Ultra-short period planet

Last updated

An ultra-short period (USP) planet is a type of exoplanet with an orbital period of less than one Earth day. [1] At this short distance, tidal interactions lead to relatively rapid orbital and spin evolution. Therefore when there is a USP planet around a mature main-sequence star it is most likely that the planet has a circular orbit and is tidally locked. [1] There are not many USP planets with sizes exceeding 2 Earth radii. [1] About one out of 200 Sun-like stars (G dwarfs) has an ultra-short-period planet. There is a strong dependence of the occurrence rate on the mass of the host star. The occurrence rate falls from (1.1 ± 0.4)% for M dwarfs to (0.15 ± 0.05)% for F dwarfs. [1] Mostly the USP planets seem consistent with an Earth-like composition of 70% rock and 30% iron, but K2-229b has a higher density suggesting a more massive iron core. WASP-47e and 55 Cnc e have a lower density and are compatible with pure rock, or a rocky-iron body surrounded by a layer of water (or other volatiles). [1]

Contents

A difference between hot Jupiters and terrestrial USP planets is the proximity of planetary companions. Hot Jupiters are rarely found with other planets within a factor of 2–3 in orbital period or distance. In contrast, terrestrial USP planets almost always have longer-period planetary companions. [1] The period ratio between adjacent planets tends to be larger if one of them is a USP planet suggesting the USP planet has undergone tidal orbital decay which may still be ongoing. [1] USP planets also tend to have higher mutual inclinations with adjacent planets than for pairs of planets in wider orbits, suggesting that USP planets have experienced inclination excitation in addition to orbital decay. [1]

There are several known giant planets with a period shorter than one day. Their occurrence must be lower by at least an order of magnitude than that of terrestrial USP planets. [1]

It had been proposed that USP planets were the rocky cores of evaporated hot Jupiters, however the metallicity of the host stars of USP planets is lower than that of hot Jupiters' stars so it seems more likely that USP planets are the cores of evaporated gas dwarfs. [1]

A study by the TESS-Keck Survey using 17 USP planets found that USP planets predominantly have an Earth-like compositions with iron core mass of about 32% and have masses below runaway accretion. USP are also almost always found in multiple-planet systems around stars with solar metallicity. [2]

Examples

TOI-561b

Studies of TOI-561b found that it is an USP planet with the lowest density (3.8 ± 0.5 g cm−3) as of April 2022. The low density of this planet is explained with a massive water layer, no H/He envelope, as well as a predicted water steam atmosphere. The steam atmosphere could be detected with JWST in the future. More complex models might be needed to fully explain the unusual properties of TOI-561b. [3]

Related Research Articles

<span class="mw-page-title-main">Exoplanet</span> Planet outside the Solar System

An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not then recognized as such. The first confirmation of the detection occurred in 1992. A different planet, first detected in 1988, was confirmed in 2003. As of 1 March 2024, there are 5,640 confirmed exoplanets in 4,155 planetary systems, with 895 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, and to give more insight into their traits, such as their composition, environmental conditions, and potential for life.

<span class="mw-page-title-main">Chthonian planet</span> Gas giants with their atmospheric layers stripped

Chthonian planets are a hypothetical class of celestial objects resulting from the stripping away of a gas giant's hydrogen and helium atmosphere and outer layers, which is called hydrodynamic escape. Such atmospheric stripping is a likely result of proximity to a star. The remaining rocky or metallic core would resemble a terrestrial planet in many respects.

<span class="mw-page-title-main">Hot Jupiter</span> Class of high mass planets orbiting close to a star

Hot Jupiters are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter but that have very short orbital periods. The close proximity to their stars and high surface-atmosphere temperatures resulted in their informal name "hot Jupiters".

<span class="mw-page-title-main">Formation and evolution of the Solar System</span> Modelling its structure and composition

There is evidence that the formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.

<span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

This page describes exoplanet orbital and physical parameters.

<span class="mw-page-title-main">Next-Generation Transit Survey</span> Ground-based robotic search for exoplanets

The Next-Generation Transit Survey (NGTS) is a ground-based robotic search for exoplanets. The facility is located at Paranal Observatory in the Atacama desert in northern Chile, about 2 km from ESO's Very Large Telescope and 0.5 km from the VISTA Survey Telescope. Science operations began in early 2015. The astronomical survey is managed by a consortium of seven European universities and other academic institutions from Chile, Germany, Switzerland, and the United Kingdom. Prototypes of the array were tested in 2009 and 2010 on La Palma, and from 2012 to 2014 at Geneva Observatory.

K2-141b is a massive rocky exoplanet orbiting extremely close to a K Type orange main-sequence star K2-141. The planet was first discovered by the Kepler space telescope during its K2 “Second Light” mission and later observed by the HARPS-N spectrograph. It is classified as an Ultra-short Period (USP) and is confirmed to be terrestrial in nature. Its high density implies a massive iron core taking up between 30% and 50% of the planet's total mass.

TOI-561 is an old, metal-poor, Sun-like star, known to have multiple small planets. It is an orange dwarf, estimated to be 10.5 billion years old, and about 79% the mass and 85% the radius of Sol, Earth's sun.

Gliese 367 b, formally named Tahay, is a sub-Earth exoplanet orbiting the red dwarf star Gliese 367, 30.7 light-years from Earth in the constellation of Vela. The exoplanet takes just 7.7 hours to orbit its star, one of the shortest orbits of any planet.

HIP 67522 b is a hot Jupiter exoplanet orbiting the G-type star HIP 67522, located approximately 415 light-years from Earth in the constellation Centaurus, discovered using the Transiting Exoplanet Survey Satellite (TESS). It is currently the youngest hot Jupiter discovered, at an age of only 17 million years; it is also one of the youngest transiting planets of any type, and one of only four others less than 100 million years old to have the angle between its orbit and its host star's rotation measured, at 5.8+2.8
−5.7
degrees. This planet, in turn, may help in knowing how other hot Jupiters form.

TOI-561 b is an USP Super-Earth with a radius of roughly 1.4 Earths. It has an extremely short orbital period of under 11 hours, less than half of an Earth day, resulting in an equilibrium temperature of 2,480 ± 200 K. The planet is believed to be far too small and irradiated to hold onto its primordial Hydrogen and Helium envelope. However, the composition of the planet varies greatly between the two studies. Weiss 2020 found a mass of around 3.2 Earths and a density of 5.5 grams per cubic centimetre, around the same as Earth and implying a rocky but iron-poor composition. Lacedelli 2020, on the other hand, found a mass of only 1.59 Earths and a density of 3.0 grams per cubic centimetre, abnormally low for a planet of its size and suggesting a composition made of 50% or more of water. Even their higher mass estimate of 1.83 Earths is consistent with a water world. With an insolation 5,100 times greater than Earth, TOI-561 b should have lost its gaseous layer and have little volatiles, so the authors believe if the planet has a significant amount of water, it has been evaporated into a puffy steam atmosphere that makes the planet seem larger, less dense, and more water-rich. If it is an extremely water-rich world, TOI-561 b would prove formation scenarios about Super-Earths forming beyond the "Snow Line" and migrating inwards.

References

  1. 1 2 3 4 5 6 7 8 9 10 Winn, Joshua N.; Sanchis-Ojeda, Roberto; Rappaport, Saul (2018). "Kepler-78 and the Ultra-Short-Period planets". New Astronomy Reviews. 83: 37–48. arXiv: 1803.03303 . Bibcode:2018NewAR..83...37W. doi:10.1016/j.newar.2019.03.006. S2CID   119190462.
  2. Dai, Fei; Howard, Andrew W.; Batalha, Natalie M.; Beard, Corey; Behmard, Aida; Blunt, Sarah; Brinkman, Casey L.; Chontos, Ashley; Crossfield, Ian J. M.; Dalba, Paul A.; Dressing, Courtney; Fulton, Benjamin; Giacalone, Steven; Hill, Michelle L.; Huber, Daniel (2021-08-01). "TKS X: Confirmation of TOI-1444b and a Comparative Analysis of the Ultra-short-period Planets with Hot Neptunes". The Astronomical Journal. 162 (2): 62. arXiv: 2105.08844 . Bibcode:2021AJ....162...62D. doi: 10.3847/1538-3881/ac02bd . ISSN   0004-6256. S2CID   234778143.
  3. Lacedelli, G.; Wilson, T. G.; Malavolta, L.; Hooton, M. J.; Collier Cameron, A.; Alibert, Y.; Mortier, A.; Bonfanti, A.; Haywood, R. D.; Hoyer, S.; Piotto, G.; Bekkelien, A.; Vanderburg, A. M.; Benz, W.; Dumusque, X. (2022-04-01). "Investigating the architecture and internal structure of the TOI-561 system planets with CHEOPS, HARPS-N, and TESS". Monthly Notices of the Royal Astronomical Society. 511 (3): 4551–4571. arXiv: 2201.07727 . Bibcode:2022MNRAS.511.4551L. doi:10.1093/mnras/stac199. ISSN   0035-8711.