NASA Exoplanet Archive

Last updated
NASA Exoplanet Archive
First exo 39x27 CMYK-1.jpg
A light-hearted poster created by NASA for the "Exoplanets Exploration Program's Exoplanet Travel Bureau"
Type of site
Astronomy
Created byOperated for NASA by NExScI at Caltech
URL exoplanetarchive.ipac.caltech.edu
Current statusActive

The NASA Exoplanet Archive is an online astronomical exoplanet catalog and data service that collects and serves public data that support the search for and characterization of extra-solar planets (exoplanets) and their host stars. It is part of the Infrared Processing and Analysis Center and is on the campus of the California Institute of Technology (Caltech) in Pasadena, CA. The archive is funded by NASA and was launched in early December 2011 by the NASA Exoplanet Science Institute as part of NASA's Exoplanet Exploration Program. In June 2019, the archive's collection of confirmed exoplanets surpassed 4,000. [1] (Compare: As of 10 January 2024, there are 5,569 confirmed exoplanets in 4,142 planetary systems , with 942 systems having more than one planet . [2] )

Contents

The archive's data include published light curves, images, spectra and parameters, and time-series data from surveys that aim to discover transiting exoplanets. The archive also develops Web-based tools and services to work with the data, particularly the display and analysis of transit data sets from the Kepler mission and COnvection ROtation and planetary Transits (CoRoT) mission, for which the Exoplanet Archive is the U.S. data portal. Other astronomical surveys and telescopes that have contributed data sets to the archive include SuperWASP, HATNet Project, XO, Trans-Atlantic Exoplanet Survey and KELT.

According to third-party web analytics provider SimilarWeb, the company's website has over 130,000 visits per month, as of January 2015. [3]

Exoplanet Data Content

The Exoplanet Archive contains objects discovered through all methods (radial velocity, transits, microlensing, imaging, astrometry, eclipse timing variations, and transit timing variations/TTV) that have publicly available planetary parameters, with a mass (or minimum mass) equal to or less than 30 Jupiter masses. [4]

Exoplanet Archive Tools and Services

Exoplanet detections per year as of June 2022. Exoplanet detections per year.png
Exoplanet detections per year as of June 2022.

In addition to providing access to large public data sets, the Exoplanet Archive has developed several tools to work with exoplanet and stellar host data. [6]

Transit Survey Data in the Exoplanet Archive

The Exoplanet Archive serves photometric time-series data from surveys that aim to discover transiting exoplanets, such as the Kepler Mission and CoRoT. The database provides access to over 22 million light curves from space and ground-based exoplanet transit survey programs, including:

The Exoplanet Archive offers search and filtering capabilities for exoplanet stellar and planetary properties, Kepler planetary candidates, and time series data sets. All data in the Exoplanet Archive are vetted by a team of astronomers and the original literature references are available.

The Exoplanet Archive supports interactive visualization of images, spectra, and time series data and maintains its own stellar cross-identification to minimize ambiguity in multiple star components.

See also

Related Research Articles

<span class="mw-page-title-main">Light curve</span> Graph of light intensity of a celestial object or region, as a function of time

In astronomy, a light curve is a graph of the light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y-axis and with time on the x-axis. The light is usually in a particular frequency interval or band.

<span class="mw-page-title-main">Astronomical transit</span> Term in astronomy

In astronomy, a transit is the passage of a celestial body directly between a larger body and the observer. As viewed from a particular vantage point, the transiting body appears to move across the face of the larger body, covering a small portion of it.

<span class="mw-page-title-main">Kepler space telescope</span> NASA satellite for exoplanetology (2009–2018)

The Kepler space telescope is a defunct space telescope launched by NASA in 2009 to discover Earth-sized planets orbiting other stars. Named after astronomer Johannes Kepler, the spacecraft was launched into an Earth-trailing heliocentric orbit. The principal investigator was William J. Borucki. After nine and a half years of operation, the telescope's reaction control system fuel was depleted, and NASA announced its retirement on October 30, 2018.

<span class="mw-page-title-main">Exomoon</span> Moon beyond the Solar System

An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.

<span class="mw-page-title-main">Lists of exoplanets</span>

These are lists of exoplanets. As of 10 January 2024, there are 5,569 confirmed exoplanets in 4,142 planetary systems, with 942 systems having more than one planet. Most of these were discovered by the Kepler space telescope. There are an additional 1,984 potential exoplanets from Kepler's first mission yet to be confirmed, as well as 977 from its "Second Light" mission and 4,584 from the Transiting Exoplanet Survey Satellite (TESS) mission.

<span class="mw-page-title-main">TrES-2b</span> Exoplanet in the constellation Draco, known for Darkest Exoplanet

TrES-2b (Kepler-1b) is an extrasolar planet orbiting the star GSC 03549-02811 located 750 light years away from the Solar System. The planet was identified in 2011 as the darkest known exoplanet, reflecting less than 1% of any light that hits it. Reflecting less light than charcoal, on the surface the planet is said to be pitch black. The planet's mass and radius indicate that it is a gas giant with a bulk composition similar to that of Jupiter. Unlike Jupiter, but similar to many planets detected around other stars, TrES-2b is located very close to its star and belongs to the class of planets known as hot Jupiters. This system was within the field of view of the Kepler spacecraft.

<span class="mw-page-title-main">Methods of detecting exoplanets</span>

Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported as of January 2024 have been observed directly, with even fewer being resolved from their host star.

<span class="mw-page-title-main">NASA Exoplanet Science Institute</span>

The NASA Exoplanet Science Institute (NExScI) is part of the Infrared Processing and Analysis Center (IPAC) and is on the campus of the California Institute of Technology (Caltech) in Pasadena, CA. NExScI was formerly known as the Michelson Science Center and before that as the Interferometry Science Center. It was renamed NExScI in the Fall of 2008 to reflect NASA's growing interest in the search for planets outside of the Solar System, also known as exoplanets. The executive director of NExScI is Charles A. Beichman.

A Kepler object of interest (KOI) is a star observed by the Kepler space telescope that is suspected of hosting one or more transiting planets. KOIs come from a master list of 150,000 stars, which itself is generated from the Kepler Input Catalog (KIC). A KOI shows a periodic dimming, indicative of an unseen planet passing between the star and Earth, eclipsing part of the star. However, such an observed dimming is not a guarantee of a transiting planet, because other astronomical objects—such as an eclipsing binary in the background—can mimic a transit signal. For this reason, the majority of KOIs are as yet not confirmed transiting planet systems.

The NASA Star and Exoplanet Database (NStED) is an on-line astronomical stellar and exoplanet catalog and data service that collates and cross-correlates astronomical data and information on exoplanets and their host stars. NStED is dedicated to collecting and serving important public data sets involved in the search for and characterization of exoplanets and their host stars. The data include stellar parameters, exoplanet parameters and discovery/characterization data.

<span class="mw-page-title-main">Planet Hunters</span> Citizen science project to find exoplanets

Planet Hunters is a citizen science project to find exoplanets using human eyes. It does this by having users analyze data from the NASA Kepler space telescope and the NASA Transiting Exoplanet Survey Satellite. It was launched by a team led by Debra Fischer at Yale University, as part of the Zooniverse project.

Kepler-80, also known as KOI-500, is a red dwarf star of the spectral type M0V. This stellar classification places Kepler-80 among the very common, cool, class M stars that are still within their main evolutionary stage, known as the main sequence. Kepler-80, like other red dwarf stars, is smaller than the Sun, and it has both radius, mass, temperatures, and luminosity lower than that of our own star. Kepler-80 is found approximately 1,223 light years from the Solar System, in the stellar constellation Cygnus, also known as the Swan.

<span class="mw-page-title-main">Kepler-69c</span> Super-Earth orbiting Kepler-69

Kepler-69c is a confirmed super-Earth extrasolar planet, likely rocky, orbiting the Sun-like star Kepler-69, the outermore of two such planets discovered by NASA's Kepler spacecraft. It is located about 2,430 light-years from Earth.

<span class="mw-page-title-main">NGTS-3Ab</span> Giant exoplanet in the constellation Columba

NGTS-3Ab is a gas giant exoplanet that orbits a G-type star. Its mass is 2.38 Jupiters, it takes 1.7 days to complete one orbit of its star, and is 0.023 AU from its star. Its discovery was announced in 2018. The Jupiter-like planet is discovered by 39 astronomers, mainly Max Günther, Didier Queloz, Edward Gillen, Laetitia Delrez, and Francois Bouchy.

TOI-700 is a red dwarf 101.4 light-years away from Earth located in the Dorado constellation that hosts TOI-700 d, the first Earth-sized exoplanet in the habitable zone discovered by the Transiting Exoplanet Survey Satellite (TESS).

KOI-5 is a triple star system composed of three stars: KOI-5 A, KOI-5 B and KOI-5 C, orbiting 1,870±70 light-years away.

<span class="mw-page-title-main">BD+60 1417b</span> Exoplanet

BD+60 1417b is a confirmed exoplanet discovered in the year 2021 using the imaging method. BD+60 1417b is the only known exoplanet in the system BD+60 1417, around 45 parsecs from Earth. BD+60 1417 is a young K0 star, while BD+60 1417 b has a late-L spectral type. The planet might be the first discovery of a directly imaged exoplanet found by a citizen scientist. Discovery of exoplanets involving amateurs are usually transiting exoplanets and are rarely discovered with other methods. Another example of a non-transiting exoplanet discovery by an amateur is the microlensing exoplanet Kojima-1Lb.

Kepler-385 is an F-type main-sequence star located about 4,900 light-years away from Earth in the constellation of Cygnus. The star is 10% larger and 5% hotter than the Sun. The star has at least three, and potentially up to seven, exoplanets discovered orbiting it.

References

  1. "NASA exoplanet archive: confirmed planets".
  2. "Exoplanet and Candidate Statistics". NASA Exoplanet Archive . Retrieved 10 January 2024.
  3. "Exoplanetarchive.ipac.caltech.edu Analytics" SimilarWeb. Retrieved 2015-7-11.
  4. Exoplanet Criteria for Inclusion in the Archive, NASA Exoplanet Archive
  5. "Pre-generated Exoplanet Plots". exoplanetarchive.ipac.caltech.edu. NASA Exoplanet Archive. Retrieved 24 June 2022.
  6. "The NASA Exoplanet Archive: Data and Tools for ExoplanetResearch," Publications of the Astronomical Society of the Pacific, Akeson et al. 2013.
  7. "EXOFAST: A Fast Exoplanetary Fitting Suite in IDL," Publications of the Astronomical Society of Pacific, Eastman, Gaudi & Agol 2013