Ultra-short period planet

Last updated
Artist's impression of a Jovian ultra-short period planet orbiting a star Artist's impression of an ultra-short-period planet.jpg
Artist's impression of a Jovian ultra-short period planet orbiting a star
Artist impression of tellurian ultra-short period planet Ultra-short period planet.jpg
Artist impression of tellurian ultra-short period planet

An ultra-short period (USP) planet is a type of exoplanet with an orbital period of less than one Earth day. [1] At this short distance, tidal interactions lead to relatively rapid orbital and spin evolution. Therefore when there is a USP planet around a mature main-sequence star, it is most likely that the planet has a circular orbit and is tidally locked. [1] There are not many USP planets with sizes exceeding 2 Earth radii. About one out of 200 Sun-like stars (G dwarfs) has an ultra-short-period planet. There is a strong dependence of the occurrence rate on the mass of the host star. The occurrence rate falls from 1.1%±0.4% for M dwarfs to 0.15%±0.05% for F dwarfs. [1] USP planets seem mostly consistent with an Earth-like composition of 70% rock and 30% iron, but K2-229b has a higher density, suggesting a more massive iron core. WASP-47e and 55 Cnc e, however, have a lower density and are compatible with pure rock, or a rocky-iron body surrounded by a layer of water (or other volatiles). [1]

A difference between hot Jupiters and terrestrial USP planets is the proximity of planetary companions. Hot Jupiters are rarely found with other planets within a factor of 2–3 in orbital period or distance. In contrast, terrestrial USP planets almost always have longer-period planetary companions. The period ratio between adjacent planets tends to be larger if one of them is a USP planet suggesting the USP planet has undergone tidal orbital decay which may still be ongoing. USP planets also tend to have higher mutual inclinations with adjacent planets than for pairs of planets in wider orbits, suggesting that USP planets have experienced inclination excitation in addition to orbital decay. [1]

There are several known giant planets with a period shorter than one day. Their occurrence must be lower by at least an order of magnitude than that of terrestrial USP planets. [1]

It had been proposed that USP planets were the rocky cores of evaporated hot Jupiters, however the metallicity of the host stars of USP planets is lower than that of hot Jupiters' stars so it seems more likely that USP planets are the cores of evaporated gas dwarfs. [1]

A study by the TESS-Keck Survey using 17 USP planets found that USP planets predominantly have an Earth-like compositions with iron core mass of about 32% and have masses below runaway accretion. USP are also almost always found in multiple-planet systems around stars with solar metallicity. [2] 12 known Jovian USP planets are found. [3]

Examples

Key (Classification)
🜨 Tellurian planets
Gas giant planets
Key (Illustration)
Artist's impression

References

  1. 1 2 3 4 5 6 7 Winn, Joshua N.; Sanchis-Ojeda, Roberto; Rappaport, Saul (2018). "Kepler-78 and the Ultra-Short-Period planets". New Astronomy Reviews. 83: 37–48. arXiv: 1803.03303 . Bibcode:2018NewAR..83...37W. doi:10.1016/j.newar.2019.03.006. S2CID   119190462.
  2. Dai, Fei; Howard, Andrew W.; Batalha, Natalie M.; Beard, Corey; Behmard, Aida; Blunt, Sarah; Brinkman, Casey L.; Chontos, Ashley; Crossfield, Ian J. M.; Dalba, Paul A.; Dressing, Courtney; Fulton, Benjamin; Giacalone, Steven; Hill, Michelle L.; Huber, Daniel (2021-08-01). "TKS X: Confirmation of TOI-1444b and a Comparative Analysis of the Ultra-short-period Planets with Hot Neptunes". The Astronomical Journal. 162 (2): 62. arXiv: 2105.08844 . Bibcode:2021AJ....162...62D. doi: 10.3847/1538-3881/ac02bd . ISSN   0004-6256. S2CID   234778143.
  3. 1 2 3 4 Jaime, A. Alvarado-Montes; Mario, Sucerquia; Jorge, I. Zuluaga; Christian, Schwab (15 July 2025). "Orbital Decay of the Ultra-hot Jupiter TOI-2109b: Tidal Constraints and Transit-timing Analysis". The Astronomical Journal. 988 (1): 66. arXiv: 2505.18941 . Bibcode:2025ApJ...988...66A. doi: 10.3847/1538-4357/ade057 .
  4. 1 2 "Kepler-974". NASA Exoplanet Archive. Caltech. Retrieved 14 March 2025.
  5. 1 2 3 Taş, Kaya Han; Stefansson, Gudmundur; Fariz, Syarief N. M.; Garg, Esha; Espinoza-Retamal, Juan I.; Koo, Elise; Bruijne, David; Luhn, Jacob; Ford, Eric B. (2025-07-11). "An Earth-Sized Planet in a 5.4h Orbit Around a Nearby K dwarf". arXiv: 2507.08464 [astro-ph.EP].
  6. 1 2 Martin, Pierre-Yves (2025). "Planet TOI-6255 b". exoplanet.eu. Retrieved 2025-04-29.
  7. Dai, Fei; et al. (2024). "An Earth-sized Planet on the Verge of Tidal Disruption". The Astronomical Journal. 168 (3): 101. arXiv: 2407.21167 . Bibcode:2024AJ....168..101D. doi: 10.3847/1538-3881/ad5a7d .
  8. 1 2 3 4 5 Bonomo, A. S.; Dumusque, X.; Massa, A.; Mortier, A.; Bongiolatti, R.; Malavolta, L.; Sozzetti, A.; Buchhave, L. A.; Damasso, M.; Haywood, R. D.; Morbidelli, A.; Latham, D. W.; Molinari, E.; Pepe, F.; Poretti, E. (2023-09-01). "Cold Jupiters and improved masses in 38 Kepler and K2 small planet systems from 3661 HARPS-N radial velocities. No excess of cold Jupiters in small planet systems". Astronomy and Astrophysics. 677: A33. arXiv: 2304.05773 . Bibcode:2023A&A...677A..33B. doi:10.1051/0004-6361/202346211. ISSN   0004-6361.
  9. Barragán, O.; Gandolfi, D.; Dai, F. (April 2018). "K2-141 b A 5-M🜨 super-Earth transiting a K7 V star every 6.7 h". Astronomy & Astrophysics. 612. A95. arXiv: 1711.02097 . doi: 10.1051/0004-6361/201732217 . S2CID   119473627.
  10. Howard, A. W.; Sanchis-Ojeda, R.; Marcy, G. W.; Johnson, J. A.; Winn, J. N.; Isaacson, H.; Fischer, D. A.; Fulton, B. J.; Sinukoff, E.; Fortney, J. J. (2013). "A rocky composition for an Earth-sized exoplanet". Nature. 503 (7476): 381–384. arXiv: 1310.7988 . Bibcode:2013Natur.503..381H. doi:10.1038/nature12767. PMID   24172898. S2CID   4450760.
  11. Gibney, Elizabeth (October 30, 2013). "Exoplanet is built like Earth but much, much hotter". Nature. doi:10.1038/nature.2013.14058 . Retrieved March 4, 2022.
  12. 1 2 Weiss, Lauren M.; et al. (2020). "The TESS-Keck Survey II: Masses of Three Sub-Neptunes Transiting the Galactic Thick-Disk Star TOI-561". The Astronomical Journal. 161 (2) 56. arXiv: 2009.03071 . Bibcode: 2021AJ....161...56W . doi: 10.3847/1538-3881/abd409 . S2CID   229279232.
  13. Lacedelli, G.; Wilson, T. G.; Malavolta, L.; Hooton, M. J.; Collier Cameron, A.; Alibert, Y.; Mortier, A.; Bonfanti, A.; Haywood, R. D.; Hoyer, S.; Piotto, G.; Bekkelien, A.; Vanderburg, A. M.; Benz, W.; Dumusque, X. (2022-04-01). "Investigating the architecture and internal structure of the TOI-561 system planets with CHEOPS, HARPS-N, and TESS". Monthly Notices of the Royal Astronomical Society. 511 (3): 4551–4571. arXiv: 2201.07727 . Bibcode:2022MNRAS.511.4551L. doi: 10.1093/mnras/stac199 . ISSN   0035-8711.
  14. 1 2 Gillon, Michaël; Pedersen, Peter P.; Rackham, Benjamin V.; Dransfield, Georgina; Ducrot, Elsa; Barkaoui, Khalid; Burdanov, Artem Y.; Schroffenegger, Urs; Gómez Maqueo Chew, Yilen; Lederer, Susan M.; Alonso, Roi; Burgasser, Adam J.; Howell, Steve B.; Narita, Norio; de Wit, Julien (2024-05-15). "Detection of an Earth-sized exoplanet orbiting the nearby ultracool dwarf star SPECULOOS-3". Nature Astronomy. 8 (7): 865–878. arXiv: 2406.00794 . Bibcode:2024NatAs...8..865G. doi:10.1038/s41550-024-02271-2. ISSN   2397-3366.
  15. 1 2 3 Dawson, Rebekah I.; Fabrycky, Daniel C. (10 October 2010) [21 May 2010 (v1)]. "Radial velocity planets de-aliased. A new, short period for Super-Earth 55 Cnc e". The Astrophysical Journal . 722 (1): 937–953. arXiv: 1005.4050 . Bibcode:2010ApJ...722..937D. doi:10.1088/0004-637X/722/1/937. S2CID   118592734.
  16. Fischer, Debra A.; Marcy, Geoffrey W.; Butler, R. Paul; Vogt, Steven S.; Laughlin, Greg; Henry, Gregory W.; Abouav, David; Peek, Kathryn M. G.; Wright, Jason T.; Johnson, John A.; McCarthy, Chris; Isaacson, Howard (1 March 2008) [23 December 2007 (v1)]. "Five Planets Orbiting 55 Cancri". The Astrophysical Journal . 675 (1): 790–801. arXiv: 0712.3917 . Bibcode:2008ApJ...675..790F. doi:10.1086/525512. S2CID   55779685.
  17. Mercier, Samson J.; Dang, Lisa; et al. (November 2022). "Revisiting the Iconic Spitzer Phase Curve of 55 Cancri e: Hotter Dayside, Cooler Nightside, and Smaller Phase Offset". The Astronomical Journal . 164 (5): 204. arXiv: 2209.02090 . Bibcode:2022AJ....164..204M. doi: 10.3847/1538-3881/ac8f22 .
  18. Demory, Brice-Olivier; Gillon, Michael; Madhusudhan, Nikku; Queloz, Didier (2016). "Variability in the super-Earth 55 Cnc e". Monthly Notices of the Royal Astronomical Society . 455 (2): 2018–2027. arXiv: 1505.00269 . Bibcode:2016MNRAS.455.2018D. doi: 10.1093/mnras/stv2239 . S2CID   53662519.
  19. Madhusudhan, Nikku; Lee, Kanani K. M.; Mousis, Olivier (10 November 2012) [9 October 2012 (v1)]. "A Possible Carbon-rich Interior in Super-Earth 55 Cancri e". The Astrophysical Journal Letters . 759 (2): L40. arXiv: 1210.2720 . Bibcode:2012ApJ...759L..40M. doi:10.1088/2041-8205/759/2/L40. S2CID   119303024.
  20. 1 2 Nascimbeni, V.; et al. (2023). "A new dynamical modeling of the WASP-47 system with CHEOPS observations". Astronomy and Astrophysics. 673 A42. arXiv: 2302.01352 . Bibcode: 2023A&A...673A..42N . doi: 10.1051/0004-6361/202245486 .
  21. "weiss". Archived from the original on 2017-12-01. Retrieved 2017-11-19.
  22. "Planetary Systems Composite Data". NASA Exoplanet Archive .