Mission type | Solar sail technology |
---|---|
Operator | JAXA [1] [2] [3] [4] |
COSPAR ID | 2010-020E |
SATCAT no. | 36577 |
Website | global |
Mission duration | 5 years launch to last contact in 2015 |
Spacecraft properties | |
Launch mass | 310 kg [5] |
Dimensions | Solar sail: 14 m × 14 m (46 ft × 46 ft) (area: 196 m2 (2,110 sq ft)) [6] |
Start of mission | |
Launch date | 21:58:22,20 May 2010(UTC) |
Rocket | H-IIA 202 |
Launch site | Tanegashima, LA-Y |
End of mission | |
Last contact | 20 May 2015 [7] |
Orbital parameters | |
Reference system | Heliocentric orbit |
Flyby of Venus | |
Closest approach | 8 December 2010 |
Distance | 80,800 kilometers (50,200 mi) |
IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun) is a Japan Aerospace Exploration Agency (JAXA) experimental spacecraft. The spacecraft was launched on 20 May 2010, aboard an H-IIA rocket, together with the Akatsuki (Venus Climate Orbiter) probe and four other small spacecraft. IKAROS is the first spacecraft to successfully demonstrate solar sail technology in interplanetary space. [3] [8] The craft's name is an allusion to the legendary Icarus (Ancient Greek : Ἴκαρος, Ikaros), who flew close to the Sun on wings made of bird-feathers and wax. [9]
On 8 December 2010, IKAROS flew by Venus at a distance of 80,800 km (50,200 mi), successfully completing its planned mission, and entered its extended operation phase. [10] [11] [12] [13]
The IKAROS probe is the world's first spacecraft to use solar sailing as the main propulsion. [14] It was designed to demonstrate four key technologies (comments in parentheses refer to figure):
The mission also includes investigations of aspects of interplanetary space, such as gamma-ray bursts, solar wind and cosmic dust. [15]
The probe's ALADDIN instrument (ALDN-S and ALDN-E) measured the variation in dust density [16] while its Gamma-Ray Burst Polarimeter (GAP) measured the polarization of gamma-ray bursts during its six-month cruise. [17]
IKAROS was to be followed by a 40 by 40 metres (130 ft × 130 ft) sail, the Jupiter Trojan Asteroid Explorer, which was intended to journey to Jupiter and the Trojan asteroids, with a proposed goal of returning an asteroid sample to Earth in the 2050s. [18] [19] [20] [21] The Jupiter Trojan Asteroid Explorer was a finalist for Japan's Institute of Space and Astronautical Science (ISAS)' 2nd Large Mission Class. The winning mission was LiteBIRD.
The square sail, deployed via a spinning motion using 0.5-kilogram (1.1 lb) tip masses (key item 1 in figure at right), is 20 m (66 ft) on the diagonal and is made of a 7.5-micrometre (0.00030 in) thick sheet of polyimide (key item 3 in figure at right). The polyimide sheet had a mass of about 10 grams per square metre (0.033 oz/sq ft), resulting in a total sail mass of 2 kilograms (4.4 lb), excluding tip masses, attached panels and tethers. A thin-film solar array is embedded in the sail (key item 4 in figure at right). PowerFilm, Inc. provided the thin-film solar array. [22] Eighty blocks of LCD panels are embedded in the sail, [23] whose reflectance can be adjusted for attitude control (key item 2 in figure at right). The sail also contains eight dust counters on the opposite face as part of the science payload. [24] [25]
IKAROS was successfully launched together with Akatsuki (the Venus Climate Orbiter) aboard an H-IIA rocket from the Tanegashima Space Center on 21 May 2010.[ citation needed ]
IKAROS spun at 20–25 revolutions per minute and finished unfurling its sail on 10 June 2010. [26] [27] [28] The craft contains two tiny ejectable cameras, DCAM1 and DCAM2. DCAM2 was used to photograph the sail after deployment on 14 July 2010. [29]
Acceleration and attitude control (orientation) were successfully tested during the remaining six-month voyage to Venus. On 9 July 2010, JAXA confirmed that IKAROS was being accelerated by its solar sail, [30] and on 23 July announced successful attitude control. Over a 23-hour period of time, the solar angle of the sail was changed by a half a degree, not by using thrusters, but by dynamically controlling the reflectivity of the 80 liquid crystal panels at the outer edge of the sail so that the sunlight pressure would produce torque. [31] IKAROS continues to spin at approximately 2 rpm, requiring the LCD panels to be cycled at that rate for attitude control.[ citation needed ]
According to JAXA, IKAROS finished all planned experiments in Dec 2010, but the mission continued beyond that date "in order to enhance the skill of controlling solar sail". [32] On 30 November 2012, JAXA announced that IKAROS had been recognized by Guinness World Records as the world's first solar sail spacecraft between planets, and that its two separated cameras, DCAM1 and DCAM2, had been recognized as the smallest size of a spacecraft flying between planets. [33] [34] As of 2012, the IKAROS continued to spin, but its attitude control had degraded. This resulted in unexpected sail motions and as a result, downlink through the medium-gain antenna was only intermittently available. The project team was dissolved on 28 March 2013, although a trial receipt of data was planned for a later date.[ citation needed ]
The project was reactivated on 20 June 2013 in the expectation that the satellite would wake up from a hibernation state as more power from the solar panels became available. The team was able to receive telemetry from the IKAROS between 20 June and 12 September 2013, after which contact was again lost. The loss of contact was around the predicted time of the spacecraft again entering a low-power hibernation mode as power from the solar panels decreased. Available communication time through the Usuda Deep Space Center antenna was limited, so data was gathered only intermittently to estimate the speed, trajectory and rotation of the satellite. [35] [36] As of August 2013, acceleration from the IKAROS sail had changed the craft's speed by approximately 400 metres per second (890 mph) in total. [37]
Transmissions were again received on 22 May 2014, the spacecraft flying at a distance of about 230 million kilometers from the Earth. By May 2014, IKAROS was on a ten-month orbit around the Sun, spending seven months of each orbit in hibernation mode due to insufficient power. [38] By 23 April 2015, the spacecraft woke up from hibernation mode for the 4th time and was flying at a distance of about 120 million kilometers from the Earth. [39] On 21 May 2015, JAXA could not receive a signal from IKAROS and concluded that the spacecraft had shifted to the hibernation mode for the fifth time, as expected. Based on the last data received during May 2015, the position of IKAROS at the time was about 110 million kilometers away from the Earth, and about 130 million kilometers from the Sun. [40]
From the gamma-ray polarization data of GAP, Toma et al. [41] put a stricter limit on CPT violation. It is an improvement of eight orders of magnitude over previous limits. [42] [43]
JAXA scientists stated on 9 July 2010 that the measured thrust force by the solar radiation pressure on IKAROS' 196 m2 sail is 1.12 millinewtons. [44]
The second mission will take place in the late 2010s. It will involve a medium-sized solar power sail with a diameter of 50 metres (160 ft), and will have integrated ion-propulsion engines. The destinations of the spacecraft will be Jupiter and the Trojan asteroids.
Graph suggests approx 1.1mN force
Solar sails are a method of spacecraft propulsion using radiation pressure exerted by sunlight on large surfaces. A number of spaceflight missions to test solar propulsion and navigation have been proposed since the 1980s. The first spacecraft to make use of the technology was IKAROS, launched in 2010.
BepiColombo is a joint mission of the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) to the planet Mercury. The mission comprises two satellites launched together: the Mercury Planetary Orbiter (MPO) and Mio. The mission will perform a comprehensive study of Mercury, including characterization of its magnetic field, magnetosphere, and both interior and surface structure. It was launched on an Ariane 5 rocket on 20 October 2018 at 01:45 UTC, with an arrival at Mercury planned for November 2026, after a flyby of Earth, two flybys of Venus, and six flybys of Mercury. The mission was approved in November 2009, after years in proposal and planning as part of the European Space Agency's Horizon 2000+ programme; it is the last mission of the programme to be launched.
Hayabusa was a robotic spacecraft developed by the Japan Aerospace Exploration Agency (JAXA) to return a sample of material from a small near-Earth asteroid named 25143 Itokawa to Earth for further analysis. Hayabusa, formerly known as MUSES-C for Mu Space Engineering Spacecraft C, was launched on 9 May 2003 and rendezvoused with Itokawa in mid-September 2005. After arriving at Itokawa, Hayabusa studied the asteroid's shape, spin, topography, color, composition, density, and history. In November 2005, it landed on the asteroid and collected samples in the form of tiny grains of asteroidal material, which were returned to Earth aboard the spacecraft on 13 June 2010.
The Japan Aerospace Exploration Agency (JAXA) is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into orbit, and is involved in many more advanced missions such as asteroid exploration and possible human exploration of the Moon. Its motto is One JAXA and its corporate slogan is Explore to Realize.
Institute of Space and Astronautical Science, or ISAS, is a Japanese national research organization of astrophysics using rockets, astronomical satellites and interplanetary probes which played a major role in Japan's space development. Established as part of the University of Tokyo in 1964, the institute spun off from the university to come under direct purview of the Ministry of Education. Since 2003, it is a division of Japan Aerospace Exploration Agency (JAXA).
Akatsuki, also known as the Venus Climate Orbiter (VCO) and Planet-C, was a Japan Aerospace Exploration Agency (JAXA) space probe tasked with studying the atmosphere of Venus. It was launched aboard an H-IIA 202 rocket on 20 May 2010, but failed to enter orbit around Venus on 6 December 2010. After the craft orbited the Sun for five years, engineers successfully placed it into an alternative Venusian elliptic orbit on 7 December 2015 by firing its attitude control thrusters for 20 minutes and made it the first Japanese satellite orbiting Venus.
The following outline is provided as an overview of and topical guide to space exploration.
Hayabusa2 is an asteroid sample-return mission operated by the Japanese state space agency JAXA. It is a successor to the Hayabusa mission, which returned asteroid samples for the first time in June 2010. Hayabusa2 was launched on 3 December 2014 and rendezvoused in space with near-Earth asteroid 162173 Ryugu on 27 June 2018. It surveyed the asteroid for a year and a half and took samples. It left the asteroid in November 2019 and returned the samples to Earth on 5 December 2020 UTC. Its mission has now been extended through at least 2031, when it will rendezvous with the small, rapidly-rotating asteroid 1998 KY26.
The Jupiter Magnetospheric Orbiter is a cancelled space probe proposed by the Japanese Aerospace Exploration Agency (JAXA), to undertake detailed in situ studies of the magnetosphere of Jupiter as a template for an astrophysical magnetised disk.
Shin'en, known before launch as UNITEC-1 or UNISEC Technology Experiment Carrier 1, is a Japanese student spacecraft which was intended to make a flyby of Venus in order to study the effects of interplanetary spaceflight on spacecraft computers. In doing so, it was intended to become the first student-built spacecraft to operate beyond geocentric orbit. It was operated by University Space Engineering Consortium (UNISEC), a collaboration between several Japanese universities.
Hayabusa Mk2 was a proposed Japan Aerospace Exploration Agency (JAXA) space mission aimed at visiting a small primitive asteroid and returning a sample to Earth for laboratory analysis. It was intended to be the follow-on mission to JAXA's Hayabusa mission, as well as the Hayabusa2 mission. The latest proposal for Hayabusa Mk2 stated its target to be the dormant comet 4015 Wilson–Harrington, with a launch of the probe in 2018. From 2007 to 2010, it was also considered as a joint JAXA-ESA mission under the name Marco Polo. The in-situ investigation and sample analysis would allow scientists to improve our knowledge of the physical and chemical properties of a small Near-Earth Object (NEO) which is thought to have kept the original composition of the solar nebula in which planet formed. Thus, it would provide some constraints to the models of planet formation and some information on how life may have been brought to Earth. Information on the physical structure will help defining efficient mitigation strategies against a potential threatening object.
The (Japanese) Lunar Exploration Program is a program of robotic and human missions to the Moon undertaken by the Japanese Aerospace Exploration Agency (JAXA) and its division, the Institute of Space and Astronautical Science (ISAS). It is also one of the three major enterprises of the JAXA Space Exploration Center (JSPEC). The main goal of the program is "to elucidate the origin and evolution of the Moon and utilize the Moon in the future".
The Near-Earth Asteroid Scout was a mission by NASA to develop a controllable low-cost CubeSat solar sail spacecraft capable of encountering near-Earth asteroids (NEA). NEA Scout was one of ten CubeSats launched into a heliocentric orbit on Artemis 1, the maiden flight of the Space Launch System, on 16 November 2022.
OKEANOS was a proposed mission concept to Trojan asteroids, which share Jupiter's orbit, using a hybrid solar sail for propulsion; the sail was planned to be covered with thin solar panels to power an ion engine. In situ analysis of the collected samples would have been performed by either direct contact or using a lander carrying a high-resolution mass spectrometer. A sample-return to Earth was an option under study.
DESTINY+ (Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science) is a planned mission to fly by the Geminids meteor shower parent body 3200 Phaethon, and sample dust originating from the "rock comet". The spacecraft is being developed by the Japanese space agency JAXA and will demonstrate advanced technologies for future deep space exploration. As of October 2024, DESTINY+ is planned to be launched in fiscal year 2028.
CubeSail is a proposed nanosatellite project by the Surrey Space Centre (SSC) in England. The spacecraft is to be a 3U CubeSat propelled by a 25 m²solar sail. The project is financed and technically supported by aerospace manufacturers Astrium and Surrey Satellite Technology. It is designed for operation in low Earth orbit, serving as an atmospheric drag brake to facilitate the removal of satellite debris.
EQUULEUS is a nanosatellite of the 6U CubeSat format that will measure the distribution of plasma that surrounds the Earth (plasmasphere) to help scientists understand the radiation environment in that region. It will also demonstrate low-thrust trajectory control techniques, such as multiple lunar flybys, within the Earth-Moon region using water steam as propellant. The spacecraft was designed and developed jointly by the Japan Aerospace Exploration Agency (JAXA) and the University of Tokyo.
OMOTENASHI was a small spacecraft and semi-hard lander of the 6U CubeSat format intended to demonstrate low-cost technology to land and explore the lunar surface. The CubeSat was to take measurements of the radiation environment near the Moon as well as on the lunar surface. Omotenashi is a Japanese word for "welcome" or "Hospitality".