Last updated
General chemical structure of a polyimide Polyimide.svg
General chemical structure of a polyimide

Polyimide (sometimes abbreviated PI) is a polymer of imide monomers. Polyimides have been in mass production since 1955. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, e.g. high temperature fuel cells, displays, and various military roles. A classic polyimide is Kapton, which is produced by condensation of pyromellitic dianhydride and 4,4'-oxydianiline. [1]

Polymer substance composed of macromolecules with repeating structural units

A polymer is a large molecule, or macromolecule, composed of many repeated subunits. Due to their broad range of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass relative to small molecule compounds produces unique physical properties, including toughness, viscoelasticity, and a tendency to form glasses and semicrystalline structures rather than crystals. The terms polymer and resin are often synonymous with plastic.

Imide class of chemical compounds

In organic chemistry, an imide is a functional group consisting of two acyl groups bound to nitrogen. The compounds are structurally related to acid anhydrides, although imides are more resistant toward hydrolysis. In terms of commercial applications, imides are best known as components of high-strength polymers, called polyimides.

A monomer is a molecule that "can undergo polymerization thereby contributing constitutional units to the essential structure of a macromolecule". Large numbers of monomers combine to form polymers in a process called polymerization.



According to the composition of their main chain, polyimides can be:

Aromaticity concept of spatial and electr. structure of cyclic molec. systems displaying the effects of cyclic electron delocalization which provide for their enhanced thermodyn. stability and tendency to retain the struct. type in the course of chem. transfo-ns

In organic chemistry, the term aromaticity is used to describe a cyclic (ring-shaped), planar (flat) molecule with a ring of resonance bonds that exhibits more stability than other geometric or connective arrangements with the same set of atoms. Aromatic molecules are very stable, and do not break apart easily to react with other substances. Organic compounds that are not aromatic are classified as aliphatic compounds—they might be cyclic, but only aromatic rings have special stability.


Thermostability is the quality of a substance to resist irreversible change in its chemical or physical structure, often by resisting decomposition or polymerization, at a high relative temperature.

According to the type of interactions between the main chains, polyimides can be:

Thermoplastic plastic that becomes soft when heated and hard when cooled

A thermoplastic, or thermosoftening plastic, is a plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.


Several methods are possible to prepare polyimides, among them:

In organic chemistry, an acid anhydride is an organic acid anhydride, a compound with the functional group R(CO)O(CO)R'. Organic acid anhydrides often form when one equivalent of water is removed from two equivalents of an organic acid in a dehydration reaction.

A diamine is an organic compound with two amino groups. Diamines are used as monomers to prepare polyamides, polyimides, and polyureas. In terms of quantities produced, 1,6-diaminohexane, a precursor to Nylon 6-6, is most important, followed by ethylenediamine. Vicinal diamines (1,2-diamines) are a structural motif in many biological compounds and are used as ligands in coordination chemistry.

Isocyanate salt or ester of isocyanic acid

Isocyanate is the functional group with the formula R–N=C=O. Organic compounds that contain an isocyanate group are referred to as isocyanates. An organic compound that with two isocyanate groups is known as a diisocyanate. Diisocyanates are manufactured for the production of polyurethanes, a class of polymers.

Dianhydrides used as precursors to these materials include pyromellitic dianhydride, benzoquinonetetracarboxylic dianhydride and naphthalene tetracarboxylic dianhydride. Common diamine building blocks include 4,4'-diaminodiphenyl ether ("DAPE"), meta-phenylenediamine ("MDA"), and 3,3-diaminodiphenylmethane. [1] Hundreds of diamines and dianhydrides have been examined to tune the physical and especially the processing properties of these materials. These materials tend to be insoluble and have high softening temperatures, arising from charge-transfer interactions between the planar subunits. [2]

Pyromellitic dianhydride chemical compound

Pyromellitic dianhydride is an organic compound with the formula C6H2(C2O3)2. It is the double carboxylic acid anhydride that is used in the preparation of polyimide polymers such as Kapton. It is a white solid.

Benzoquinonetetracarboxylic dianhydride chemical compound

Benzoquinonetetracarboxylic dianhydride is an organic compound with formula C
which can be seen as the result of removing two molecules of water H
from benzoquinonetetracarboxylic acid.

<i>m</i>-Phenylenediamine chemical compound

m-Phenylenediamine, also called 1,3-diaminobenzene, is an organic compound with the formula C6H4(NH2)2. It is an isomer of o-phenylenediamine and p-phenylenediamine. It is a colourless solid.


Thermosetting polyimides are known for thermal stability, good chemical resistance, excellent mechanical properties, and characteristic orange/yellow color. Polyimides compounded with graphite or glass fiber reinforcements have flexural strengths of up to 50,000 psi (340 MPa) and flexural moduli of 3,000,000 psi (21,000 MPa). Thermoset polymer matrix polyimides exhibit very low creep and high tensile strength. These properties are maintained during continuous use to temperatures of up to 232 °C (450 °F) and for short excursions, as high as 704 °C (1,299 °F). [3] Molded polyimide parts and laminates have very good heat resistance. Normal operating temperatures for such parts and laminates range from cryogenic to those exceeding 260 °C (500 °F). Polyimides are also inherently resistant to flame combustion and do not usually need to be mixed with flame retardants. Most carry a UL rating of VTM-0. Polyimide laminates have a flexural strength half life at 249 °C (480 °F) of 400 hours.

Glass fiber material consisting of numerous extremely fine fibers of glass

Glass fiber is a material consisting of numerous extremely fine fibers of glass.

Flexural strength material property

Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. The transverse bending test is most frequently employed, in which a specimen having either a circular or rectangular cross-section is bent until fracture or yielding using a three point flexural test technique. The flexural strength represents the highest stress experienced within the material at its moment of yield. It is measured in terms of stress, here given the symbol .

Flexural modulus

In mechanics, the flexural modulus or bending modulus is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending. It is determined from the slope of a stress-strain curve produced by a flexural test, and uses units of force per area.

Typical polyimide parts are not affected by commonly used solvents and oils — including hydrocarbons, esters, ethers, alcohols and freons. They also resist weak acids but are not recommended for use in environments that contain alkalis or inorganic acids. Some polyimides, such as CP1 and CORIN XLS, are solvent-soluble and exhibit high optical clarity. The solubility properties lend them towards spray and low temperature cure applications.


Insulation and passivation films

Polyimide materials are lightweight, flexible, resistant to heat and chemicals. Therefore, they are used in the electronics industry for flexible cables and as an insulating film on magnet wire. For example, in a laptop computer, the cable that connects the main logic board to the display (which must flex every time the laptop is opened or closed) is often a polyimide base with copper conductors. Examples of polyimide films include Apical, Kapton, UPILEX, VTEC PI, Norton TH and Kaptrex.

Structure of poly-oxydiphenylene-pyromellitimide, "Kapton". Poly-oxydiphenylene-pyromellitimide.svg
Structure of poly-oxydiphenylene-pyromellitimide, "Kapton".

Polyimide is used to coat optical fibers for medical or high temperature applications. [4]

An additional use of polyimide resin is as an insulating and passivation [5] layer in the manufacture of Integrated circuits and MEMS chips. The polyimide layers have good mechanical elongation and tensile strength, which also helps the adhesion between the polyimide layers or between polyimide layer and deposited metal layer. The minimum interaction between the gold film and the polyimide film, coupled with high temperature stability of the polyimide film, results in a system that provides reliable insulation when subjected to various types of environmental stresses. [6] [7]

Multi-layer insulation used on spacecraft is usually made of polyimide coated with thin layers of aluminum. The gold-like material often seen on the outside of spacecraft is actually single aluminized polyimide, with the single layer of aluminum facing in. [8] The yellowish-brown polyimide gives the surface its gold-like color.

Mechanical parts

Polyimide powder can be used to produce parts and shapes by sintering technologies (hot compression molding, direct forming, and isostatic pressing). Because of their high mechanical stability even at elevated temperatures they are used as bushings, bearings, sockets or constructive parts in demanding applications. To improve tribological properties, compounds with solid lubricants like graphite, PTFE, or molybdenum sulfide are common. Polyimide parts and shapes include P84 NT, VTEC PI, Meldin, Vespel, and Plavis.


In coal-fired power plants, waste incinerators, or cement plants, polyimide fibres are used to filter hot gases. In this application, a polyimide needle felt separates dust and particulate matter from the exhaust gas.

Polyimide is also the most common material used for the reverse osmotic film in purification of water, or the concentration of dilute materials from water, such as maple syrup production. [9] [10]


Polyimide is used for medical tubing, e.g. vascular catheters, for its burst pressure resistance combined with flexibility and chemical resistance.

The semiconductor industry uses polyimide as a high-temperature adhesive; it is also used as a mechanical stress buffer.

Some polyimide can be used like a photoresist; both "positive" and "negative" types of photoresist-like polyimide exist in the market.

The IKAROS solar sailing spacecraft uses polyimide resin sails to operate without rocket engines. [11]

See also

Related Research Articles

Printed circuit board board to support and connect electronic components

A printed circuit board (PCB) mechanically supports and electrically connects electronic components or electrical components using conductive tracks, pads and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. Components are generally soldered onto the PCB to both electrically connect and mechanically fasten them to it.

Fiberglass (US) or fibreglass (UK) is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet, or woven into a fabric. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinylester—or a thermoplastic.

Epoxy family of polymer

Epoxy is either any of the basic components or the cured end products of epoxy resins, as well as a colloquial name for the epoxide functional group. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. Epoxy resins may be reacted (cross-linked) either with themselves through catalytic homopolymerisation, or with a wide range of co-reactants including polyfunctional amines, acids, phenols, alcohols and thiols. These co-reactants are often referred to as hardeners or curatives, and the cross-linking reaction is commonly referred to as curing. Reaction of polyepoxides with themselves or with polyfunctional hardeners forms a thermosetting polymer, often with favorable mechanical properties and high thermal and chemical resistance. Epoxy has a wide range of applications, including metal coatings, use in electronics/electrical components/LEDs, high tension electrical insulators, paint brush manufacturing, fiber-reinforced plastic materials and structural adhesives. Epoxy is sometimes used as a glue.

Thermosetting polymer polymer material that irreversibly cures

A thermosetting polymer, resin, or plastic, often called a thermoset, is a polymer that is irreversibly hardened by curing from a soft solid or viscous liquid prepolymer or resin. Curing is induced by heat or suitable radiation and may be promoted by high pressure, or mixing with a catalyst. It results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

Phenol formaldehyde resin chemical compound

Phenol formaldehyde resins (PF) or phenolic resins are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins (plastics). They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.


Kapton is a polyimide film developed by DuPont in the late 1960s that remains stable across a wide range of temperatures, from −269 to +400 °C. Kapton is used in, among other things, flexible printed circuits and thermal blankets used on spacecraft, satellites, and various space instruments.

Fibre-reinforced plastic (FRP) is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, or asbestos have been used. The polymer is usually an epoxy, vinylester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.

Polyamide-imides are either thermosetting or thermoplastic, amorphous polymers that have exceptional mechanical, thermal and chemical resistant properties. Polyamide-imides are used extensively as wire coatings in making magnet wire. They are prepared from isocyanates and TMA in N-methyl-2-pyrrolidone (NMP). A prominent distributor of polyamide-imides is Solvay Specialty Polymers, which uses the trademark Torlon.

Micarta is a brand name for composites of linen, canvas, paper, fiberglass, carbon fiber or other fabric in a thermosetting plastic. It was originally used in electrical and decorative applications. Micarta was developed by George Westinghouse at least as early as 1910 using phenolic resins invented by Leo Baekeland. These resins were used to impregnate paper and cotton fabric which were cured under pressure and high temperature to produce laminates. In later years this manufacturing method included the use of fiberglass fabric and other resin types were also used. Today Micarta high pressure industrial laminates are produced with a wide variety of resins and fibers. The term has been used generically for most resin impregnated fibre compounds. Common uses of modern high pressure laminates are as electrical insulators, printed circuit board substrates, and knife handles.

Hot-melt adhesive solvent-free and at room temperature more or less solid products which are applied to the adhesive surface when hot

Hot melt adhesive (HMA), also known as hot glue, is a form of thermoplastic adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which the user pushes through the gun either with a mechanical trigger mechanism on the gun, or with direct finger pressure. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is tacky when hot, and solidifies in a few seconds to one minute. Hot melt adhesives can also be applied by dipping or spraying, and are popular with hobbyists and crafters both for affixing and as an inexpensive alternative to resin casting.

Polyester category of polymers

Polyester is a category of polymers that contain the ester functional group in their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in the cutin of plant cuticles, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. The material is used extensively in clothing.

Vespel is the trademark of a range of durable high-performance polyimide-based plastics manufactured by DuPont. The one shown in the structure on the right was the first to be commercialized.

Magnet wire

Magnet wire or enameled wire is a copper or aluminium wire coated with a very thin layer of insulation. It is used in the construction of transformers, inductors, motors, speakers, hard disk head actuators, electromagnets, and other applications that require tight coils of insulated wire.

4,4-Oxydianiline chemical compound

4,4’-Oxydianiline is an organic compound with the formula O(C6H4NH2)2. It is an ether derivative of aniline. This colourless solid is a useful monomer and cross-linking agent for polymers, especially the polyimides, such as Kapton.

A thermoset polymer matrix is a synthetic polymer reinforcement first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the space shuttle. In polymer matrix composites, polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements.

Upilex is a heat-resistant polyimide film that is the product of the polycondensation reaction between biphenyl tetracarboxylic dianhydride (BPDA) monomers and diamine. Its properties include dimensional stability, low water absorption, high chemical resistance and high mechanical properties, high heat and chemical resistance. It was developed by UBE Industries. Upilex-S is the standard grade but other grades include Upilex-RN, VT, CA and SGA. Upilex-S is used when excellent mechanical properties are required, Upilex-RN possesses excellent molding processability, while Upilex-VT has superior heat bonding characteristics. General applications of Upilex include their use in flexible printed circuits, electric motor and generator insulation, high temperature wire and cable wrapping, and specialty pressure sensitive tapes. Polyimides have also been extensively studied in gas and humidity sensors. The concentration is then determined by monitoring the capacitance of modified Upilex films. With the advantages of flexibility and easy functionalization, Upilex films are often used as substrate materials in biosensor platforms. For instance, it is possible to electropolymerize onto these films or attach enzymes to it for the detection of glucose.

Carbon fiber reinforced polymer, carbon fiber reinforced plastic, or carbon fiber reinforced thermoplastic, is an extremely strong and light fiber-reinforced plastic which contains carbon fibers. The alternative spelling 'fibre' is common in British Commonwealth countries. CFRPs can be expensive to produce but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructure of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.

Advanced composite materials (ACMs) are also known as advanced polymer matrix composites. These are generally characterized or determined by unusually high strength fibres with unusually high stiffness, or modulus of elasticity characteristics, compared to other materials, while bound together by weaker matrices. These are termed advanced composite materials (ACM) in comparison to the composite materials commonly in use such as reinforced concrete, or even concrete itself. The high strength fibers are also low density while occupying a large fraction of the volume

4,4′-(Hexafluoroisopropylidene)diphthalic anhydride chemical compound

4,4′-(Hexafluoroisopropylidene)diphthalic anhydride (6FDA) is a aromatic organofluorine compound and the dianhydride of 4,4'-(hexafluorisopropylidene)bisphthalic acid.


  1. 1 2 Wright, Walter W. and Hallden-Abberton, Michael (2002) "Polyimides" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi : 10.1002/14356007.a21_253
  2. Liaw, Der-Jang; Wang, Kung-Li; Huang, Ying-Chi; Lee, Kueir-Rarn; Lai, Juin-Yih; Ha, Chang-Sik (2012). "Advanced polyimide materials: Syntheses, physical properties and applications". Progress in Polymer Science. 37 (7): 907–974. doi:10.1016/j.progpolymsci.2012.02.005.
  3. P2SI 900HT Tech Sheet. proofresearchacd.com
  4. Huang, Lei; Dyer, Robert S.; Lago, Ralph J.; Stolov, Andrei A.; Li, Jie (2016). "Mechanical properties of polyimide coated optical fibers at elevated temperatures". Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI. 9702. pp. 97020Y. doi:10.1117/12.2210957.
  5. Jiang, Jiann-Shan; Chiou, Bi-Shiou (2001). "The effect of polyimide passivation on the electromigration of Cu multilayer interconnections". Journal of Materials Science: Materials in Electronics. 12 (11): 655–659. doi:10.1023/A:1012802117916.
  6. Krakauer, David (December 2006) Digital Isolation Offers Compact, Low-Cost Solutions to Challenging Design Problems. analog.com
  7. Chen, Baoxing. iCoupler Products with isoPower Technology: Signal and Power Transfer Across Isolation Barrier Using Microtransformers. analog.com
  8. "Thermal Control Overview" (PDF). Sheldahl Multi Layer Insulation. Retrieved 28 December 2015.
  9. What is a reverse osmosis water softener? wisegeek.net
  10. Shuey, Harry F. and Wan, Wankei (1983-12-22) U.S. Patent 4,532,041 Asymmetric polyimide reverse osmosis membrane, method for preparation of same and use thereof for organic liquid separations.
  11. Courtland, Rachel (10 May 2010). "Maiden voyage for first true space sail". The New Scientist. Retrieved 11 June 2010.

Further reading