<span class="mw-page-title-main">Power supply</span> Electronic device that converts or regulates electric energy and supplies it to a load

A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power.

<span class="mw-page-title-main">Circuit breaker</span> Automatic circuit protection device

A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by current in excess of that which the equipment can safely carry (overcurrent). Its basic function is to interrupt current flow to protect equipment and to prevent fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.

<span class="mw-page-title-main">Thermostat</span> Component which maintains a setpoint temperature

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

<span class="mw-page-title-main">Surge protector</span> Protects electrical devices from voltage spikes

A surge protector (or spike suppressor, surge suppressor, surge diverter, surge protection device (SPD), transient voltage suppressor(TVS) or transient voltage surge suppressor (TVSS)) is an appliance or device intended to protect electrical devices in alternating current (AC) circuits from voltage spikes with very short duration measured in microseconds, which can arise from a variety of causes including lightning strikes in the vicinity.

<span class="mw-page-title-main">Bimetallic strip</span> Two-sided strip that coils when heated or cooled

A bimetallic strip or bimetal strip is a strip that consists of two strips of different metals which expand at different rates as they are heated. They are used to convert a temperature change into mechanical displacement. The different expansions force the flat strip to bend one way if heated, and in the opposite direction if cooled below its initial temperature. The metal with the higher coefficient of thermal expansion is on the outer side of the curve when the strip is heated and on the inner side when cooled.

<span class="mw-page-title-main">Joule heating</span> Heat from a current in an electric conductor

Joule heating is the process by which the passage of an electric current through a conductor produces heat.

<span class="mw-page-title-main">Fuse (electrical)</span> Electrical safety device that provides overcurrent protection

In electronics and electrical engineering, a fuse is an electrical safety device that operates to provide overcurrent protection of an electrical circuit. Its essential component is a metal wire or strip that melts when too much current flows through it, thereby stopping or interrupting the current. It is a sacrificial device; once a fuse has operated, it is an open circuit, and must be replaced or rewired, depending on its type.

An antifuse is an electrical device that performs the opposite function to a fuse. Whereas a fuse starts with a low resistance and is designed to permanently break or open an electrically conductive path, an antifuse starts with a high resistance--an open circuit--and programming it converts it into a permanent electrically conductive path. This technology has many applications. Antifuses are best known for their use in mini-light style low-voltage Christmas tree lights.

<span class="mw-page-title-main">Inrush current</span> Maximal instantaneous input current drawn by an electrical device when first turned on

Inrush current, input surge current, or switch-on surge is the maximal instantaneous input current drawn by an electrical device when first turned on. Alternating-current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform. Power converters also often have inrush currents much higher than their steady-state currents, due to the charging current of the input capacitance. The selection of over-current-protection devices such as fuses and circuit breakers is made more complicated when high inrush currents must be tolerated. The over-current protection must react quickly to overload or short-circuit faults but must not interrupt the circuit when the inrush current flows.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance. Discrete circuits are made of individual electronic components that only perform one function each as packaged, which are known as discrete components, although strictly the term discrete component refers to such a component with semiconductor material such as individual transistors.

<span class="mw-page-title-main">Thermal runaway</span> Loss of control of an exothermal process due to temperature increases

Thermal runaway describes a process that is accelerated by increased temperature, in turn releasing energy that further increases temperature. Thermal runaway occurs in situations where an increase in temperature changes the conditions in a way that causes a further increase in temperature, often leading to a destructive result. It is a kind of uncontrolled positive feedback.

This is an alphabetical list of articles pertaining specifically to electrical and electronics engineering. For a thematic list, please see List of electrical engineering topics. For a broad overview of engineering, see List of engineering topics. For biographies, see List of engineers.

<span class="mw-page-title-main">Fan heater</span> Heat producing machine to increase temperature of an enclosed space

A fan heater, also called a blow heater, is a heater that works by using a fan to pass air over a heat source. This heats up the air, which then leaves the heater, warming up the surrounding room. They can heat an enclosed space such as a room faster than a heater without a fan, but like any fan, create a degree of noise.

<span class="mw-page-title-main">Thermal cutoff</span> Electrical safety device

A thermal cutoff is an electrical safety device that interrupts electric current when heated to a specific temperature. These devices may be for one-time use, or may be reset manually or automatically.

<span class="mw-page-title-main">Failure of electronic components</span> Ways electronic components fail and prevention measures

Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits.

A high-resistance connection (HRC) is a hazard that results from loose or poor connections in traditional electrical accessories and switchgear which can cause heat to develop, capable of starting a fire.

References