Station statistics | |
---|---|
Crew | 4 maximum (planned) |
Launch | 2027 (planned) [1] |
Carrier rocket | Falcon Heavy SLS Block 1B |
Launch pad | Kennedy Space Center Launch Complex 39 |
Mission status | In development |
Pressurised volume | ≥125 m3 (4,400 cu ft) (planned) [2] |
Periselene altitude | 3,000 km (1,900 mi) [3] |
Aposelene altitude | 70,000 km (43,000 mi) |
Orbital inclination | Polar near-rectilinear halo orbit (NRHO) |
Orbital period | ≈7 days |
Configuration | |
Part of a series on the |
United States space program |
---|
The Lunar Gateway, or simply Gateway, is a space station which is planned to be assembled in orbit around the Moon. The Gateway is intended to serve as a communication hub, science laboratory, and habitation module for astronauts as part of the Artemis program. It is a multinational collaborative project: participants include NASA, the European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), the Canadian Space Agency (CSA), and the Mohammed Bin Rashid Space Centre (MBRSC). The Gateway is planned to be the first space station beyond low Earth orbit. [4] [5]
The science disciplines to be studied on the Gateway are expected to include planetary science, astrophysics, Earth observation, heliophysics, fundamental space biology, and human health and performance. [6] As of April 2024, construction is underway of the initial habitation and propulsion modules. [7] [8] [9] The International Space Exploration Coordination Group (ISECG), which is composed of 14 space agencies including NASA, has concluded that Gateway systems will be critical in expanding human presence to the Moon, to Mars, and deeper into the Solar System. [10]
The project is expected to play a major role in the Artemis program after 2024. NASA's Budget for FY 2025 included $817.7 million for the project. [11] While the project is led by NASA, the Gateway is meant to be developed, serviced, and used in collaboration with the CSA, ESA, JAXA, and commercial partners. It will serve as the staging point for both robotic and crewed exploration of the lunar south pole and is the proposed staging point for NASA's Deep Space Transport concept for transport to Mars. [12] [7] [13]
Formerly known as the Deep Space Gateway (DSG), the station was renamed Lunar Orbital Platform-Gateway (LOP-G) in NASA's 2018 proposal for the 2019 United States federal budget. [14] [15] When the NASA budget was signed into law on February 15, 2019, [16] US$450 million had been committed by Congress to preliminary studies. [16] [17]
In November 2019, NASA unveiled the name and logo of the space station inspired by the American frontier symbol of the St. Louis Gateway Arch. [18]
The Apollo Command and Service Module was the first crewed lunar orbiting spacecraft performing dockings and crew transfers with another spacecraft, the Apollo Lunar Module. Lunar bases, like the first Tranquility Base as well as concepts for lunar bases have been the main focus of human presence at the Moon.
An earlier NASA proposal for a cislunar station had been made public in 2012 and was dubbed the Deep Space Habitat. That proposal led to funding in 2015 under the NextSTEP program to study the requirements of deep space habitats. [19] In February 2018, it was announced that the NextSTEP studies and other ISS partner studies would help to guide the capabilities required of the Gateway's habitation modules. [20] The solar electric Power and Propulsion Element (PPE) of the Gateway was originally a part of the now-canceled Asteroid Redirect Mission. [21] [22]
On 7 November 2017, NASA asked the global science community to submit concepts for scientific studies that could take advantage of the Deep Space Gateway's location in cislunar space. [6] The Deep Space Gateway Concept Science Workshop was held in Denver, Colorado, from 27 February to 1 March 2018. This three-day conference was a workshop where 196 presentations were given for possible scientific studies that could be advanced through the use of the Gateway. [23]
In 2018, NASA initiated the Revolutionary Aerospace Systems Concepts Academic Linkage (RASC-AL) competition for universities to develop concepts and capabilities for the Gateway. The competitors were asked to employ original engineering and analysis in one of four areas; "Gateway Uncrewed Utilization and Operations", "Gateway-Based Human Lunar Surface Access", "Gateway Logistics as a Science Platform", and "Design of a Gateway-Based Cislunar Tug". Teams of undergraduate and graduate students were asked to submit a response by 17 January 2019 addressing one of these four themes. NASA selected 20 teams to continue developing proposed concepts. Fourteen of the teams presented their projects in person in June 2019 at the RASC-AL Forum in Cocoa Beach, Florida, receiving a US$6,000 stipend to participate in the Forum. [5] The "Lunar Exploration and Access to Polar Regions", from the University of Puerto Rico at Mayagüez, was the winning concept. [24]
On 27 September 2017, an informal joint statement on cooperation regarding the program between NASA and Russia's Roscosmos was announced. [9] However, in October 2020 Dmitry Rogozin, director general of Roscosmos, said that the program is too “U.S.-centric” for Roscosmos to participate, [25] and in January 2021, Roscosmos announced that it would not participate in the program. [26]
As of January 2024, the Canadian Space Agency (CSA), the European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA) and Mohammed Bin Rashid Space Centre (MBRSC) plan to participate in the Gateway project, each contributing a robotic arm called Canadarm3 (CSA), refuelling and communications hardware, habitation and research capacity and an airlock module. These international elements are intended to launch after the initial NASA PPE and HALO elements are placed into lunar orbit with some co-manifested with Artemis missions. [27]
On 1 November 2017, NASA commissioned five studies lasting four months into affordable ways to develop the Power and Propulsion Element (PPE), leveraging private companies' plans. These studies had a combined budget of US$2.4 million. The companies performing the PPE studies were Boeing, Lockheed Martin, Orbital ATK, Sierra Nevada and Space Systems/Loral. [28] [22] These awards are in addition to the ongoing set of NextSTEP-2 awards made in 2016 to study development and make ground prototypes of habitat modules that could be used on the Gateway as well as other commercial applications, [13] so the Gateway is likely to incorporate components developed under NextSTEP as well. [22] [29] The PPE will use four 6 kW BHT-6000 Busek Hall-effect thrusters [30] [31] [32] and three 12 kW NASA/Aerojet Rocketdyne Advanced Electric Propulsion System (AEPS) Hall-effect thrusters for a total engine output fractionally under 50 kW. [33] In 2019, the contract to manufacture the PPE was awarded to Maxar Technologies. [34] After a one-year demonstration period, NASA intended to "exercise a contract option to take over control of the spacecraft". [35] Its expected service time is about 15 years. [36] In late 2023, it was reported that flight qualification testing was occurring on the thrusters for the Power and Propulsion Element. [37]
The Gateway will be deployed in a near-rectilinear halo orbit (NRHO) around the Moon. [38] The eccentricity of the chosen NRHO takes the station within 1,500 km (930 mi) of the lunar north pole surface at closest approach, and as far away as 70,000 km (43,000 mi) over the lunar south pole, with a period of about 7 days. [3] [39] [40] One of the advantages of an NRHO is the minimal amount of communications blackout with the Earth.
Traveling to and from cislunar space (lunar orbit) is intended to develop the knowledge and experience necessary to venture beyond the Moon and into deep space. The proposed NRHO would allow lunar expeditions from the Gateway to reach a low polar orbit with a Δv of 730 m/s and a half a day of transit time. Orbital station-keeping would require less than 10 m/s of Δv per year, and the orbital inclination could be shifted with a relatively small Δv expenditure, allowing access to most of the lunar surface. Spacecraft launched from Earth would perform a powered flyby of the Moon (Δv ≈ 180 m/s) followed by a Δv ≈ 240 m/s NRHO insertion burn to dock with the Gateway as it approaches the apoapsis point of its orbit. The total travel time would be 5 days; the return to Earth would be similar in terms of trip duration and Δv requirement if the spacecraft spends 11 days at the Gateway. The crewed mission duration of 21 days and Δv ≈ 840 m/s is limited by the capabilities of the Orion life support and propulsion systems. [41]
Gateway will be the first modular space station to be both human-rated, and autonomously operating most of the time in its early years, as well as being the first deep-space station, far from low Earth orbit. This will be enabled by more sophisticated executive control software than on any prior space station, which will monitor and control all systems. The high-level architecture is provided by the Robotics and Intelligence for Human Spaceflight lab at NASA and implemented at NASA facilities. The Gateway could conceivably also support in-situ resource utilization (ISRU) development and testing from lunar and asteroid sources, [42] and would offer the opportunity for a gradual buildup of capabilities for more complex missions over time. [43]
For supporting the first crewed mission to the station (Artemis IV) planned for 2028, the Gateway will begin as a minimal space station composed of only two modules: the Power and Propulsion Element (PPE) and the Habitation and Logistics Outpost (HALO). Both PPE and HALO will be assembled on Earth and launched together on a Falcon Heavy rocket in 2027 [1] [44] They are expected to reach lunar orbit after nine to ten months. [45] The I-Hab module, a contribution from ESA and JAXA, is to be launched on the SLS Block 1B as a co-manifested payload on the Artemis IV crewed Orion mission. [46] All modules will be connected using the International Docking System Standard. [47]
The concept for the Gateway is still evolving, and is intended to include the following modules: [87]
Crewed flights to the Gateway are expected to use Orion and SLS, while other missions are expected to be done by commercial launch providers. In March 2020, NASA announced SpaceX with its future spacecraft Dragon XL as the first commercial partner to deliver supplies to the Gateway (see Gateway Logistics Services). [90]
The first two modules (PPE and HALO) will be launched together on a Falcon Heavy rocket no earlier than 2027. [1] [91]
Year | Mission objective | Mission name | Launch vehicle | Human/robotic elements | Status |
---|---|---|---|---|---|
2027 [1] | Launch of Power and Propulsion Element (PPE) and Habitation and Logistics Outpost (HALO) | Falcon Heavy | Robotic | Under development [92] | |
September 2028 [79] | Delivery of Orion MPCV and I-HAB module [46] | Artemis IV | SLS Block 1B | Crewed | Under development [93] [94] [95] |
March 2030 [96] | Delivery of Orion MPCV and ESPRIT Refueling Module (ERM) [97] | Artemis V | SLS Block 1B | Crewed | Under development [98] |
March 2031 [96] | Delivery of Orion MPCV and Crew and Science Airlock Module | Artemis VI | SLS Block 1B | Crewed | Under development [99] |
March 2032 [96] | (Proposed) Delivery of Orion MPCV and logistics module | Artemis VII | SLS Block 1B | Crewed | Design phase |
NASA officials promote the Gateway as a "reusable command module" that could direct activities on the lunar surface. [100] However, Gateway has received some negative reactions.
Michael D. Griffin, a former NASA administrator, said that the Gateway could be useful only after there are facilities on the Moon producing propellant that could be transported to the Gateway. Griffin thinks that after that is achieved, the Gateway would then serve as a fuel depot. [100] In a written testimony to Congress, Griffin stated that the current architecture requiring staging operations at a Gateway based in a lunar polar near-rectlinear halo orbit (NRHO) with a 6.5-day period was disadvantageous in that immediate return to the Gateway from the lunar surface is possible only on 6.5-day centers and that no early human lunar mission should knowingly accept the risk of stranding a crew, whether on the surface or in lunar orbit, for days at a time. [101]
Clive Neal, a University of Notre Dame geologist and advocate for the lunar exploration program, called the Gateway "a waste of money" and stated that NASA is "not fulfilling space policy by building an orbital space station around the Moon". [102]
Former NASA Associate Administrator Doug Cooke wrote in an article on The Hill stating, "NASA can significantly increase speed, simplicity, cost and probability of mission success by deferring Gateway, leveraging SLS, and reducing critical mission operations". He also wrote, "NASA should launch the lander elements (ascent and descent/transfer) on an SLS Block 1B. If an independent transfer element is required, it can be launched on a commercial launcher". [103]
George Abbey, a former director of NASA's Johnson Space Center, said, "The Gateway is, in essence, building a space station to orbit a natural space station, namely the Moon. [...] If we are going to return to the Moon, we should go directly there, not build a space station to orbit it". [104]
Former NASA astronaut Terry W. Virts, who was a pilot of STS-130 aboard Space Shuttle Endeavour and commander of the ISS on Expedition 43, wrote in an op-ed on Ars Technica that the Gateway would "shackle human exploration, not enable it". He also said, "If we don't have the goal [of Gateway], we are putting the proverbial chicken before the egg by developing "Gemini" before we know what "Apollo" will look like. Regardless of a future destination, as someone who lived on the ISS for 200 days, I cannot envision a new technology that would be developed or validated by building another modular space station. Without a specific goal, we're unlikely to ever identify one". Virts further criticized NASA for abandoning its planned goal of separating crew from cargo, which was put in place following the Space Shuttle Columbia disaster in 2003. [105]
Apollo 11 astronaut Buzz Aldrin stated that he is "quite opposed to the Gateway" and that "using the Gateway as a staging area for robotic or human missions to the lunar surface is absurd". Aldrin also questioned the benefit of the idea of sending "a crew to an intermediate point in space, pick up a lander there and go down". Conversely, Aldrin expressed support for Robert Zubrin's Moon Direct concept which involves lunar landers traveling from Earth orbit to the lunar surface and back. [106]
Architect René Waclavicek, who was involved with the design of the I-HAB module, noted the difficulty of designing a comfortable living quarter for astronauts visiting Gateway. His team was forced to shrink the size of the module to the point where its diameter is just 1.2 meters (4 feet), owing to the limited amount of weight current launch vehicles can carry to Lunar orbit and other technical limits. Additionally, most of I-HAB's 8 cubic meters (280 cubic feet) of available space will be filled with life support equipment, leaving a narrow corridor and a total of 1.5 cubic meters (53 cubic feet) of personal space to be shared by four astronauts. [107]
Mars Society founder Robert Zubrin called the Gateway "NASA's worst plan yet" in an article in the National Review . He said, "We do not need a lunar-orbiting station to go to the Moon. We do not need such a station to go to Mars. We do not need it to go to near-Earth asteroids. We do not need it to go anywhere. Nor can we accomplish anything in such a station that we cannot do in the Earth-orbiting International Space Station, except to expose human subjects to irradiation – a form of medical research for which a number of Nazi doctors were hanged". Zubrin also stated, "If the goal is to build a Moon base, it should be built on the surface of the Moon. That is where the science is, that is where the shielding material is, and that is where the resources to make propellant and other useful things are to be found". [108]
Retired aerospace engineer Gerald Black wrote in an article on The Space Review stating that the Gateway is "useless for supporting human return to the lunar surface and a lunar base". He added that it was not planned to be used as a rocket fuel depot and that stopping at the Gateway on the way to or from the Moon would serve no useful purpose and cost propellant. [109]
Mark Whittington, a contributor to The Hill newspaper and an author of several space exploration studies, stated in an article that the "lunar orbit project doesn't help us get back to the Moon". Whittington also pointed out that a lunar orbiting space station was not used during the Apollo program and that a "reusable lunar lander could be refueled from a depot on the lunar surface and left in a parking orbit between missions without the need for a big, complex space station". [110]
Astrophysicist Ethan Siegel wrote an article in Forbes titled "NASA's Idea For A Space Station In Lunar Orbit Takes Humanity Nowhere". Siegel stated that "Orbiting the Moon represents barely incremental progress; the only scientific "advantages" to being in lunar orbit as opposed to low Earth orbit are twofold: 1. You're outside of the Van Allen belts. 2. You're closer to the lunar surface", reducing the time delay. His final opinion was that the Gateway is "a great way to spend a great deal of money, advancing science and humanity in no appreciable way". [111]
On 10 December 2018, NASA Administrator Jim Bridenstine said at a presentation "There are people who say we need to get there, and we need to get there tomorrow", speaking of a crewed mission to the Moon, countering with "What we're doing here at NASA is following Space Policy Directive 1", speaking of the Gateway and following up with "I would argue that we got there in 1969. That race is over, and we won. The time now is to build a sustainable, reusable architecture. [...] The next time we go to the Moon, we're going to have American boots on the Moon with the American flag on their shoulders, and they're going to be standing side-by-side with our international partners who have never been to the Moon before". [112]
Dan Hartman, the program manager for Gateway, on 30 March 2020, told Ars Technica that the benefits of using Gateway are extending the mission duration, buying down risk, providing research capability and the capability to re-use ascent modules.
When you go single, I'll say direct mission to the Moon, you're limited on the supplies, either with the Lander or with Orion. With the Gateway, with just with one logistics module, we think we can extend to about twice the mission duration, so 30 days to 60 days. Obviously, the more crew time you have in lunar orbit helps us with research in the human aspects of living in deep space. The more duration we have, certainly that'll help us buy down significant risk with the extreme environments that we're going to be subjecting our crews to. Because we've got to go figure out how to operate in deep space. Obviously we'll demonstrate new hardware and offer that sustainable flexible path for our Lunar Lander system. With the Gateway, the thinking is we'll be able to reuse the ascent modules potentially multiple times. And again, if we can get mission duration beyond the 30 days, it's going to offer us some additional environmental capabilities. We think it's a tremendous risk buy down asset, not only to explore the Moon sustainably, but to prove out some things that we need to do to get to Mars. [113]
The National Aeronautics and Space Administration (NASA) has proposed several concept moonbases for achieving a permanent presence of humans on the Moon since the late 1950s. Research and exploration of the Moon have been a large focus of the organization since the Apollo program. NASA's peak budget was in 1964–1965, when it comprised 4% of all federal spending in service of the Apollo Moon landing project. Though lunar landings since the conclusion of the Apollo program in 1972 have ceased, interest in establishing a permanent habitation on the lunar surface or beyond low Earth orbit has remained steady. Recently, renewed interest in lunar landing has led to increased funding and project planning. NASA requested an increase in the 2020 budget of $1.6 billion, in order to make another crewed mission to the Moon under the Artemis program by 2025, followed by a sustained presence on the Moon by 2028. A crew was selected for the planned crewed mission, Artemis II, in April 2023.
A moonbase is a human outpost on or below the surface of the Moon. More than a mere site of activity or temporary camp, moonbases are extraterrestrial bases, supporting robotic or human activity, by providing surface infrastructure. Missions to the Moon have realized single-mission bases,, as well as some small permanent infrastructure like lunar laser ranging installations.
Orion is a partially reusable crewed spacecraft used in NASA's Artemis program. The spacecraft consists of a Crew Module (CM) space capsule designed by Lockheed Martin and the European Service Module (ESM) manufactured by Airbus Defence and Space. Capable of supporting a crew of four beyond low Earth orbit, Orion can last up to 21 days undocked and up to six months docked. It is equipped with solar panels, an automated docking system, and glass cockpit interfaces modeled after those used in the Boeing 787 Dreamliner. A single AJ10 engine provides the spacecraft's primary propulsion, while eight R-4D-11 engines, and six pods of custom reaction control system engines developed by Airbus, provide the spacecraft's secondary propulsion. Orion is intended to be launched atop a Space Launch System (SLS) rocket, with a tower launch escape system.
The European System Providing Refueling Infrastructure and Telecommunications (ESPRIT) is an under construction module of the Lunar Gateway. It will provide refueling through additional xenon and hydrazine capacity for use in the Power and Propulsion Element's ion engines and hydrazine thrusters. It will also provide additional communications equipment, a habitation area, and storage. It will have a launch mass of approximately 10,000 kg (22,000 lb), a length of 6.4 m (21 ft), and a diameter of 4.6 m (15 ft). ESA awarded two parallel design studies for ESPRIT, one mostly led by Airbus in partnership with Comex and OHB and one led by Thales Alenia Space. The construction of the module was approved in November 2019. On 14 October 2020, Thales Alenia Space announced that they had been selected by ESA to build the ESPRIT module.
Artemis II is a scheduled mission of the NASA-led Artemis program. It will use the second launch of the Space Launch System (SLS) rocket and include the first crewed mission of the Orion spacecraft. The mission is scheduled for no earlier than September 2025. Four astronauts will perform a flyby of the Moon and return to Earth, becoming the first crew to travel beyond low Earth orbit since Apollo 17 in 1972. Artemis II will be the first crewed launch from Launch Complex 39B of the Kennedy Space Center since STS-116 in 2006.
Artemis III is planned to be the first crewed Moon landing mission of the Artemis program and the first crewed flight of the Starship HLS lander. Artemis III is planned to be the second crewed Artemis mission and the first American crewed lunar landing since Apollo 17 in December 1972. In December 2023, the Government Accountability Office reported that the mission is not likely to occur before 2027; as of January 2024, NASA officially expects Artemis III to launch no earlier than September 2026 due to issues with the valves in Orion's life support system.
The Deep Space Transport (DST), also called Mars Transit Vehicle, is a crewed interplanetary spacecraft concept by NASA to support science exploration missions to Mars of up to 1,000 days. It would be composed of two elements: an Orion capsule and a propelled habitation module. As of late 2019, the DST is still a concept to be studied, and NASA has not officially proposed the project in an annual U.S. federal government budget cycle. The DST vehicle would depart and return from the Lunar Gateway to be serviced and reused for a new Mars mission.
In orbital mechanics a near-rectilinear halo orbit (NRHO) is a halo orbit that passes close to the smaller of two bodies and has nearly stable behavior. The CAPSTONE mission, launched in 2022, is the first spacecraft to use such orbit in cislunar space, and this Moon-centric orbit is planned as a staging area for future lunar missions. In contrast with low lunar orbit which NASA characterizes as being deep in the lunar gravity well, NRHO is described as being "balanced on the edge" of the gravity well.
The Artemis program is a Moon exploration program led by the United States' National Aeronautics and Space Administration (NASA), formally established in 2017 via Space Policy Directive 1. It is intended to reestablish a human presence on the Moon for the first time since the Apollo 17 mission in 1972. The program's stated long-term goal is to establish a permanent base on the Moon to facilitate human missions to Mars.
Artemis IV is a planned mission of the NASA-led Artemis program. The mission will include the fourth use of a Space Launch System (SLS) launch vehicle, will send an Orion spacecraft with four astronauts to the Lunar Gateway space station, install a new module on the Gateway, and conduct the second lunar landing of the Artemis program.
Artemis V is the fifth planned mission of NASA's Artemis program and the first crewed flight of the Blue Moon lander. The mission will launch four astronauts on a Space Launch System rocket and an Orion to the Lunar Gateway and will be the third lunar landing of the Artemis program. In addition, Artemis V will also deliver two new elements to the Gateway Space Station.
HERACLES is a planned robotic transport system to and from the Moon by Europe (ESA), Japan (JAXA) and Canada (CSA) that will feature a lander called the European Large Logistic Lander, a Lunar Ascent Element, and a rover. The lander can be configured for different operations such as up to 1.5 tons of cargo delivery, sample-returns, or prospecting resources found on the Moon.
CAPSTONE is a lunar orbiter that is testing and verifying the calculated orbital stability planned for the Lunar Gateway space station. The spacecraft is a 12-unit CubeSat that is also testing a navigation system that is measuring its position relative to NASA's Lunar Reconnaissance Orbiter (LRO) without relying on ground stations. It was launched on 28 June 2022, arrived in lunar orbit on 14 November 2022, and was scheduled to orbit for six months. On 18 May 2023, it completed its primary mission to orbit in the near-rectilinear halo orbit for six months, but will stay on this orbit, continuing to perform experiments during an enhanced mission phase.
The Gateway Logistics Services will be a series of uncrewed spaceflights to the Lunar Gateway space station, with the purpose of providing logistical services to the Gateway. Overseen by NASA's Gateway Logistics Element, the flights will be operated by commercial providers, contracted by the agency in support of crewed expeditions to the Gateway made under the Artemis program. As of March 2023, SpaceX is the only company contracted to provide the services.
Starship HLS is a lunar lander variant of the Starship spacecraft that is slated to transfer astronauts from a lunar orbit to the surface of the Moon and back. It is being designed and built by SpaceX under the Human Landing System contract to NASA as a critical element of NASA's Artemis program to land a crew on the Moon.
The Power and Propulsion Element (PPE), previously known as the Asteroid Redirect Vehicle propulsion system, is a planned solar electric ion propulsion module being developed by Maxar Technologies for NASA. It is one of the major components of the Lunar Gateway. The PPE will allow access to the entire lunar surface and a wide range of lunar orbits and double as a space tug for visiting craft.
The Habitation and Logistics Outpost (HALO), also called the Minimal Habitation Module (MHM) and formerly known as the Utilization Module, is a scaled-down habitation module as part of the Lunar Gateway. It will be built by Northrop Grumman Innovation Systems. A single Falcon Heavy will launch HALO along with the PPE module and Halo Lunar Communication System, no earlier than 2027.
The Lunar I-Hab is designed as a habitat module of the Lunar Gateway station, to be built by the European Space Agency (ESA) in collaboration with the Japan Aerospace Exploration Agency, or JAXA. The I-HAB will have a maximum launch mass of 10,000 kg (22,000 lb) and provide a habitable volume of 10 m3 (350 cu ft).
The current nominal orbit for the Gateway is a 9:2 synodic resonant southern L2 NRHO
Delivery of I-Hab to the Gateway will be via the SLS Block 1B launch vehicle with Orion providing orbital insertion and docking.