Helium planet

Last updated
Helium planets would have a white or grey hue. (Artist's conception shown.) PIA19344-HeliumShroudedPlanet-ArtistConcept-20150611.jpg
Helium planets would have a white or grey hue. (Artist's conception shown.)

A helium planet is a planet with a helium-dominated atmosphere. This contrasts with ordinary gas giants such as Jupiter and Saturn, whose atmospheres consist primarily of hydrogen, with helium as a secondary component only. Helium planets might form in a variety of ways. Gliese 436 b is a possible helium planet.

Contents

Formation

There are several hypotheses for how a helium planet might form.

Hydrogen evaporation from giant planets

PIA19345 Helium Atmosphere Formation 0 .png
PIA19345 Helium Atmosphere Formation 0.1 Gyr.png
PIA19345 Helium Atmosphere Formation 0.1 Gyr.png
Formation of a helium planet from a hot giant planet, possibly like Gliese 436 b.

A helium planet might form via hydrogen evaporation from a gaseous planet orbiting close to a star. The star will drive off lighter gases more effectively through evaporation than heavier gasses, and over time deplete the hydrogen, leaving a greater proportion of helium behind. [1]

A scenario for forming helium planets from regular giant planets involves an ice giant, in an orbit so close to its host star that the hydrogen effectively boils out of the atmosphere, evaporating from and escaping the gravitational hold of the planet. The planet's atmosphere will experience a large energy input and because light gases are more readily evaporated than heavier gases, the proportion of helium will steadily increase in the remaining atmosphere. Such a process will take some time to stabilize and completely drive out all the hydrogen, perhaps on the order of 10 billion years, depending on the precise physical conditions and the nature of the planet and the star. Hot Neptunes are candidates for such a scenario.

The loss of hydrogen also leads to a depletion of methane in the atmosphere. On ice giants, methane naturally forms a cycle of melting, evaporation, breakdown and subsequent recombination and condensation. But as hydrogen gets depleted, a fraction of the carbon atoms will not be able to recombine with free hydrogen in the atmosphere and over time this will lead to an overall loss of methane. With time, the methane in the atmospheres of hot ice giants will also get depleted. [1]

White dwarf remnants

A helium-rich planetary object may also form from a low-mass white dwarf, which gets depleted of hydrogen via mass transfer in a close binary system with a second, massive object like a neutron star.

One scenario involves an AM CVn type of symbiotic binary star composed of two helium-core white dwarfs surrounded by a circumbinary helium accretion disk formed during mass transfer from the less massive to the more massive white dwarf. After it loses most of its mass, the less massive white dwarf may approach planetary mass. [2]

Characteristics

Helium planets are expected to be distinguishable from regular hydrogen-dominated planets by strong evidence of carbon monoxide and carbon dioxide in the atmosphere. Due to hydrogen depletion, the expected methane in the atmosphere cannot form because there is no hydrogen for the carbon to combine with, hence carbon combines with oxygen instead, forming CO and CO2. Due to the atmospheric composition, helium planets are expected to be white or grey in appearance. [1] Such a signature can be found in Gliese 436 b, which has a predominance of carbon monoxide, and is hypothesized to be a helium planet. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Giant planet</span> Planet much larger than the Earth

The giant planets constitute a diverse type of planet much larger than Earth. They are usually primarily composed of low-boiling-point materials (volatiles), rather than rock or other solid matter, but massive solid planets can also exist. There are four known giant planets in the Solar System: Jupiter, Saturn, Uranus and Neptune. Many extrasolar giant planets have been identified orbiting other stars.

<span class="mw-page-title-main">Brown dwarf</span> Type of substellar object larger than a planet

Brown dwarfs are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen (1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most massive gas giant planets and the least massive stars, approximately 13 to 80 times that of Jupiter (MJ). However, they can fuse deuterium (2H) and the most massive ones can fuse lithium (7Li).

<span class="mw-page-title-main">Terrestrial planet</span> Planet that is composed primarily of silicate rocks or metals

A terrestrial planet, telluric planet, solid planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, Venus, Earth and Mars. Among astronomers who use the geophysical definition of a planet, two or three planetary-mass satellites – Earth's Moon, Io, and sometimes Europa – may also be considered terrestrial planets; and so may be the rocky protoplanet-asteroids Pallas and Vesta. The terms "terrestrial planet" and "telluric planet" are derived from Latin words for Earth, as these planets are, in terms of structure, Earth-like. Terrestrial planets are generally studied by geologists, astronomers, and geophysicists.

<span class="mw-page-title-main">Red dwarf</span> Dim, low mass stars on the main sequence

A red dwarf is the smallest and coolest kind of star on the main sequence. Red dwarfs are by far the most common type of star in the Milky Way, at least in the neighborhood of the Sun, but because of their low luminosity, individual red dwarfs cannot be easily observed. From Earth, not one star that fits the stricter definitions of a red dwarf is visible to the naked eye. Proxima Centauri, the nearest star to the Sun, is a red dwarf, as are fifty of the sixty nearest stars. According to some estimates, red dwarfs make up three-quarters of the stars in the Milky Way.

<span class="mw-page-title-main">Chthonian planet</span> Gas giants with their atmospheric layers stripped

Chthonian planets are a hypothetical class of celestial objects resulting from the stripping away of a gas giant's hydrogen and helium atmosphere and outer layers, which is called hydrodynamic escape. Such atmospheric stripping is a likely result of proximity to a star. The remaining rocky or metallic core would resemble a terrestrial planet in many respects.

<span class="mw-page-title-main">Carbon planet</span> Theoretical type of planet that contains more carbon than oxygen

A carbon planet is a theoretical type of planet that contains more carbon than oxygen. Carbon is the fourth most abundant element in the universe by mass after hydrogen, helium, and oxygen.

<span class="mw-page-title-main">Ice giant</span> Giant planet primarily consisting of compounds with freezing points exceeding 100°K

An ice giant is a giant planet composed mainly of elements heavier than hydrogen and helium, such as oxygen, carbon, nitrogen, and sulfur. There are two ice giants in the Solar System: Uranus and Neptune.

<span class="mw-page-title-main">Sudarsky's gas giant classification</span>

Sudarsky's classification of gas giants for the purpose of predicting their appearance based on their temperature was outlined by David Sudarsky and colleagues in the paper Albedo and Reflection Spectra of Extrasolar Giant Planets and expanded on in Theoretical Spectra and Atmospheres of Extrasolar Giant Planets, published before any successful direct or indirect observation of an extrasolar planet atmosphere was made. It is a broad classification system with the goal of bringing some order to the likely rich variety of extrasolar gas-giant atmospheres.

<span class="mw-page-title-main">55 Cancri e</span> Hot Super-Earth orbiting 55 Cancri A

55 Cancri e is an exoplanet in the orbit of its Sun-like host star 55 Cancri A. The mass of the exoplanet is about 8.63 Earth masses and its diameter is about twice that of the Earth, thus making it the first super-Earth discovered around a main sequence star, predating Gliese 876 d by a year. It takes fewer than 18 hours to complete an orbit and is the innermost-known planet in its planetary system. 55 Cancri e was discovered on 30 August 2004. However, until the 2010 observations and recalculations, this planet had been thought to take about 2.8 days to orbit the star. In October 2012, it was announced that 55 Cancri e could be a carbon planet.

<span class="mw-page-title-main">Gliese 436 b</span> Hot Neptune exoplanet orbiting Gliese 436

Gliese 436 b is a Neptune-sized exoplanet orbiting the red dwarf Gliese 436. It was the first hot Neptune discovered with certainty and was among the smallest-known transiting planets in mass and radius, until the much smaller Kepler exoplanet discoveries began circa 2010.

<span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

A super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

<span class="mw-page-title-main">Extraterrestrial atmosphere</span> Area of astronomical research

The study of extraterrestrial atmospheres is an active field of research, both as an aspect of astronomy and to gain insight into Earth's atmosphere. In addition to Earth, many of the other astronomical objects in the Solar System have atmospheres. These include all the gas giants, as well as Mars, Venus and Titan. Several moons and other bodies also have atmospheres, as do comets and the Sun. There is evidence that extrasolar planets can have an atmosphere. Comparisons of these atmospheres to one another and to Earth's atmosphere broaden our basic understanding of atmospheric processes such as the greenhouse effect, aerosol and cloud physics, and atmospheric chemistry and dynamics.

This page describes exoplanet orbital and physical parameters.

<span class="mw-page-title-main">Hot Neptune</span> Planet with a mass similar to Uranus or Neptune orbiting close to its star

A hot Neptune or Hoptune is a type of giant planet with a mass similar to that of Uranus or Neptune orbiting close to its star, normally within less than 1 AU. The first hot Neptune to be discovered with certainty was Gliese 436 b in 2007, an exoplanet about 33 light years away. Recent observations have revealed a larger potential population of hot Neptunes in the Milky Way than was previously thought. Hot Neptunes may have formed either in situ or ex situ.

<span class="mw-page-title-main">Gliese 1214 b</span> Super-Earth orbiting Gliese 1214

Gliese 1214 b is an exoplanet that orbits the star Gliese 1214, and was discovered in December 2009. Its parent star is 48 light-years from the Sun, in the constellation Ophiuchus. As of 2017, GJ 1214 b is the most likely known candidate for being an ocean planet. For that reason, scientists often call the planet a "waterworld".

<span class="mw-page-title-main">HR 8799 e</span> Jovian planet orbiting HR 8799

HR 8799 e is a large exoplanet, orbiting the star HR 8799, which lies 129 light-years from Earth. This gas giant is between 5 and 10 times the mass of Jupiter, the largest planet in the Planetary System. Due to their young age and high temperature all four discovered planets in the HR 8799 system are large, compared to all gas giants in the Solar System.

<span class="mw-page-title-main">Mini-Neptune</span> Planet smaller than Neptune with a gas atmosphere

A Mini-Neptune is a planet less massive than Neptune but resembling Neptune in that it has a thick hydrogen–helium atmosphere, probably with deep layers of ice, rock or liquid oceans.

<span class="mw-page-title-main">Gas giant</span> Giant planet mainly composed of light elements

A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" was originally synonymous with "giant planet". However, in the 1990s, it became known that Uranus and Neptune are really a distinct class of giant planets, being composed mainly of heavier volatile substances. For this reason, Uranus and Neptune are now often classified in the separate category of ice giants.

<span class="mw-page-title-main">HD 219134 b</span> Super-Earth orbiting HD 219134

HD 219134 b is one of at least five exoplanets orbiting HD 219134, a main-sequence star in the constellation of Cassiopeia. HD 219134 b has a size of about 1.6 REarth, and a density of 6.4 g/cm3 and orbits at 21.25 light-years away. The exoplanet was initially detected by the instrument HARPS-N of the Italian Telescopio Nazionale Galileo via the radial velocity method and subsequently observed by the Spitzer telescope as transiting in front of its star. The exoplanet has a mass of about 4.5 times that of Earth and orbits its host star every three days. In 2017, it was found that the planet likely hosts an atmosphere.

<span class="mw-page-title-main">GJ 3470 b</span> Hot Neptune orbiting GJ 3470

GJ 3470 b, occasionally Gliese 3470 b, is an exoplanet orbiting the star GJ 3470, located in the constellation Cancer. With a mass of just under 14 Earth-masses and a radius approximately 4.3 times that of Earth's, it is likely something akin to Neptune despite the initially strong belief that the planet was not covered in clouds like the gas giants in the Solar System.

References

  1. 1 2 3 4 "Helium-Shrouded Planets May Be Common in Our Galaxy". SpaceDaily. 16 June 2015. Retrieved 3 August 2015.
  2. Seager, S.; M. Kuchner; C. Hier-Majumder; B. Militzer (2007). "Mass-Radius Relationships for Solid Exoplanets". Astrophysical Journal. 669 (2): 1279–1297. arXiv: 0707.2895 . Bibcode:2007ApJ...669.1279S. doi:10.1086/521346. S2CID   8369390.