Depth of discharge

Last updated

Depth of discharge (DoD) is an important parameter appearing in the context of rechargeable battery operation. Two non-identical definitions can be found in commercial and scientific sources. The depth of discharge is defined as:

Contents

  1. the maximum fraction of a battery's capacity (given in Ah) which is removed from the charged battery on a regular basis. [1] [2] [3] [4] "Charged" does not necessarily refer to fully or 100 % charged, but rather to the state of charge (SoC), where the battery charger stops charging, which is achieved by different techniques.
  2. the fraction of the battery's capacity which is currently removed from the battery with regard to its (fully) charged state. For fully charged batteries, the depth of discharge is connected to the state of charge by the simple formula . The depth of discharge then is the complement of state of charge: as one increases, the other decreases. This definition is mostly found in scientific sources. [5] [6] [7] [8] [9]

The depth of discharge can therefore (1) refer to the size of the range usually used for discharge or (2) the current amount of charge or fraction of the capacity removed from the battery. To avoid confusion, the exact meaning of DoD should be clear for a given context. Also, for both definitions, it remains undefined, whether a charged battery's SoC is 100 % or another value. This reference value is needed to fully describe (1) the upper and lower limit of absolute SoC used for operation or (2) the current value of the absolute SoC.

Occurrence

During their use, secondary batteries are repeatedly charged and discharged within a certain range of state of charge. For many battery types, it is beneficial or even mandatory for safety reasons, to not encounter overcharging and/or deep discharge. To prevent adverse effects, a battery management system or battery charger may keep the battery from extreme levels regarding SoC, thereby limiting the SoC to a reduced range between 0 % and 100 % and decreasing depth of discharge below 100 % (see example below). This corresponds to the DoD in the sense of definition (1).

For almost all known rechargeable battery technologies, such as lead-acid batteries of all kinds like AGM, there is a correlation between the depth of discharge and the cycle life of the battery. [10] For LiFePO
4
batteries
, for example, the state of charge is often limited to the range between 15 % and 85 % to greatly increase their cycle life, resulting in a DoD of 70 %. [3]

While the state of charge is usually expressed using percentage points (0 % = empty; 100 % = full), depth of discharge is either expressed using units of Ah (e.g. for a 50 Ah battery, 0 Ah is full and 50 Ah is empty) or percentage points (100 % is empty and 0 % is full). The capacity of a battery may also be higher than its nominal rating. Thus it is possible for the depth of discharge value to exceed the nominal value (e.g., 55 Ah for a 50 Ah battery, or 110 %).

Sample calculation

Using definition (2), the depth of discharge of a charged 90 Ah battery is discharged for 20 minutes at a constant current of 50 A is calculated by:

Deep discharge

See also

Related Research Articles

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: over the following 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.

<span class="mw-page-title-main">Lithium polymer battery</span> Lithium-ion battery using a polymer electrolyte

A lithium polymer battery, or more correctly, lithium-ion polymer battery, is a rechargeable battery of lithium-ion technology using a polymer electrolyte instead of a liquid electrolyte. Highly conductive semisolid (gel) polymers form this electrolyte. These batteries provide higher specific energy than other lithium battery types. They are used in applications where weight is critical, such as mobile devices, radio-controlled aircraft, and some electric vehicles.

<span class="mw-page-title-main">Battery pack</span> Set of batteries or battery cells

A battery pack is a set of any number of (preferably) identical batteries or individual battery cells. They may be configured in a series, parallel or a mixture of both to deliver the desired voltage and current. The term battery pack is often used in reference to cordless tools, radio-controlled hobby toys, and battery electric vehicles.

<span class="mw-page-title-main">Molten-salt battery</span> Type of battery that uses molten salts

Molten-salt batteries are a class of battery that uses molten salts as an electrolyte and offers both a high energy density and a high power density. Traditional non-rechargeable thermal batteries can be stored in their solid state at room temperature for long periods of time before being activated by heating. Rechargeable liquid-metal batteries are used for industrial power backup, special electric vehiclesand for grid energy storage, to balance out intermittent renewable power sources such as solar panels and wind turbines.

<span class="mw-page-title-main">Lithium iron phosphate battery</span> Type of rechargeable battery

The lithium iron phosphate battery or LFP battery is a type of lithium-ion battery using lithium iron phosphate as the cathode material, and a graphitic carbon electrode with a metallic backing as the anode. Because of their low cost, high safety, low toxicity, long cycle life and other factors, LFP batteries are finding a number of roles in vehicle use, utility-scale stationary applications, and backup power. LFP batteries are cobalt-free. As of September 2022, LFP type battery market share for EVs reached 31%, and of that, 68% were from EV makers Tesla and BYD alone. Chinese manufacturers currently hold a near monopoly of LFP battery type production. With patents having started to expire in 2022 and the increased demand for cheaper EV batteries, LFP type production is expected to rise further and surpass lithium nickel manganese cobalt oxides (NMC) type batteries in 2028.

<span class="mw-page-title-main">Nanobatteries</span> Type of battery

Nanobatteries are fabricated batteries employing technology at the nanoscale, particles that measure less than 100 nanometers or 10−7 meters. These batteries may be nano in size or may use nanotechnology in a macro scale battery. Nanoscale batteries can be combined to function as a macrobattery such as within a nanopore battery.

State of charge (SoC) quantifies the remaining capacity available in a battery at a given time and in relation to a given state of ageing. It is usually expressed as percentage. An alternative form of the same measure is the depth of discharge (DoD), calculated as 1 − SoC. It refers to the amount of charge that may be used up if the cell is fully discharged. State of charge is normally used when discussing the current state of a battery in use, while depth of discharge is most often used to discuss a constant variation of state of charge during repeated cycles.

<span class="mw-page-title-main">Lithium iron phosphate</span> Chemical compound

Lithium iron phosphate or lithium ferro-phosphate (LFP) is an inorganic compound with the formula LiFePO
4
. It is a gray, red-grey, brown or black solid that is insoluble in water. The material has attracted attention as a component of lithium iron phosphate batteries, a type of Li-ion battery. This battery chemistry is targeted for use in power tools, electric vehicles, solar energy installations and more recently large grid-scale energy storage.

Rechargeable lithium metal batteries are secondary lithium metal batteries. They have metallic lithium as a negative electrode. The high specific capacity of lithium metal, very low redox potential and low density make it the ideal negative material for high energy density battery technologies. Rechargeable lithium metal batteries can have a long run time due to the high charge density of lithium. Several companies and many academic research groups are currently researching and developing rechargeable lithium metal batteries as they are considered a leading pathway for development beyond lithium-ion batteries. Some rechargeable lithium metal batteries employ a liquid electrolyte and some employ a solid-state electrolyte.

A battery management system (BMS) is any electronic system that manages a rechargeable battery by facilitating the safe usage and a long life of the battery in practical scenarios while monitoring and estimating its various states, calculating secondary data, reporting that data, controlling its environment, authenticating or balancing it. Protection circuit module (PCM) is a simpler alternative to BMS. A battery pack built together with a battery management system with an external communication data bus is a smart battery pack. A smart battery pack must be charged by a smart battery charger.

<span class="mw-page-title-main">Solid-state battery</span> Battery with solid electrodes and a solid electrolyte

A solid-state battery is an electrical battery that uses a solid electrolyte for ionic conductions between the electrodes, instead of the liquid or gel polymer electrolytes found in conventional batteries. Solid-state batteries theoretically offer much higher energy density than the typical lithium-ion or lithium polymer batteries.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

A metal–air electrochemical cell is an electrochemical cell that uses an anode made from pure metal and an external cathode of ambient air, typically with an aqueous or aprotic electrolyte.

<span class="mw-page-title-main">Sodium-ion battery</span> Type of rechargeable battery

Sodium-ion batteries (NIBs, SIBs, or Na-ion batteries) are several types of rechargeable batteries, which use sodium ions (Na+) as their charge carriers. In some cases, its working principle and cell construction are similar to those of lithium-ion battery (LIB) types, but it replaces lithium with sodium as the intercalating ion. Sodium belongs to the same group in the periodic table as lithium and thus has similar chemical properties. However, in some cases, such as aqueous batteries, SIBs can be quite different from LIBs.

This is a list of commercially-available battery types summarizing some of their characteristics for ready comparison.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and reducing cost.

Lithium hybrid organic batteries are an energy storage device that combines lithium with an organic polymer. For example, polyaniline vanadium (V) oxide (PAni/V2O5) can be incorporated into the nitroxide-polymer lithium iron phosphate battery, PTMA/LiFePO4. Together, they improve the lithium ion intercalation capacity, cycle life, electrochemical performances, and conductivity of batteries.

The lithium nickel cobalt aluminium oxides (abbreviated as Li-NCA, LNCA, or NCA) are a group of mixed metal oxides. Some of them are important due to their application in lithium ion batteries. NCAs are used as active material in the positive electrode (which is the cathode when the battery is discharged). NCAs are composed of the cations of the chemical elements lithium, nickel, cobalt and aluminium. The compounds of this class have a general formula LiNixCoyAlzO2 with x + y + z = 1. In case of the NCA comprising batteries currently available on the market, which are also used in electric cars and electric appliances, x ≈ 0.8, and the voltage of those batteries is between 3.6 V and 4.0 V, at a nominal voltage of 3.6 V or 3.7 V. A version of the oxides currently in use in 2019 is LiNi0.84Co0.12Al0.04O2.

<span class="mw-page-title-main">Lithium nickel manganese cobalt oxides</span> Lithium-ion battery cathode material

Lithium nickel manganese cobalt oxides (abbreviated NMC, Li-NMC, LNMC, or NCM) are mixed metal oxides of lithium, nickel, manganese and cobalt with the general formula LiNixMnyCo1-x-yO2. These materials are commonly used in lithium-ion batteries for mobile devices and electric vehicles, acting as the positively charged cathode.

An anode-free battery (AFB) is one that is manufactured without an anode. Instead, it creates a metal anode the first time it is charged. The anode is formed from charge carriers supplied by the cathode. As such, before charging, the battery consists of a cathode, current collectors, separator and electrolyte.

References

  1. Cheng, Yu-Shan; Liu, Yi-Hua; Hesse, Holger C.; Naumann, Maik; Truong, Cong Nam; Jossen, Andreas (2018). "A PSO-Optimized Fuzzy Logic Control-Based Charging Method for Individual Household Battery Storage Systems within a Community". Energies. 11 (2): 469. doi: 10.3390/en11020469 . ISSN   1996-1073.
  2. Wikner, Evelina; Thiringer, Torbjörn (2018). "Extending Battery Lifetime by Avoiding High SOC". Applied Sciences. 8 (10): 1825. doi: 10.3390/app8101825 . ISSN   2076-3417.
  3. 1 2 gwl-power. "lithium & solar power LiFePO4". lithium & solar power LiFePO4. Retrieved 2022-02-20.
  4. "Blog - LiFePO4 | shop.GWL.eu". shop.gwl.eu. Retrieved 2022-02-20.
  5. Bhadra, Shoham; Hertzberg, Benjamin J.; Hsieh, Andrew G.; Croft, Mark; Gallaway, Joshua W.; Van Tassell, Barry J.; Chamoun, Mylad; Erdonmez, Can; Zhong, Zhong; Sholklapper, Tal; Steingart, Daniel A. (2015). "The relationship between coefficient of restitution and state of charge of zinc alkaline primary LR6 batteries" (PDF). Journal of Materials Chemistry A. 3 (18): 9395–9400. doi:10.1039/C5TA01576F. OSTI   1183288.
  6. Wang, John; Liu, Ping; Hicks-Garner, Jocelyn; Sherman, Elena; Soukiazian, Souren; Verbrugge, Mark; Tataria, Harshad; Musser, James; Finamore, Peter (2011-04-15). "Cycle-life model for graphite-LiFePO4 cells". Journal of Power Sources. 196 (8): 3942–3948. Bibcode:2011JPS...196.3942W. doi:10.1016/j.jpowsour.2010.11.134. ISSN   0378-7753.
  7. Yamamoto, Takahiko; Ando, Tomohiro; Kawabe, Yusuke; Fukuma, Takeshi; Enomoto, Hiroshi; Nishijima, Yoshiaki; Matsui, Yoshihiko; Kanamura, Kiyoshi; Takahashi, Yasufumi (2021-11-02). "Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO4 Particle". Analytical Chemistry. 93 (43): 14448–14453. doi:10.1021/acs.analchem.1c02851. ISSN   0003-2700. PMID   34668693.
  8. Shim, Joongpyo; Striebel, Kathryn A. (2003-06-01). "Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4". Journal of Power Sources. Selected papers presented at the 11th International Meeting on Lithium Batteries. 119–121: 955–958. Bibcode:2003JPS...119..955S. doi:10.1016/S0378-7753(03)00297-0. ISSN   0378-7753. S2CID   53992561.
  9. Anseán, D.; Viera, J. C.; González, M.; García, V. M.; Álvarez, J. C.; Antuña, J. L. (2013). "High power LiFePO4 cell evaluation: Fast charge, Depth of Discharge and Fast discharge dependency". World Electric Vehicle Journal. 6 (3): 653–662. doi: 10.3390/wevj6030653 . ISSN   2032-6653.
  10. support.rollsbattery.com:AGM discharge characteristics