Sodium-ion battery

Last updated
Sodium-ion battery
Sindelfingen Haus & Energie 2019 by-RaBoe 126.jpg
A sodium-ion accumulator stack (Germany)
Specific energy 0.27-0.72 MJ/kg (75–200 W·h/kg)
Energy density 250–375 W·h/L
Cycle durability"thousands" [1] of cycles
Nominal cell voltage3.2-3.6 V

Sodium-ion batteries (NIBs, SIBs, or Na-ion batteries) are several types of rechargeable batteries, which use sodium ions (Na+) as its charge carriers. In some cases, its working principle and cell construction are similar to those of lithium-ion battery (LIB) types, but it replaces lithium with sodium as the intercalating ion. Sodium belongs to the same group in the periodic table as lithium and thus has similar chemical properties. Although, in some cases (such as aqueous Na-ion batteries) they are quite different from Li-ion batteries.

Contents

SIBs received academic and commercial interest in the 2010s and early 2020s, largely due to the uneven geographic distribution, high environmental impact, and high cost of lithium. An obvious advantage of sodium is its natural abundance, [2] particularly in saltwater. Another factor is that cobalt, copper and nickel are not required for many types of sodium-ion batteries, and more abundant iron-based materials (such as NaFeO2 with the Fe3+/Fe4+ redox pair) [3] work well in Na+ batteries. This is because the ionic radius of Na+ (116 pm) is substantially larger than that of Fe2+ and Fe3+ (69–92 pm depending on the spin state), whereas the ionic radius of Li+ is similar (90 pm). Similar ionic radii of lithium and iron result in their mixing in the cathode material during battery cycling, and a resultant loss of cyclable charge. A downside of the larger ionic radius of Na+ is a slower intercalation kinetics of sodium-ion electrode materials. [4]

The development of Na+ batteries started in the 1990s. After three decades of development, NIBs are at a critical moment of commercialization. Several companies such as HiNa and CATL in China, Faradion in the United Kingdom, Tiamat in France, Northvolt in Sweden, [5] and Natron Energy in the US, are close to achieving the commercialization of NIBs, with the aim of employing sodium layered transition metal oxides (NaxTMO2), Prussian white (a Prussian blue analogue [6] ) or vanadium phosphate as cathode materials. [7]

Electric vehicles using sodium-ion battery packs are not yet commercially available. However, CATL, the world's biggest lithium-ion battery manufacturer, announced in 2022 the start of mass production of SIBs. In February 2023, the Chinese HiNA Battery Technology Company, Ltd. placed a 140 Wh/kg sodium-ion battery in an electric test car for the first time, [8] and energy storage manufacturer Pylontech obtained the first sodium-ion battery certificate[ clarification needed ] from TÜV Rheinland. [9]

History

Sodium-ion battery development took place in the 1970s and early 1980s. However, by the 1990s, lithium-ion batteries had demonstrated more commercial promise, causing interest in sodium-ion batteries to decline. [10] [11] In the early 2010s, sodium-ion batteries experienced a resurgence, driven largely by the increasing cost of lithium-ion battery raw materials. [10]

Operating principle

SIB cells consist of a cathode based on a sodium-based material, an anode (not necessarily a sodium-based material) and a liquid electrolyte containing dissociated sodium salts in polar protic or aprotic solvents. During charging, sodium ions move from the cathode to the anode while electrons travel through the external circuit. During discharge, the reverse process occurs.

Materials

Illustration of the various electrode structures in sodium-ion batteries Sodium-ion battery systems.png
Illustration of the various electrode structures in sodium-ion batteries

Due to the physical and electrochemical properties of sodium, SIBs require different materials from those used for LIBs. [12]

Anodes

Carbons

SIBs can use hard carbon, a disordered carbon material consisting of a non-graphitizable, non-crystalline and amorphous carbon. Hard carbon's ability to absorb sodium was discovered in 2000. [13] This anode was shown to deliver 300 mAh/g with a sloping potential profile above ⁓0.15 V vs Na/Na+. It accounts for roughly half of the capacity and a flat potential profile (a potential plateau) below ⁓0.15 V vs Na/Na+. Such capacities are comparable to 300–360 mAh/g of graphite anodes in lithium-ion batteries. The first sodium-ion cell using hard carbon was demonstrated in 2003 and showed a 3.7 V average voltage during discharge. [14] Hard carbon was the preferred choice of Faradion due to its excellent combination of capacity, (lower) working potentials, and cycling stability. [15] Notably, nitrogen-doped hard carbons display even larger specific capacity of 520 mAh/g at 20 mA/g with stability over 1000 cycles. [16]

In 2015, researchers demonstrated that graphite could co-intercalate sodium in ether-based electrolytes. Low capacities around 100 mAh/g were obtained with relatively high working potentials between 0 – 1.2 V vs Na/Na+. [17]

One drawback of carbonaceous materials is that, because their intercalation potentials are fairly negative, they are limited to non-aqueous systems.

Graphene

Graphene Janus particles have been used in experimental sodium-ion batteries to increase energy density. One side provides interaction sites while the other provides inter-layer separation. Energy density reached 337 mAh/g. [18]

Carbon arsenide

Carbon arsenide (AsC5) mono/bilayer has been explored as an anode material due to high specific gravity (794/596 mAh/g), low expansion (1.2%), and ultra low diffusion barrier (0.16/0.09 eV), indicating rapid charge/discharge cycle capability, during sodium intercalation. [19] After sodium adsorption, a carbon arsenide anode maintains structural stability at 300 K, indicating long cycle life.

Metal alloys

Numerous reports described anode materials storing sodium via alloy reaction and/or conversion reaction. [10] Alloying sodium metal brings the benefits of regulating sodium-ion transport and shielding the accumulation of electric field at the tip of sodium dendrites. [20] Wang, et al. reported that a self-regulating alloy interface of nickel antimony (NiSb) was chemically deposited on Na metal during discharge. This thin layer of NiSb regulates the uniform electrochemical plating of Na metal, lowering overpotential and offering dendrite-free plating/stripping of Na metal over 100 h at a high areal capacity of 10 mAh cm−2. [21]

Metals

Many metals and semi-metals (Pb, P, Sn, Ge, etc.) form stable alloys with sodium at room temperature. Unfortunately, the formation of such alloys is usually accompanied by a large volume change, which in turn results in the pulverization (crumbling) of the material after a few cycles. For example, with tin sodium forms an alloy Na
15
Sn
4
, which is equivalent to 847 mAh/g specific capacity, with a resulting enormous volume change up to 420%. [22]

In one study, Li et al. prepared sodium and metallic tin Na
15
Sn
4
/Na through a spontaneous reaction. [23] This anode could operate at a high temperature of 90 °C (194 °F) in a carbonate solvent at 1 mA cm−2 with 1 mA h cm−2 loading, and the full cell exhibited a stable charge-discharge cycling for 100 cycles at a current density of 2C. [23] (2C means that full charge or discharge was achieved in 0.5 hour). Despite sodium alloy's ability to operate at extreme temperatures and regulate dendritic growth, the severe stress-strain experienced on the material in the course of repeated storage cycles limits cycling stability, especially in large-format cells.

Researchers from Tokyo University of Science achieved 478 mAh/g with nano‐sized magnesium particles, announced in December 2020. [24]

Oxides

Some sodium titanate phases such as Na2Ti3O7, [25] [26] [27] or NaTiO2, [28] delivered capacities around 90–180 mAh/g at low working potentials (< 1 V vs Na/Na+), though cycling stability was limited to a few hundred cycles.

Molybdenum disulphide

In 2021, researchers from China tried layered structure MoS2 as a new type of anode for sodium-ion batteries. A dissolution-recrystallization process densely assembled carbon layer-coated MoS2 nanosheets onto the surface of polyimide-derived N-doped carbon nanotubes. This kind of C-MoS2/NCNTs anode can store 348 mAh/g at 2 A/g, with a cycling stability of 82% capacity after 400 cycles at 1 A/g. [29] TiS2 is another potential material for SIBs because of its layered structure, but has yet to overcome the problem of capacity fade, since TiS2 suffers from poor electrochemical kinetics and relatively weak structural stability. In 2021, researchers from Ningbo, China employed pre-potassiated TiS2, presenting rate capability of 165.9mAh/g and a cycling stability of 85.3% capacity after 500 cycles. [30]

Other anodes for Na+

Some other materials, such as mercury, electroactive polymers and sodium terephthalate derivatives, [31] have also been demonstrated in laboratories, but did not provoke commercial interest. [15]

Cathodes

Oxides

Many layered transition metal oxides can reversibly intercalate sodium ions upon reduction. These oxides typically have a higher tap density and a lower electronic resistivity, than other posode materials (such as phosphates). Due to a larger size of the Na+ ion (116 pm) compared to Li+ ion (90 pm), cation mixing between Na+ and first row transition metal ions usually does not occur. Thus, low-cost iron and manganese oxides can be used for Na-ion batteries, whereas Li-ion batteries require the use of more expensive cobalt and nickel oxides. The drawback of the larger size of Na+ ion is its slower intercalation kinetics compared to Li+ ion and the presence of multiple intercalation stages with different voltages and kinetic rates. [4]

A P2-type Na2/3Fe1/2Mn1/2O2 oxide from earth-abundant Fe and Mn resources can reversibly store 190 mAh/g at average discharge voltage of 2.75 V vs Na/Na+ utilising the Fe3+/4+ redox couple – on par or better than commercial lithium-ion cathodes such as LiFePO4 or LiMn2O4. [32] However, its sodium deficient nature lowered energy density. Significant efforts were expended in developing Na-richer oxides. A mixed P3/P2/O3-type Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2 was demonstrated to deliver 140 mAh/g at an average discharge voltage of 3.2 V vs Na/Na+ in 2015. [33] In particular, the O3-type NaNi1/4Na1/6Mn2/12Ti4/12Sn1/12O2 oxide can deliver 160 mAh/g at average voltage of 3.22 V vs Na/Na+, [34] while a series of doped Ni-based oxides of the stoichiometry NaaNi(1−x−y−z)MnxMgyTizO2 can deliver 157 mAh/g in a sodium-ion “full cell” with a hard carbon anode at average discharge voltage of 3.2 V utilising the Ni2+/4+ redox couple. [35] Such performance in full cell configuration is better or on par with commercial lithium-ion systems. A Na0.67Mn1−xMgxO2 cathode material exhibited a discharge capacity of 175 mAh/g for Na0.67Mn0.95Mg0.05O2. This cathode contained only abundant elements. [36] Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials showed a high reversible capacity with better capacity retention. In contrast to the copper-free Na0.67Ni0.3−xCuxMn0.7O2 electrode, the as-prepared Cu-substituted cathodes deliver better sodium storage. However, cathodes with Cu are more expensive. [37]

Oxoanions

Research has also considered cathodes based on oxoanions. Such cathodes offer lower tap density, lowering energy density than oxides. On the other hand, a stronger covalent bonding of the polyanion positively impacts cycle life and safety and increases the cell voltage. Among polyanion-based cathodes, sodium vanadium phosphate [38] and fluorophosphate [39] have demonstrated excellent cycling stability and in the latter, an acceptably high capacity (⁓120 mAh/g) at high average discharge voltages (⁓3.6 V vs Na/Na+). [40] Besides that, sodium manganese silicate has also been demonstrated to deliver a very high capacity (>200 mAh/g) with decent cycling stability. [41] A French startup TIAMAT develops Na+ ion batteries based on a sodium-vanadium-phosphate-fluoride cathode material Na3V2(PO4)2F3, which undergoes two reversible 0.5 e-/V transitions: at 3.2V and at 4.0 V. [42] A startup from Singapore, SgNaPlus is developing and commercialising Na3V2(PO4)2F3 cathode material, which shows very good cycling stability, utilising the non-flammable glyme-based electrolyte. [43]

Prussian blue and analogues

Numerous research groups investigated the use of Prussian blue and various Prussian blue analogues (PBAs) as cathodes for Na+-ion batteries. The ideal formula for a discharged material is Na2M[Fe(CN)6], and it corresponds to the theoretical capacity of ca. 170 mAh/g, which is equally split between two one-electron voltage plateaus. Such high specific charges are rarely observed only in PBA samples with a low number of structural defects.

For example, the patented rhombohedral Na2MnFe(CN)6 displaying 150–160 mAh/g in capacity and a 3.4 V average discharge voltage [44] [45] [46] and rhombohedral Prussian white Na1.88(5)Fe[Fe(CN)6]·0.18(9)H2O displaying initial capacity of 158 mAh/g and retaining 90% capacity after 50 cycles. [47]

While Ti, Mn, Fe and Co PBAs show a two-electron electrochemistry, the Ni PBA shows only one-electron (Ni is not electrochemically active in the accessible voltage range). Iron-free PBA Na2MnII[MnII(CN)6] is also known. It has a fairly large reversible capacity of 209 mAh/g at C/5, but its voltage is unfortunately low (1.8 V versus Na+/Na). [48]

Electrolytes

Sodium-ion batteries can use aqueous and non-aqueous electrolytes. The limited electrochemical stability window of water results in lower voltages and limited energy densities. Non-aqueous carbonate ester polar aprotic solvents extend the voltage range. These include ethylene carbonate, dimethyl carbonate, diethyl carbonate, and propylene carbonate. The most widely used salts in non-aqueous electrolytes are NaClO4 and sodium hexafluorophosphate (NaPF6) dissolved in a mixture of these solvents. It is a well-established fact that these carbonate-based electrolytes are flammable, which pose safety concerns in large-scale applications. A type of glyme-based electrolyte, with sodium tetrafluoroborate as the salt is demonstrated to be non-flammable. [49] In addition, NaTFSI (TFSI = bis(trifluoromethane)sulfonimide) and NaFSI (FSI = bis(fluorosulfonyl)imide, NaDFOB (DFOB = difluoro(oxalato)borate) and NaBOB (bis(oxalato)borate) anions have emerged lately as new interesting salts. Of course, electrolyte additives can be used as well to improve the performance metrics. [50]

Comparison

Sodium-ion batteries have several advantages over competing battery technologies. Compared to lithium-ion batteries, sodium-ion batteries have somewhat lower cost, better safety characteristics, and similar power delivery characteristics, but also a lower energy density.

The table below compares how NIBs in general fare against the two established rechargeable battery technologies in the market currently: the lithium-ion battery and the rechargeable lead–acid battery. [35] [51]

Battery comparison
Sodium-ion batteryLithium-ion batteryLead–acid battery
Cost per kilowatt-hour of capacity$40–77 (theoretical in 2019) [52] $137 (average in 2020) [53] $100–300 [54]
Volumetric energy density250–375 W·h/L, based on prototypes [55] 200–683 W·h/L [56] 80–90 W·h/L [57]
Gravimetric energy density (specific energy) 75–200 W·h/kg, based on prototypes and product announcements [55] [58] [59] 120–260 W·h/kg (without protective case needed for battery pack in vehicle) [56] 35–40 Wh/kg [57]
Cycles at 80% depth of discharge [lower-alpha 1] Hundreds to thousands [1] 3,500 [54] 900 [54]
SafetyLow risk for aqueous batteries, high risk for Na in carbon batteriesHigh risk [lower-alpha 2] Moderate risk
MaterialsEarth-abundantScarceToxic
Cycling stabilityHigh (negligible self-discharge) [ citation needed ]High (negligible self-discharge) [ citation needed ]Moderate (high self-discharge) [ citation needed ]
Direct current round-trip efficiencyup to 92% [1] 85–95% [60] 70–90% [61]
Temperature range [lower-alpha 3] −20 °C to 60 °C [1] Acceptable:−20 °C to 60 °C.

Optimal: 15 °C to 35 °C [62]

−20 °C to 60 °C [63]

Commercialization

Companies around the world have been working to develop commercially viable sodium-ion batteries. A 2-hour 5MW/10MWh grid battery was installed in China in 2023. [64]

Active

Altris AB

Altris AB was founded by Associate Professor Reza Younesi, his former PhD student, Ronnie Mogensen, and Associate Professor William Brant as a spin-off from Uppsala University, Sweden, [65] launched in 2017 as part of research efforts from the team on sodium-ion batteries. The research was conducted at the Ångström Advanced Battery Centre led by Prof. Kristina Edström at Uppsala University. The company offers a proprietary iron-based Prussian blue analogue for the positive electrode in non-aqueous sodium-ion batteries that use hard carbon as the anode. [66] Altris holds patents on non-flammable fluorine-free electrolytes consisting of NaBOB in alkyl-phosphate solvents, Prussian white cathode, and cell production. Clarios is partnering to produce batteries using Altris technology. [67]

BYD

The BYD Company is a Chinese electric vehicle manufacturer and battery manufacturer. In 2023, they invested $1.4B USD into the construction of a sodium-ion battery plant in Xuzhou with an annual output of 30 GWh. [68]

CATL

Chinese battery manufacturer CATL announced in 2021 that it would bring a sodium-ion based battery to market by 2023. [69] It uses Prussian blue analogue for the positive electrode and porous carbon for the negative electrode. They claimed a specific energy density of 160 Wh/kg in their first generation battery. [58] The company planned to produce a hybrid battery pack that includes both sodium-ion and lithium-ion cells. [70]

Faradion Limited

Faradion Limited is a subsidiary of India's Reliance Industries. [71] Its cell design uses oxide cathodes with hard carbon anode and a liquid electrolyte. Their pouch cells have energy densities comparable to commercial Li-ion batteries (160 Wh/kg at cell-level) with good rate performance till 3C and cycle lives of 300 (100% depth of discharge) to over 1,000 cycles (80% depth of discharge). Its battery packs have demonstrated use for e-bike and e-scooter applications. [35] They demonstrated transporting sodium-ion cells in the shorted state (at 0 V), eliminating risks from commercial transport of such cells. [72] It is partnering with AMTE Power plc [73] (formerly known as AGM Batteries Limited). [74] [75] [76] [77]

In November 2019, Faradion co-authored a report with Bridge India [78] titled ’The Future of Clean Transportation: Sodium-ion Batteries’ [79] looking at the growing role India can play in manufacturing sodium-ion batteries.

On December 5, 2022, Faradion installed its first sodium-ion battery for Nation in New South Wales Australia. [80]

HiNA Battery Technology Company

HiNa Battery Technology Co., Ltd is, a spin-off from the Chinese Academy of Sciences (CAS). It leverages research conducted by Prof. Hu Yong-sheng's group at the Institute of Physics at CAS. HiNa's batteries are based on Na-Fe-Mn-Cu based oxide cathodes and anthracite-based carbon anode. In 2023, HiNa partnered with JAC as the first company to put a sodium-ion battery in an electric car, the Sehol E10X. HiNa also revealed three sodium-ion products, the NaCR32140-ME12 cylindrical cell, the NaCP50160118-ME80 square cell and the NaCP73174207-ME240 square cell, with gravimetric energy densities of 140 Wh/kg, 145 Wh/kg and 155 Wh/kg respectively. [81] In 2019, it was reported that HiNa installed a 100 kWh sodium-ion battery power bank in East China. [82]

Chinese automaker Yiwei debuted the first sodium-ion battery-powered car in 2023. It uses JAC Group’s UE module technology, which is similar to CATL's cell-to-pack design. [83] The car has a 23.2 kWh battery pack with a CLTC range of 230 kilometres (140 mi). [84]

KPIT Technologies

KPIT Technologies introduced India’s first sodium-ion battery technology, marking a significant breakthrough in the country. This newly developed technology is predicted to reduce the cost of batteries for electric vehicles by 25-30%. It has been developed in cooperation with Pune's Indian Institute of Science Education and Research over the course of almost a decade and claims several notable benefits over existing alternatives such as lead-acid and lithium-ion. Among its standout features are a longer lifespan of 3,000–6,000 cycles, faster charging than traditional batteries, greater resistance to below-freezing temperatures and with varied energy densities between 100 and 170 Wh/Kg. [85] [86] [87]

Natron Energy

Natron Energy, a spin-off from Stanford University, uses Prussian blue analogues for both cathode and anode with an aqueous electrolyte. [88] Clarios is partnering to produce a battery using Natron technology. [89]

Northvolt

Northvolt, Europe’s only large homegrown electric battery maker, has said it has made a “breakthrough” sodium-ion battery. Northvolt said its new battery, which has an energy density of more than 160 watt-hours per kilogram, has been designed for electricity storage plants but could in future be used in electric vehicles, such as two wheeled scooters. [5]

TIAMAT

TIAMAT spun off from the CNRS/CEA and a H2020 EU-project called NAIADES. [90] Its technology focuses on the development of 18650-format cylindrical cells based on polyanionic materials. It achieved energy density between 100 Wh/kg to 120 Wh/kg. The technology targets applications in the fast charge and discharge markets. Power density is between 2 and 5 kW/kg, allowing for a 5 min charging time. Lifetime is 5000+ cycles to 80% of capacity. [91] [92] [93] [94]

They are responsible for one of the first commercialized product powered by Sodium-Ion battery technology, as of October 2023, through the commercialization of an electric screw-driver. [95]

Defunct

Aquion Energy

Aquion Energy was (between 2008 and 2017) a spin-off from Carnegie Mellon University. Their batteries (salt water battery) were based on sodium titanium phosphate anode, manganese dioxide cathode, and aqueous sodium perchlorate electrolyte. After receiving government and private loans, the company filed for bankruptcy in 2017. Its assets were sold to a Chinese manufacturer Juline-Titans, who abandoned most of Aquion's patents. [96] [97] [95]

See also

Notes

  1. The number of charge-discharge cycles a battery supports depends on multiple considerations, including depth of discharge, rate of discharge, rate of charge, and temperature. The values shown here reflect generally favorable conditions.
  2. See Lithium-ion battery safety.
  3. Temperature affects charging behavior, capacity, and battery lifetime, and affects each of these differently, at different temperature ranges for each. The values given here are general ranges for battery operation.

Related Research Articles

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: within the next 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.

<span class="mw-page-title-main">Sodium–sulfur battery</span> Type of molten-salt battery

A sodium–sulfur (NaS) battery is a type of molten-salt battery that uses liquid sodium and liquid sulfur electrodes. This type of battery has a similar energy density to lithium-ion batteries, and is fabricated from inexpensive and non-toxic materials. However, due to the high operating temperature required, as well as the highly corrosive and reactive nature of sodium and sodium polysulfides, these batteries are primarily suited for stationary energy storage applications, rather than for use in vehicles. Molten Na-S batteries are scalable in size: there is a 1 MW microgrid support system on Catalina Island CA (USA) and a 50 MW/300 MWh system in Fukuoka, Kyusyu, (Japan).

<span class="mw-page-title-main">Zinc–air battery</span> High-electrical energy density storage device

A zinc–air battery is a metal–air electrochemical cell powered by the oxidation of zinc with oxygen from the air. During discharge, a mass of zinc particles forms a porous anode, which is saturated with an electrolyte. Oxygen from the air reacts at the cathode and forms hydroxyl ions which migrate into the zinc paste and form zincate, releasing electrons to travel to the cathode. The zincate decays into zinc oxide and water returns to the electrolyte. The water and hydroxyl from the anode are recycled at the cathode, so the water is not consumed. The reactions produce a theoretical voltage of 1.65 Volts, but is reduced to 1.35–1.4 V in available cells.

<span class="mw-page-title-main">Flow battery</span> Type of electrochemical cell

A flow battery, or redox flow battery, is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane. Ion transfer inside the cell occurs through the membrane while both liquids circulate in their own respective space. Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.0 to 2.43 volts. The energy capacity is a function of the electrolyte volume and the power is a function of the surface area of the electrodes.

<span class="mw-page-title-main">Molten-salt battery</span> Type of battery that uses molten salts

Molten-salt batteries are a class of battery that uses molten salts as an electrolyte and offers both a high energy density and a high power density. Traditional non-rechargeable thermal batteries can be stored in their solid state at room temperature for long periods of time before being activated by heating. Rechargeable liquid-metal batteries are used for industrial power backup, special electric vehicles and for grid energy storage, to balance out intermittent renewable power sources such as solar panels and wind turbines.

A polymer-based battery uses organic materials instead of bulk metals to form a battery. Currently accepted metal-based batteries pose many challenges due to limited resources, negative environmental impact, and the approaching limit of progress. Redox active polymers are attractive options for electrodes in batteries due to their synthetic availability, high-capacity, flexibility, light weight, low cost, and low toxicity. Recent studies have explored how to increase efficiency and reduce challenges to push polymeric active materials further towards practicality in batteries. Many types of polymers are being explored, including conductive, non-conductive, and radical polymers. Batteries with a combination of electrodes are easier to test and compare to current metal-based batteries, however batteries with both a polymer cathode and anode are also a current research focus. Polymer-based batteries, including metal/polymer electrode combinations, should be distinguished from metal-polymer batteries, such as a lithium polymer battery, which most often involve a polymeric electrolyte, as opposed to polymeric active materials.

<span class="mw-page-title-main">Nanobatteries</span> Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

A nanowire battery uses nanowires to increase the surface area of one or both of its electrodes, which improves the capacity of the battery. Some designs, variations of the lithium-ion battery have been announced, although none are commercially available. All of the concepts replace the traditional graphite anode and could improve battery performance. Each type of nanowire battery has specific advantages and disadvantages, but a challenge common to all of them is their fragility.

<span class="mw-page-title-main">Lithium-ion capacitor</span> Hybrid type of capacitor

A lithium-ion capacitor is a hybrid type of capacitor classified as a type of supercapacitor. It is called a hybrid because the anode is the same as those used in lithium-ion batteries and the cathode is the same as those used in supercapacitors. Activated carbon is typically used as the cathode. The anode of the LIC consists of carbon material which is often pre-doped with lithium ions. This pre-doping process lowers the potential of the anode and allows a relatively high output voltage compared to other supercapacitors.

<span class="mw-page-title-main">Lithium–sulfur battery</span> Type of rechargeable battery

The lithium–sulfur battery is a type of rechargeable battery. It is notable for its high specific energy. The low atomic weight of lithium and moderate atomic weight of sulfur means that Li–S batteries are relatively light. They were used on the longest and highest-altitude unmanned solar-powered aeroplane flight by Zephyr 6 in August 2008.

<span class="mw-page-title-main">Thin-film lithium-ion battery</span> Type of battery

The thin film lithium-ion battery is a form of solid-state battery. Its development is motivated by the prospect of combining the advantages of solid-state batteries with the advantages of thin-film manufacturing processes.

<span class="mw-page-title-main">Solid-state battery</span> Battery with solid electrodes and a solid electrolyte

A solid-state battery is an electrical battery that uses a solid electrolyte to conduct ion movements between the electrodes, instead of the liquid or polymer gel electrolytes found in conventional batteries. Solid-state batteries theoretically offer much higher energy density than the typical lithium-ion or lithium polymer batteries.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

A metal–air electrochemical cell is an electrochemical cell that uses an anode made from pure metal and an external cathode of ambient air, typically with an aqueous or aprotic electrolyte.

A potassium-ion battery or K-ion battery is a type of battery and analogue to lithium-ion batteries, using potassium ions for charge transfer instead of lithium ions. It was invented by the Iranian/American chemist Ali Eftekhari in 2004.

Aluminium-ion batteries are a class of rechargeable battery in which aluminium ions serve as charge carriers. Aluminium can exchange three electrons per ion. This means that insertion of one Al3+ is equivalent to three Li+ ions. Thus, since the ionic radii of Al3+ (0.54 Å) and Li+ (0.76 Å) are similar, significantly higher numbers of electrons and Al3+ ions can be accepted by cathodes with little damage. Al has 50 times (23.5 megawatt-hours m-3) the energy density of Li and is even higher than coal.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

<span class="mw-page-title-main">NASICON</span>

NASICON is an acronym for sodium (Na) super ionic conductor, which usually refers to a family of solids with the chemical formula Na1+xZr2SixP3−xO12, 0 < x < 3. In a broader sense, it is also used for similar compounds where Na, Zr and/or Si are replaced by isovalent elements. NASICON compounds have high ionic conductivities, on the order of 10−3 S/cm, which rival those of liquid electrolytes. They are caused by hopping of Na ions among interstitial sites of the NASICON crystal lattice.

Magnesium batteries are batteries that utilize magnesium cations as charge carriers and possibly in the anode in electrochemical cells. Both non-rechargeable primary cell and rechargeable secondary cell chemistries have been investigated. Magnesium primary cell batteries have been commercialised and have found use as reserve and general use batteries.

The glass battery is a type of solid-state battery. It uses a glass electrolyte and lithium or sodium metal electrodes.

References

  1. 1 2 3 4 "Performance". Faradion Limited. Retrieved 17 March 2021. The (round trip) energy efficiency of sodium-ion batteries is 92% at a discharge time of 5 hours.
  2. Abraham, K. M. (2020). "How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?". ACS Energy Letters. 5 (11): 3544–3547. doi: 10.1021/acsenergylett.0c02181 .
  3. Xie M, Wu F, Huang Y. Sodium-ion batteries: Advanced technology and applications: De Gruyter; 2022. 1-376 pp. page 8. doi: 10.1515/9783110749069.
  4. 1 2 Handbook of Sodium-Ion Batteries. 2023. R.R. Gaddam, G. Zhao. doi: 10.1201/9781003308744.
  5. 1 2 Lawson, Alex. "'Breakthrough battery' from Sweden may cut dependency on China". The Guardian . Retrieved 22 November 2023.
  6. Maddar, F. M.; Walker, D.; Chamberlain, T. W.; Compton, J.; Menon, A. S.; Copley, M.; Hasa, I. (2023). "Understanding dehydration of Prussian white: from material to aqueous processed composite electrodes for sodium-ion battery application". Journal of Materials Chemistry A. 11 (29): 15778–15791. doi: 10.1039/D3TA02570E . S2CID   259615584.
  7. Sodium-based batteries: development, commercialization journey and new emerging chemistries. 2023. Oxf Op Mater Sci. 3/1. P. Yadav, V. Shelke, A. Patrike, M. Shelke. doi: 10.1093/oxfmat/itac019
    * Strategies and practical approaches for stable and high energy density sodium-ion battery: a step closer to commercialization. 2023. Materials Today Sustainability. 22/. P. Yadav, A. Patrike, K. Wasnik, V. Shelke, M. Shelke. doi: 10.1016/j.mtsust.2023.100385
    * Chapter 6 The commercialization of sodium-ion batteries. 2022. 306-62. doi: 10.1515/9783110749069-006
    * The design, performance and commercialization of Faradion's non-aqueous Na-ion battery technology. 2021. Na-ion Batteries. 313-44. A. Rudola, F. Coowar, R. Heap, J. Barker. doi: 10.1002/9781119818069.ch8
    * Non-Aqueous Electrolytes for Sodium-Ion Batteries: Challenges and Prospects Towards Commercialization. 2021. Batteries and Supercaps. 4/6, 881–96. H. Hijazi, P. Desai, S. Mariyappan. doi: 10.1002/batt.202000277
    * (Invited) The Scale-up and Commercialization of a High Energy Density Na-Ion Battery Technology. 2019. ECS Meeting Abstracts. MA2019-03/1, 64-. J. Barker. doi: 10.1149/ma2019-03/1/64
    * Sodium-Ion Batteries: From Academic Research to Practical Commercialization. 2018. Advanced Energy Materials. 8/4. J. Deng, W.B. Luo, S.L. Chou, H.K. Liu, S.X. Dou. doi: 10.1002/aenm.201701428
    * The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies. 2018. Advanced Energy Materials. 8/17, 13. A. Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y. Lu. doi: 10.1002/aenm.201702869
  8. Hina Battery becomes 1st battery maker to put sodium-ion batteries in EVs in China, CnEVPost, 23 February 2023
  9. "Pylontech Obtains the World's First Sodium Ion Battery Certificate from TÜV Rheinland". 8 March 2023.
  10. 1 2 3 Sun, Yang-Kook; Myung, Seung-Taek; Hwang, Jang-Yeon (2017-06-19). "Sodium-ion batteries: present and future". Chemical Society Reviews. 46 (12): 3529–3614. doi: 10.1039/C6CS00776G . ISSN   1460-4744. PMID   28349134.
  11. Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad; Komaba, Shinichi (2014-12-10). "Research Development on Sodium-Ion Batteries". Chemical Reviews. 114 (23): 11636–11682. doi:10.1021/cr500192f. ISSN   0009-2665. PMID   25390643.
  12. Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang; Adelhelm, Philipp (2018). "From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises". Angewandte Chemie International Edition. 57 (1): 102–120. doi: 10.1002/anie.201703772 . ISSN   1521-3773. PMID   28627780.
  13. Dahn, J. R.; Stevens, D. A. (2000-04-01). "High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries". Journal of the Electrochemical Society. 147 (4): 1271–1273. Bibcode:2000JElS..147.1271S. doi:10.1149/1.1393348. ISSN   0013-4651.
  14. Barker, J.; Saidi, M. Y.; Swoyer, J. L. (2003-01-01). "A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4F". Electrochemical and Solid-State Letters. 6 (1): A1–A4. doi:10.1149/1.1523691. ISSN   1099-0062.
  15. 1 2 Rudola, A.; Rennie, A.J.R.; Heap, R.; Meysami, S.S.; Lowbridge, A.; Mazzali, F.; et al. (2021). Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook. Journal of Materials Chemistry A. 9/13, 8279–302. doi : 10.1039/d1ta00376c.
  16. Gaddam, R. R.; Niaei, A. H. F.; Hankel, M.; Bernhardt, D. J.; Nanjundan, A. K.; and Zhao, X. S. (2017). Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J. Mater. Chem. A, 5, 22186–22192. doi : 10.1039/C7TA06754B
  17. Jache, Birte; Adelhelm, Philipp (2014). "Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena". Angewandte Chemie International Edition. 53 (38): 10169–10173. doi:10.1002/anie.201403734. ISSN   1521-3773. PMID   25056756.
  18. Lavars, Nick (2021-08-26). "Two-faced graphene offers sodium-ion battery a tenfold boost in capacity". New Atlas. Retrieved 2021-08-26.
  19. Lu, Qiang; Zhang, Lian-Lian; Gong, Wei-Jiang (2023). "Monolayer and bilayer AsC5 as promising anode materials for Na-ion batteries". Journal of Power Sources. 580: 233439. Bibcode:2023JPS...58033439L. doi:10.1016/j.jpowsour.2023.233439. S2CID   260322455.
  20. "Northwestern SSO". prd-nusso.it.northwestern.edu. Retrieved 2021-11-19.
  21. Wang, L.; Shang, J.; Huang, Q.; Hu, H.; Zhang, Y.; Xie, C.; Luo, Y.; Gao, Y.; Wang, H.; Zheng, Z. (2021). "Northwestern SSO". Advanced Materials. 33 (41): e2102802. doi:10.1002/adma.202102802. hdl: 10397/99229 . PMID   34432922. S2CID   237307044 . Retrieved 2021-11-19.
  22. Bommier C and Ji X. Recent development on anodes for Na-ionbatteries. Isr J Chem, 2015; 55(5): 486–507.
  23. 1 2 "Northwestern SSO". prd-nusso.it.northwestern.edu. Retrieved 2021-11-19.
  24. Kamiyama, Azusa; Kubota, Kei; Igarashi, Daisuke; Youn, Yong; Tateyama, Yoshitaka; Ando, Hideka; Gotoh, Kazuma; Komaba, Shinichi (December 2020). "MgO-Template Synthesis of Extremely High Capacity Hard Carbon for Na-Ion Battery". Angewandte Chemie International Edition. 60 (10): 5114–5120. doi: 10.1002/anie.202013951 . PMC   7986697 . PMID   33300173.
  25. Senguttuvan, Premkumar; Rousse, Gwenaëlle; Seznec, Vincent; Tarascon, Jean-Marie; Palacín, M.Rosa (2011-09-27). "Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries". Chemistry of Materials. 23 (18): 4109–4111. doi:10.1021/cm202076g. ISSN   0897-4756.
  26. Rudola, Ashish; Saravanan, Kuppan; Mason, Chad W.; Balaya, Palani (2013-01-23). "Na2Ti3O7: An intercalation based anode for sodium-ion battery applications". Journal of Materials Chemistry A. 1 (7): 2653–2662. doi:10.1039/C2TA01057G. ISSN   2050-7496.
  27. Rudola, Ashish; Sharma, Neeraj; Balaya, Palani (2015-12-01). "Introducing a 0.2V sodium-ion battery anode: The Na2Ti3O7 to Na3−xTi3O7 pathway". Electrochemistry Communications. 61: 10–13. doi:10.1016/j.elecom.2015.09.016. ISSN   1388-2481.[ permanent dead link ]
  28. Ceder, Gerbrand; Liu, Lei; Twu, Nancy; Xu, Bo; Li, Xin; Wu, Di (2014-12-18). "NaTiO2: a layered anode material for sodium-ion batteries". Energy & Environmental Science. 8 (1): 195–202. doi:10.1039/C4EE03045A. ISSN   1754-5706.
  29. Liu, Yadong; Tang, Cheng; Sun, Weiwei; Zhu, Guanjia; Du, Aijun; Zhang, Haijiao (2021-06-09). "In-situ conversion growth of carbon-coated MoS2/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries". Journal of Materials Science & Technology. 102: 8–15. doi:10.1016/j.jmst.2021.06.036. S2CID   239640591.
  30. Huang, Chengcheng; Liu, Yiwen; Zheng, Runtian (2021-08-07). "Interlayer gap widened TiS2 for highly efficient sodium-ion storage". Journal of Materials Science & Technology. 107: 64–69. doi:10.1016/j.jmst.2021.08.035. S2CID   244583592.
  31. Zhao, Q., Gaddam, R. R., Yang, D., Strounina, E., Whittaker, A. K., and Zhao, X. S. (2018). Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries. Electrochimica Acta, 265, 702–708.
  32. Komaba, Shinichi; Yamada, Yasuhiro; Usui, Ryo; Okuyama, Ryoichi; Hitomi, Shuji; Nishikawa, Heisuke; Iwatate, Junichi; Kajiyama, Masataka; Yabuuchi, Naoaki (June 2012). "P2-type Nax[Fe½Mn½]O2 made from earth-abundant elements for rechargeable Na batteries". Nature Materials. 11 (6): 512–517. Bibcode:2012NatMa..11..512Y. doi:10.1038/nmat3309. ISSN   1476-4660. PMID   22543301.
  33. Keller, Marlou; Buchholz, Daniel; Passerini, Stefano (2016). "Layered Na-Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P- and O-Type Phases". Advanced Energy Materials. 6 (3): 1501555. doi:10.1002/aenm.201501555. ISSN   1614-6840. PMC   4845635 . PMID   27134617.
  34. Kendrick, E.; Gruar, R.; Nishijima, M.; Mizuhata, H.; Otani, T.; Asako, I.; Kamimura, Y. (May 22, 2014). "Tin-Containing Compounds United States Patent No. US 10,263,254" (PDF).
  35. 1 2 3 Bauer, Alexander; Song, Jie; Vail, Sean; Pan, Wei; Barker, Jerry; Lu, Yuhao (2018). "The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies". Advanced Energy Materials. 8 (17): 1702869. doi: 10.1002/aenm.201702869 . ISSN   1614-6840.
  36. Billaud, Juliette; Singh, Gurpreet; Armstrong, A. Robert; Gonzalo, Elena; Roddatis, Vladimir; Armand, Michel (2014-02-21). "Na0.67Mn1−xMgxO2(0≤x≤2): a high capacity cathode for sodium-ion batteries". Energy & Environmental Science. 7: 1387–1391. doi:10.1039/c4ee00465e.
  37. Wang, Lei; Sun, Yong-Gang; Hu, Lin-Lin; Piao, Jun-Yu; Guo, Jing; Manthiram, Arumugam; Ma, Jianmin; Cao, An-Min (2017-04-09). "Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition". Journal of Materials Chemistry A. 5 (18): 8752–8761. doi:10.1039/c7ta00880e.
  38. Uebou, Yasushi; Kiyabu, Toshiyasu; Okada, Shigeto; Yamaki, Jun-Ichi. "Electrochemical Sodium Insertion into the 3D-framework of Na3M2(PO4)3 (M=Fe, V)". The Reports of Institute of Advanced Material Study, Kyushu University (in Japanese). 16: 1–5. hdl:2324/7951.
  39. Barker, J.; Saidi, Y.; Swoyer, J. L. "Sodium ion Batteries United States Patent No. US 6,872,492 Issued March 29, 2005" (PDF).
  40. Kang, Kisuk; Lee, Seongsu; Gwon, Hyeokjo; Kim, Sung-Wook; Kim, Jongsoon; Park, Young-Uk; Kim, Hyungsub; Seo, Dong-Hwa; Shakoor, R. A. (2012-09-11). "A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries". Journal of Materials Chemistry. 22 (38): 20535–20541. doi:10.1039/C2JM33862A. ISSN   1364-5501.
  41. Law, Markas; Ramar, Vishwanathan; Balaya, Palani (2017-08-15). "Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery". Journal of Power Sources. 359: 277–284. Bibcode:2017JPS...359..277L. doi:10.1016/j.jpowsour.2017.05.069. ISSN   0378-7753.
  42. Determination of a sodium-ion cell entropy-variation. 2023. Journal of Power Sources. 581/. N. Damay, R. Recoquillé, H. Rabab, J. Kozma, C. Forgez, A. El Mejdoubi, et al. doi: 10.1016/j.jpowsour.2023.233460.
  43. US20190312299A1,PALANI, Balaya; RUDOLA, Ashish& Du, Kanget al.,"Non-flammable sodium-ion batteries",issued 2019-10-10
  44. Goodenough, John B.; Cheng, Jinguang; Wang, Long; Lu, Yuhao (2012-06-06). "Prussian blue: a new framework of electrode materials for sodium batteries". Chemical Communications. 48 (52): 6544–6546. doi:10.1039/C2CC31777J. ISSN   1364-548X. PMID   22622269. S2CID   30623364.
  45. Song, Jie; Wang, Long; Lu, Yuhao; Liu, Jue; Guo, Bingkun; Xiao, Penghao; Lee, Jong-Jan; Yang, Xiao-Qing; Henkelman, Graeme (2015-02-25). "Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery". Journal of the American Chemical Society. 137 (7): 2658–2664. doi:10.1021/ja512383b. ISSN   0002-7863. PMID   25679040. S2CID   2335024.
  46. Lu, Y.; Kisdarjono, H.; Lee, J. J.; Evans, D. "Transition metal hexacyanoferrate battery cathode with single plateau charge/discharge curve United States Patent No. 9,099,718 Issued August 4, 2015; Filed by Sharp Laboratories of America, Inc. on October 3, 2013" (PDF).
  47. Brant, William R.; Mogensen, Ronnie; Colbin, Simon; Ojwang, Dickson O.; Schmid, Siegbert; Häggström, Lennart; Ericsson, Tore; Jaworski, Aleksander; Pell, Andrew J.; Younesi, Reza (2019-09-24). "Selective Control of Composition in Prussian White for Enhanced Material Properties". Chemistry of Materials. 31 (18): 7203–7211. doi:10.1021/acs.chemmater.9b01494. ISSN   0897-4756. S2CID   202881037.
  48. Gaddam, R.R.; Zhao, G. (2023). Handbook of Sodium-Ion Batteries. doi : 10.1201/9781003308744.
  49. Du, Kang; Wang, Chen; Subasinghe, Lihil Uthpala; Gajella, Satyanarayana Reddy; Law, Markas; Rudola, Ashish; Balaya, Palani (2020-08-01). "A comprehensive study on the electrolyte, anode and cathode for developing commercial type non-flammable sodium-ion battery". Energy Storage Materials. 29: 287–299. doi:10.1016/j.ensm.2020.04.021. ISSN   2405-8297. S2CID   218930265.
  50. Law, Markas; Ramar, Vishwanathan; Balaya, Palani (August 2017). "Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery". Journal of Power Sources. 359: 277–284. Bibcode:2017JPS...359..277L. doi:10.1016/j.jpowsour.2017.05.069.
  51. Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.; Lu, Xiaochuan; Choi, Daiwon; Lemmon, John P.; Liu, Jun (2011-05-11). "Electrochemical Energy Storage for Green Grid". Chemical Reviews. 111 (5): 3577–3613. doi:10.1021/cr100290v. ISSN   0009-2665. PMID   21375330. S2CID   206894534.
  52. Peters, Jens F.; Peña Cruz, Alexandra; Weil, Marcel (2019). "Exploring the Economic Potential of Sodium-Ion Batteries". Batteries. 5 (1): 10. doi: 10.3390/batteries5010010 .
  53. "Battery Pack Prices Cited Below $100/kWh for the First Time in 2020, While Market Average Sits at $137/kWh". Bloomberg NEF. 16 December 2020. Retrieved 15 March 2021.
  54. 1 2 3 Mongird K, Fotedar V, Viswanathan V, Koritarov V, Balducci P, Hadjerioua B, Alam J (July 2019). Energy Storage Technology and Cost Characterization Report (PDF) (pdf). U.S. Department Of Energy. p. iix. Retrieved 15 March 2021.
  55. 1 2 Abraham, K. M. (23 October 2020). "How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?". ACS Energy Letters (pdf). 5 (11). American Chemical Society: 3546. doi: 10.1021/acsenergylett.0c02181 .
  56. 1 2 Automotive Li-Ion Batteries: Current Status and Future Perspectives (Report). U.S. Department Of Energy. 2019-01-01. p. 26. Retrieved 15 March 2021.
  57. 1 2 May, Geoffrey J.; Davidson, Alistair; Monahov, Boris (2018-02-01). "Lead batteries for utility energy storage: A review". Journal of Energy Storage. 15: 145–157. doi: 10.1016/j.est.2017.11.008 . ISSN   2352-152X.
  58. 1 2 "CATL Unveils Its Latest Breakthrough Technology by Releasing Its First Generation of Sodium-ion Batteries". www.catl.com. Retrieved 2023-04-24.
  59. "CATL to begin mass production of sodium-ion batteries next year". 29 October 2022.
  60. Lithium Ion Battery Test – Public Report 5 (PDF) (pdf). ITP Renewables. September 2018. p. 13. Retrieved 17 March 2021. The data shows all technologies delivering between 85–95% DC round-trip efficiency.
  61. Akinyele, Daniel; Belikov, Juri; Levron, Yoash (November 2017). ""Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems"". Energies (pdf). 10 (11). mdpi.com: 13. doi: 10.3390/en10111760 . Retrieved 17 March 2021. Lead–acid batteries have a ... round trip-efficiency (RTE) of ~70–90%
  62. Ma, Shuai (December 2018). ""Temperature effect and thermal impact in lithium-ion batteries: A review"". Progress in Natural Science: Materials International (pdf). 28 (6): 653–666. doi: 10.1016/j.pnsc.2018.11.002 . S2CID   115675281.
  63. Hutchinson, Ronda (June 2004). Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life (Report). Sandia National Labs. pp. SAND2004–3149, 975252. doi: 10.2172/975252 . S2CID   111233540.
  64. Murray, Cameron (3 August 2023). "'World-first' grid-scale sodium-ion battery project in China enters commercial operation". Energy-Storage.News.
  65. "Major successes for Uppsala University researchers' battery material – Uppsala University". www.uu.se. 8 June 2022. Retrieved 2023-06-29.
  66. "Researchers develop electric vehicle battery made from seawater and wood". Electric & Hybrid Vehicle Technology International. 2021-06-17. Retrieved 2021-07-29.
  67. "Clarios and Altris announce collaboration agreement to advance sustainable sodium-ion battery technology". Default. Retrieved 2024-01-24.
  68. "BYD & Huaihai move on plans for sodium-ion battery plant". electrive.com. 2023-11-20. Retrieved 2023-11-20.
  69. "China's CATL unveils sodium-ion battery – a first for a major car battery maker". Reuters. 2021-07-29. Retrieved 2021-11-07.
  70. Lykiardopoulou, Loanna (2021-11-10). "3 reasons why sodium-ion batteries may dethrone lithium". TNW . Retrieved 2021-11-13.
  71. "Reliance takes over Faradion for £100 million". electrive.com. 2022-01-18. Retrieved 2022-10-29.
  72. WO2016027082A1,Barker, Jeremy&Wright, Christopher John,"Storage and/or transportation of sodium-ion cells",issued 2016-02-25 Filed by Faradion Limited on August 22, 2014.
  73. "Faradion announces a collaboration and licensing deal with AMTE Power". Faradion. 2021-03-10. Retrieved 2021-11-07.
  74. "Ultra Safe AMTE A5" (PDF). May 2020. Archived from the original (PDF) on 2020-09-27. Retrieved 2021-10-14.
  75. "Dundee in running as battery cell pioneer AMTE Power closes in on UK 'gigafactory' site". www.scotsman.com. 5 October 2021. Retrieved 2021-11-07.
  76. Rudola, Ashish; Rennie, Anthony J. R.; Heap, Richard; Meysami, Seyyed Shayan; Lowbridge, Alex; Mazzali, Francesco; Sayers, Ruth; Wright, Christopher J.; Barker, Jerry (2021). "Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook". Journal of Materials Chemistry A. 9 (13): 8279–8302. doi:10.1039/d1ta00376c. ISSN   2050-7488. S2CID   233516956.
  77. The Tesla Domain (November 6, 2022), This UK based sodium battery threatens to change the EV industry forever!! , retrieved 2022-11-27
  78. India, Bridge. "Bridge India Homepage". bridgeindia.org.uk. Bridge India. Retrieved 17 August 2023.
  79. Rudola, Ashish (24 November 2019). "The Future of Clean Transportation: Sodium-ion Batteries". bridgeindia.org.uk. Bridge India, Faradion. Retrieved 17 August 2023.
  80. "First Faradion battery installed in Australia". 5 December 2022.
  81. "Hina Battery Becomes 1st Battery Maker to Put Sodium-ion Batteries in Evs in China". batteriesnews.com. 23 February 2023. Retrieved 2023-02-23.
  82. "Sodium-ion Battery Power Bank Operational in East China—Chinese Academy of Sciences". english.cas.cn. Retrieved 2019-09-05.
  83. Johnson, Peter (2023-12-27). "Volkswagen-backed EV maker rolls out first sodium-ion battery powered electric car". Electrek. Retrieved 2023-12-31.
  84. McDee, Max (6 January 2024). "JAC Group delivers first EVs with sodium-ion battery". ArenaEV. Retrieved 11 January 2024.
  85. "KPIT Tech launches sodium-ion battery tech". December 13, 2023 via The Economic Times - The Times of India.
  86. "KPIT rolls out India's first sodium-ion battery tech, aims at revenue within a year". Moneycontrol. December 13, 2023.
  87. "KPIT Tech shares zoom; here's what's powering the upmove". Zee Business. December 13, 2023.
  88. Patel, Prachi (2021-05-10). "Sodium-Ion Batteries Poised to Pick Off Large-Scale Lithium-Ion Applications". IEEE Spectrum. Retrieved 2021-07-29.
  89. "Natron Collaborates With Clarios on Mass Manufacturing of Sodium-Ion Batteries". Default. Retrieved 2024-01-24.
  90. "Sodium to boost batteries by 2020". 2017 une année avec le CNRS. 2018-03-26. Archived from the original on 2020-04-18. Retrieved 2019-09-05.
  91. Broux, Thibault; Fauth, François; Hall, Nikita; Chatillon, Yohann; Bianchini, Matteo; Bamine, Tahya; Leriche, Jean-Bernard; Suard, Emmanuelle; Carlier, Dany; Reynier, Yvan; Simonin, Loïc; Masquelier, Christian; Croguennec, Laurence (April 2019). "High Rate Performance for Carbon-Coated Na3V2(PO4)2F3 in Na-Ion Batteries". Small Methods. 3 (4): 1800215. doi:10.1002/smtd.201800215. ISSN   2366-9608. S2CID   106396927.
  92. Ponrouch, Alexandre; Dedryvère, Rémi; Monti, Damien; Demet, Atif E.; Ateba Mba, Jean Marcel; Croguennec, Laurence; Masquelier, Christian; Johansson, Patrik; Palacín, M. Rosa (2013). "Towards high energy density sodium ion batteries through electrolyte optimization". Energy & Environmental Science. 6 (8): 2361. doi:10.1039/c3ee41379a. ISSN   1754-5692.
  93. Hall, N.; Boulineau, S.; Croguennec, L.; Launois, S.; Masquelier, C.; Simonin, L. (October 13, 2015). "Method for preparing a Na3V2(PO4)2F3 particulate material United States Patent Application No. 2018/0297847" (PDF).
  94. "Tiamat |".
  95. 1 2 "Public announcement for commercializaton of sodium-ion batteries" . Retrieved 2023-11-29.
  96. "Aqueous electrolyte energy storage device".
  97. "Large format electrochemical energy storage device housing and module".