Interplanetary dust cloud

Last updated

The interplanetary dust cloud illuminated and visible as zodiacal light, with its parts the false dawn, gegenschein and the rest of its band, which is visually crossed by the Milky Way. False Dawn.jpg
The interplanetary dust cloud illuminated and visible as zodiacal light, with its parts the false dawn, gegenschein and the rest of its band, which is visually crossed by the Milky Way.

The interplanetary dust cloud, or zodiacal cloud (as the source of the zodiacal light), consists of cosmic dust (small particles floating in outer space) that pervades the space between planets within planetary systems, such as the Solar System. [2] This system of particles has been studied for many years in order to understand its nature, origin, and relationship to larger bodies. There are several methods to obtain space dust measurement.

Contents

In the Solar System, interplanetary dust particles have a role in scattering sunlight and in emitting thermal radiation, which is the most prominent feature of the night sky's radiation, with wavelengths ranging 5–50 μm. [3] The particle sizes of grains characterizing the infrared emission near Earth's orbit typically range 10–100 μm. [4] Microscopic impact craters on lunar rocks returned by the Apollo Program [5] revealed the size distribution of cosmic dust particles bombarding the lunar surface. The ’’Grün’’ distribution of interplanetary dust at 1 AU, [6] describes the flux of cosmic dust from nm to mm sizes at 1 AU.

The total mass of the interplanetary dust cloud is approximately 3.5×1016 kg, or the mass of an asteroid of radius 15 km (with density of about 2.5 g/cm3). [7] Straddling the zodiac along the ecliptic, this dust cloud is visible as the zodiacal light in a moonless and naturally dark sky and is best seen sunward during astronomical twilight.

The Pioneer spacecraft observations in the 1970s linked the zodiacal light with the interplanetary dust cloud in the Solar System. [8] Also, the VBSDC instrument on the New Horizons probe was designed to detect impacts of the dust from the zodiacal cloud in the Solar System. [9]

Origin

Artist's concept of a view from an exoplanet, with light from an extrasolar interplanetary dust cloud Artist's impression of bright exozodiacal light.tif
Artist's concept of a view from an exoplanet, with light from an extrasolar interplanetary dust cloud

The sources of interplanetary dust particles (IDPs) include at least: asteroid collisions, cometary activity and collisions in the inner Solar System, Kuiper belt collisions, and interstellar medium grains (Backman, D., 1997). The origins of the zodiacal cloud have long been subject to one of the most heated controversies in the field of astronomy.

It was believed that IDPs had originated from comets or asteroids whose particles had dispersed throughout the extent of the cloud. However, further observations have suggested that Mars dust storms may be responsible for the zodiacal cloud's formation. [10] [2]

Life cycle of a particle

The main physical processes "affecting" (destruction or expulsion mechanisms) interplanetary dust particles are: expulsion by radiation pressure, inward Poynting-Robertson (PR) radiation drag, solar wind pressure (with significant electromagnetic effects), sublimation, mutual collisions, and the dynamical effects of planets (Backman, D., 1997).

The lifetimes of these dust particles are very short compared to the lifetime of the Solar System. If one finds grains around a star that is older than about 10,000,000 years, then the grains must have been from recently released fragments of larger objects, i.e. they cannot be leftover grains from the protoplanetary disk (Backman, private communication).[ citation needed ] Therefore, the grains would be "later-generation" dust. The zodiacal dust in the Solar System is 99.9% later-generation dust and 0.1% intruding interstellar medium dust. All primordial grains from the Solar System's formation were removed long ago.

Particles which are affected primarily by radiation pressure are known as "beta meteoroids". They are generally less than 1.4 × 10−12 g and are pushed outward from the Sun into interstellar space. [11]

Cloud structures

The interplanetary dust cloud has a complex structure (Reach, W., 1997). Apart from a background density, this includes:

Dust collection on Earth

In 1951, Fred Whipple predicted that micrometeorites smaller than 100 micrometers in diameter might be decelerated on impact with the Earth's upper atmosphere without melting. [12] The modern era of laboratory study of these particles began with the stratospheric collection flights of Donald E. Brownlee and collaborators in the 1970s using balloons and then U-2 aircraft. [13]

Although some of the particles found were similar to the material in present-day meteorite collections, the nanoporous nature and unequilibrated cosmic-average composition of other particles suggested that they began as fine-grained aggregates of nonvolatile building blocks and cometary ice. [14] [15] The interplanetary nature of these particles was later verified by noble gas [16] and solar flare track [17] observations.

In that context a program for atmospheric collection and curation of these particles was developed at Johnson Space Center in Texas. [18] This stratospheric micrometeorite collection, along with presolar grains from meteorites, are unique sources of extraterrestrial material (not to mention being small astronomical objects in their own right) available for study in laboratories today.

Experiments

Spacecraft that have carried dust detectors include Helios , Pioneer 10 , Pioneer 11 , Ulysses (heliocentric orbit out to the distance of Jupiter), Galileo (Jupiter Orbiter), Cassini (Saturn orbiter), and New Horizons (see Venetia Burney Student Dust Counter).

Major Review Collections

Collections of review articles on various aspects of interplanetary dust and related fields appeared in the following books:

In 1978 Tony McDonnell edited the book Cosmic Dust [19] which contained chapters [20] on comets along with zodiacal light as indicator of interplanetary dust, meteors, interstellar dust, microparticle studies by sampling techniques, and microparticle studies by space instrumentation. Attention is also given to lunar and planetary impact erosion, aspects of particle dynamics, and acceleration techniques and high-velocity impact processes employed for the laboratory simulation of effects produced by micrometeoroids.

2001 Eberhard Grün, Bo Gustafson, Stan Dermott, and Hugo Fechtig published the book Interplanetary Dust. [21] Topics covered [22] are: historical perspectives; cometary dust; near-Earth environment; meteoroids and meteors; properties of interplanetary dust, information from collected samples; in situ measurements of cosmic dust; numerical modeling of the Zodiacal Cloud structure; synthesis of observations; instrumentation; physical processes; optical properties of interplanetary dust; orbital evolution of interplanetary dust; circumplanetary dust, observations and simple physics; interstellar dust and circumstellar dust disks.

2019 Rafael Rodrigo, Jürgen Blum, Hsiang-Wen Hsu, Detlef V. Koschny, Anny-Chantal Levasseur-Regourd, Jesús Martín-Pintado, Veerle J. Sterken, and Andrew Westphal collected reviews in the book Cosmic Dust from the Laboratory to the Stars. [23] Included are discussions [24] of dust in various environments: from planetary atmospheres and airless bodies over interplanetary dust, meteoroids, comet dust and emissions from active moons to interstellar dust and protoplanetary disks. Diverse research techniques and results, including in-situ measurement, remote observation, laboratory experiments and modelling, and analysis of returned samples are discussed.

Rings of dust

First ever panorama image of the dust ring of Venus's orbital space, imaged by Parker Solar Probe. Venus dust ring.png
First ever panorama image of the dust ring of Venus's orbital space, imaged by Parker Solar Probe.

Interplanetary dust has been found to form rings of dust in the orbital space of Mercury and Venus. [25] Venus's orbital dust ring is suspected to originate either from yet undetected Venus trailing asteroids, [25] interplanetary dust migrating in waves from orbital space to orbital space, or from the remains of the Solar System's circumstellar disc, out of which its proto-planetary disc and then itself, the Solar planetary system, formed. [26]

See also

Related Research Articles

<span class="mw-page-title-main">Solar System</span> The Sun and objects orbiting it

The Solar System is the gravitationally bound system of the Sun and the objects that orbit it. It was formed 4.6 billion years ago when a dense region of a molecular cloud collapsed, forming the Sun and a protoplanetary disc. The Sun is a main-sequence star, where hydrogen in its core is fused into helium. Most of fusion energy is released into space as electromagnetic radiation (light) and neutrinos.

<span class="mw-page-title-main">Zodiacal light</span> Faint solar glow caused by interplanetary dust at sunset and sunrise

The zodiacal light is a faint glow of diffuse sunlight scattered by interplanetary dust. Brighter around the Sun, it appears in a particularly dark night sky to extend from the Sun's direction in a roughly triangular shape along the zodiac, and appears with less intensity and visibility along the whole ecliptic as the zodiacal band. Zodiacal light spans the entire sky and contributes to the natural light of a clear and moonless night sky. A related phenomenon is gegenschein, sunlight backscattered from the interplanetary dust, appearing directly opposite to the Sun as a faint but slightly brighter oval glow.

<span class="mw-page-title-main">Asteroid belt</span> Region between the orbits of Mars and Jupiter

The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids or minor planets. The identified objects are of many sizes, but much smaller than planets, and, on average, are about one million kilometers apart. This asteroid belt is also called the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System.

<span class="mw-page-title-main">Astrochemistry</span> Study of molecules in the Universe and their reactions

Astrochemistry is the study of the abundance and reactions of molecules in the universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium. The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites, is also called cosmochemistry, while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it is from these clouds that solar systems form.

<span class="mw-page-title-main">Micrometeoroid</span> Meteoroid with a mass of less than one gram

A micrometeoroid is a tiny meteoroid: a small particle of rock in space, usually weighing less than a gram. A micrometeorite is such a particle that survives passage through Earth's atmosphere and reaches Earth's surface.

<i>Stardust</i> (spacecraft) Fourth mission of the Discovery program; sample return from the periodic Comet Wild 2

Stardust was a 385-kilogram robotic space probe launched by NASA on 7 February 1999. Its primary mission was to collect dust samples from the coma of comet Wild 2, as well as samples of cosmic dust, and return them to Earth for analysis. It was the first sample return mission of its kind. En route to Comet Wild 2, it also flew by and studied the asteroid 5535 Annefrank. The primary mission was successfully completed on 15 January 2006 when the sample return capsule returned to Earth.

<span class="mw-page-title-main">81P/Wild</span> Periodic comet with six-year orbit

Comet 81P/Wild, also known as Wild 2, is a comet named after Swiss astronomer Paul Wild, who discovered it on January 6, 1978, using a 40-cm Schmidt telescope at Zimmerwald, Switzerland.

<span class="mw-page-title-main">Interplanetary medium</span> Material which fills the Solar System

The interplanetary medium (IPM) or interplanetary space consists of the mass and energy which fills the Solar System, and through which all the larger Solar System bodies, such as planets, dwarf planets, asteroids, and comets, move. The IPM stops at the heliopause, outside of which the interstellar medium begins. Before 1950, interplanetary space was widely considered to either be an empty vacuum, or consisting of "aether".

<span class="mw-page-title-main">Cosmic dust</span> Dust floating in space

Cosmic dust – also called extraterrestrial dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust, and circumplanetary dust. There are several methods to obtain space dust measurement.

Comet dust refers to cosmic dust that originates from a comet. Comet dust can provide clues to comets' origin. When the Earth passes through a comet dust trail, it can produce a meteor shower.

<span class="mw-page-title-main">Extraterrestrial materials</span> Natural objects that originated in outer space

Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.

<span class="mw-page-title-main">Exozodiacal dust</span> Small particles between exoplanets

Exozodiacal dust is 1–100 micrometre-sized grains of amorphous carbon and silicate dust that fill the plane of extrasolar planetary systems. It is the exoplanetary analog of zodiacal dust, the 1–100 micrometre-sized dust grains observed in the solar system, especially interior to the asteroid belt. As with the zodiacal dust, these grains are probably produced by outgassing comets, as well as by collisions among bigger parent bodies like asteroids. Exozodiacal dust clouds are often components of debris disks that are detected around main-sequence stars through their excess infrared emission. Particularly hot exozodiacal disks are also commonly found near spectral type A-K stars. By convention, exozodiacal dust refers to the innermost and hottest part of these debris disks, within a few astronomical units of the star. How exozodiacal dust is so prevalent this close to stars is a subject of debate with several competing theories attempting to explain the phenomenon. The shapes of exozodiacal dust clouds can show the dynamical influence of extrasolar planets, and potentially indicate the presence of these planets. Because it is often located near a star's habitable zone, exozodiacal dust can be an important noise source for attempts to image terrestrial planets. Around 1 in 100 stars in the nearby solar systems shows a high content of warm dust that is around 1000 times greater than the average dust emission in the 8.5–12 μm range.

Directed panspermia is the deliberate transport of microorganisms into space to be used as introduced species on other astronomical objects.

Eberhard Grün is a German planetary scientist who specialized in cosmic dust research. He is an active emeritus at the Max Planck Institute for Nuclear Physics (MPIK), Heidelberg (Germany), research associate at the Laboratory for Atmospheric and Space Physics (LASP) in Boulder (Colorado), and was a professor at the University of Heidelberg until his retirement in 2007. Eberhard Grün has had a leading role in international cosmic dust science for over 40 years.

<span class="mw-page-title-main">Outline of the Solar System</span> Overview of and topical guide to the Solar System

The following outline is provided as an overview of and topical guide to the Solar System:

<span class="mw-page-title-main">Galileo and Ulysses Dust Detectors</span> Dust instruments on the Galileo and Ulysses missions

The Galileo and Ulysses Dust Detectors are almost identical dust instruments on the Galileo and Ulysses missions. The instruments are large-area highly reliable impact ionization detectors of sub-micron and micron sized dust particles. With these instruments the interplanetary dust cloud was characterized between Venus’ and Jupiter's orbits and over the solar poles. A stream of interstellar dust passing through the planetary system was discovered. Close to and inside the Jupiter system streams nanometer sized dust particles that were emitted from volcanoes on Jupiter's moon Io and ejecta clouds around the Galilean moons were discovered and characterized.

<span class="mw-page-title-main">Cosmic Dust Analyzer</span> Space instrument on Cassini/Huygen

The Cosmic Dust Analyzer (CDA) on the Cassini mission is a large-area multi-sensor dust instrument that includes a chemical dust analyzer, a highly reliable impact ionization detector, and two high rate polarized polyvinylidene fluoride (PVDF) detectors. During 6 years en route to Saturn the CDA analysed the interplanetary dust cloud, the stream of interstellar dust, and Jupiter dust streams. During 13 years in orbit around Saturn the CDA studied the E ring, dust in the plumes of Enceladus, and dust in Saturn's environment.

<span class="mw-page-title-main">Space dust measurement</span> Space dust measurements

Space dust measurement refers to the study of small particles of extraterrestrial material, known as micrometeoroids or interplanetary dust particles (IDPs), that are present in the Solar System. These particles are typically of micrometer to sub-millimeter size and are composed of a variety of materials including silicates, metals, and carbon compounds. The study of space dust is important as it provides insight into the composition and evolution of the Solar System, as well as the potential hazards posed by these particles to spacecraft and other space-borne assets. The measurement of space dust requires the use of advanced scientific techniques such as secondary ion mass spectrometry (SIMS), optical and atomic force microscopy (AFM), and laser-induced breakdown spectroscopy (LIBS) to accurately characterize the physical and chemical properties of these particles.

<span class="mw-page-title-main">Helios Dust Instrumentation</span>

The Helios 1 and 2 spacecraft each carried two dust instruments to characterize the Zodiacal dust cloud inside the Earth’s orbit down to spacecraft positions 0.3 AU from the sun. The Zodiacal light instrument measured the brightness of light scattered by interplanetary dust along the line of sight. The in situ Micrometeoroid analyzer recorded impacts of meteoroids onto the sensitive detector surface and characterized their composition. The instruments delivered radial profiles of their measured data. Comet or meteoroid streams, and even interstellar dust were identified in the data.

<span class="mw-page-title-main">Dust astronomy</span> Branch of astronomy

Dust astronomy is a subfield of astronomy that uses the information contained in individual cosmic dust particles ranging from their dynamical state to its isotopic, elemental, molecular, and mineralogical composition in order to obtain information on the astronomical objects occurring in outer space. Dust astronomy overlaps with the fields of Planetary science, Cosmochemistry, and Astrobiology.

References

  1. "False Dawn". www.eso.org. Retrieved 14 February 2017.
  2. 1 2 "What scientists found after sifting through dust in the solar system - bri". EurekAlert! . NASA. 12 March 2019. Retrieved 12 March 2019.
  3. Levasseur-Regourd, A.C., 1996
  4. Backman, D., 1997
  5. Morrison, D.A.; Clanton, U.S. (1979). "Properties of microcraters and cosmic dust of less than 1000 Å dimensions". Proceedings of Lunar and Planetary Science Conference 10th, Houston, Tex., March 19–23, 1979. 2. New York: Pergamon Press Inc.: 1649–1663. Bibcode:1979LPSC...10.1649M . Retrieved 3 February 2022.
  6. Grün, E.; Zook, H.A.; Fechtig, H.; Giese, R.H. (May 1985). "Collisional balance of the meteoritic complex". Icarus. 62 (2): 244–272. Bibcode:1985Icar...62..244G. doi:10.1016/0019-1035(85)90121-6 . Retrieved 23 January 2022.
  7. Pavlov, Alexander A.; Pavlov, Anatoli K.; Kasting, James F. (1999). "Irradiated interplanetary dust particles as a possible solution for the deuterium/hydrogen paradox of Earth's oceans". Journal of Geophysical Research: Planets. 104 (E12): 30725–28. Bibcode:1999JGR...10430725P. doi:10.1029/1999JE001120. PMID   11543198.
  8. Hannter; et al. (1976). "Pioneer 10 observations of zodiacal light brightness near the ecliptic - Changes with heliocentric distance".
  9. Horányi, M.; Hoxie, V.; James, D.; Poppe, A.; Bryant, C.; Grogan, B.; Lamprecht, B.; Mack, J.; Bagenal, F.; S. Batiste; Bunch, N.; Chantanowich, T.; Christensen, F.; Colgan, M.; Dunn; Drake, G.; Fernandez, A.; Finley, T.; Holland, G.; Jenkins, A.; Krauss, C.; Krauss, E.; Krauss, O.; Lankton, M.; Mitchell, C.; Neeland, M.; Resse, T.; Rash, K.; Tate, G.; Vaudrin, C.; Westfall, J. (2008). "The Student Dust Counter on the New Horizons Mission" (PDF). Space Science Reviews. 140 (1–4): 387–402. Bibcode:2008SSRv..140..387H. doi:10.1007/s11214-007-9250-y. S2CID   17522966 . Retrieved 17 September 2022.
  10. Shekhtman, Svetlana (8 March 2021). "Serendipitous Juno Detections Shatter Ideas About Zodiacal Light". NASA. Retrieved 8 May 2022. While there is good evidence now that Mars, the dustiest planet we know of, is the source of the zodiacal light, Jørgensen and his colleagues cannot yet explain how the dust could have escaped the grip of Martian gravity.
  11. "Micrometeorite Background". GENESIS Discovery 5 Mission. Caltech. Archived from the original on 26 August 2007. Retrieved 4 August 2008.
  12. Whipple, Fred L. (December 1950). "The Theory of Micro-Meteorites. Part I. In an Isothermal Atmosphere". Proceedings of the National Academy of Sciences of the United States of America. 36 (12): 687–695. Bibcode:1950PNAS...36..687W. doi: 10.1073/pnas.36.12.687 . PMC   1063272 . PMID   16578350.
  13. Brownlee, D. E. (December 1977). "Interplanetary dust - Possible implications for comets and presolar interstellar grains". In: Protostars and Planets: Studies of Star Formation and of the Origin of the Solar System. (A79-26776 10-90) Tucson: 134–150. Bibcode:1978prpl.conf..134B.
  14. Fraundorf, P.; Brownlee, D. E. & Walker, R. M. (1982) [1st pub. 1986]. "Laboratory studies of interplanetary dust". In Wilkening, L. (ed.). Comets. University of Arizona Press. pp. 383–409.
  15. Walker, R. M. (January 1986). "Laboratory studies of interplanetary dust". In NASA. 2403: 55. Bibcode:1986NASCP2403...55W.
  16. Hudson, B.; Flynn, G. J.; Fraundorf, P.; Hohenberg, C. M.; Shirck, J. (January 1981). "Noble Gases in Stratospheric Dust Particles: Confirmation of Extraterrestrial Origin". Science. 211 (4480): 383–386(SciHomepage). Bibcode:1981Sci...211..383H. doi:10.1126/science.211.4480.383. PMID   17748271.
  17. Bradley, J. P.; Brownlee, D. E.; Fraundorf, P. (December 1984). "Discovery of nuclear tracks in interplanetary dust". Science. 226 (4681): 1432–1434.ResearchsupportedbyMcCroneAssociates. Bibcode:1984Sci...226.1432B. doi:10.1126/science.226.4681.1432. ISSN   0036-8075. PMID   17788999. S2CID   27703897.
  18. "Cosmic Dust". NASA – Johnson Space Center program, Cosmic Dust Lab. 6 January 2016. Retrieved 14 March 2016.
  19. McDonnel, J.A.M. (1978). Cosmic Dust. Chichester, New York: John Wiley & Sons. pp. 607–670. Bibcode:1978codu.book..607F. ISBN   0-471-99512-6 . Retrieved 22 January 2022.
  20. McDonnell, J. A. M. (1978). Cosmic Dust. Bibcode:1978codu.book.....M . Retrieved 5 February 2022.
  21. Grün, E.; Gustafson, B.A.S.; Dermott, S.; Fechtig, H. (2001). Interplanetary Dust. Berlin: Springer. Bibcode:2001indu.book.....G. ISBN   978-3-540-42067-5 . Retrieved 5 February 2022.
  22. Interplanetary Dust. Astronomy and Astrophysics Library. 2001. doi:10.1007/978-3-642-56428-4. ISBN   978-3-642-62647-0 . Retrieved 5 February 2022.
  23. Rodrigo, Rafael; Blum, Jürgen; Hsu, Hsiang-Wen; Koschny, Detlef V.; Levasseur-Regourd, Anny-Chantal; Martín-Pintado, Jesús; Sterken, Veerle J.; Westphal, Andrew, eds. (2019). Cosmic Dust from the Laboratory to the Stars. Berlin: Springer. ISBN   978-94-024-2009-8 . Retrieved 5 February 2022.
  24. "Cosmic Dust from the Laboratory to the Stars" . Retrieved 5 February 2022.
  25. 1 2 Garner, Rob (12 March 2019). "What Scientists Found After Sifting Through Dust in the Solar System". NASA. Retrieved 21 January 2023.
  26. Rehm, Jeremy (15 April 2021). "Parker Solar Probe Captures First Complete View of Venus Orbital Dust Ring". JHUAPL. Retrieved 21 January 2023.

Further reading