This article is one of a series on: |
Life in the universe |
---|
Outline |
Planetary habitability in the Solar System |
Life outside the Solar System |
Habitability of... |
K-type main-sequence stars, also known as orange dwarfs, may be candidates for supporting extraterrestrial life. These stars are known as "Goldilocks stars" as they emit enough radiation in the non-UV ray spectrum [1] to provide a temperature that allows liquid water to exist on the surface of a planet; they also remain stable in the main sequence longer than the Sun by burning their hydrogen slower, [2] allowing more time for life to form on a planet around a K-type main-sequence star. [3] The planet's habitable zone, ranging from 0.1–0.4 to 0.3–1.3 astronomical units (AU), [4] [ better source needed ] depending on the size of the star, is often far enough from the star so as not to be tidally locked to the star, and to have a sufficiently low solar flare activity not to be lethal to life. In comparison, red dwarf stars have too much solar activity and quickly tidally lock the planets in their habitable zones, making them less suitable for life. The odds of complex life arising may be better on planets around K-type main-sequence stars than around Sun-like stars, given the suitable temperature and extra time available for it to evolve. [5] Some planets around K-type main-sequence stars are potential candidates for extraterrestrial life. [2]
A K-type star's habitable zone approximately ranges between 0.1–0.4 to 0.3–1.3 AU from the star. Here, exoplanets will receive only a relatively small amount of ultraviolet radiation, especially so towards the outer edge. This is favorable to support life, as it means that there is enough radiated energy to allow liquid water to exist on the surface, but not so much, especially ionizing radiation, as to destroy life. [4]
The habitable zone is also very stable, lasting for most of the K-type main-sequence star's main sequence phase and with little instability of luminosity during that phase. [6]
Despite K-stars' lower total UV output, in order for their planets to have habitable temperatures, they must orbit much nearer to their K-star hosts, offsetting or reversing any advantage of a lower total UV output. There is also growing evidence that K-type dwarf stars emit dangerously high levels of X-rays and far ultraviolet (FUV) radiation for considerably longer into their early main sequence phase than do either heavier G-type stars or lighter early M-type dwarf stars. [7] This prolonged radiation saturation period may sterilise, destroy the atmospheres of, or at least delay the emergence of life for Earth-like planets orbiting inside the habitable zones around K-type dwarf stars. [7] [8]
The super-Earth HD 40307 g around the K2.5V star HD 40307 orbits in the circumstellar habitable zone (CHZ), although it has a reasonably elliptical orbit (e=0.22). There may be many more, and the Kepler space telescope (now retired) was one of the main sources of information of these exoplanets. [9] Kepler-62 and Kepler-442 are examples of discoveries by Kepler of systems consisting of a K-type dwarf with potentially habitable planets orbiting it.
HD 85512 b was originally thought to be a super-Earth with habitability potential orbiting a K-type main-sequence star, [10] [11] but it is now considered to be a false positive detection, [12] an artifact caused by stellar rotation. [13]
An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not then recognized as such. The first confirmation of the detection occurred in 1992. A different planet, first detected in 1988, was confirmed in 2003. According to statistics from the NASA Exoplanet Archive, As of 17 October 2024, there are 5,780 confirmed exoplanets in 4,314 planetary systems, with 969 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, and to give more insight into their traits, such as their composition, environmental conditions, and potential for life.
In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.
A K-type main-sequence star, also referred to as a K-type dwarf, or orange dwarf, is a main-sequence (hydrogen-burning) star of spectral type K and luminosity class V. These stars are intermediate in size between red M-type main-sequence stars and yellow/white G-type main-sequence stars. They have masses between 0.6 and 0.9 times the mass of the Sun and surface temperatures between 3,900 and 5,300 K. These stars are of particular interest in the search for extraterrestrial life due to their stability and long lifespan. Many of these stars have not left the main sequence as their low masses mean they stay on the main sequence for up to 70 billion years, a length of time much larger than the time the universe has existed. Well-known examples include Toliman and Epsilon Indi.
An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.
A Super-Earth or super-terran is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.
HD 85512 is a solitary K-type main-sequence star 36.8 light-years away in the constellation Vela. It is about 1 billion years older than the Sun. It is extremely chromospherically inactive, only slightly more active than Tau Ceti. It exhibits a long-term variability and was thought to host one low-mass planet, although this is now doubtful.
HD 40307 is an orange (K-type) main-sequence star located approximately 42 light-years away in the constellation of Pictor, taking its primary name from its Henry Draper Catalogue designation. It is calculated to be slightly less massive than the Sun. The star has six known planets, three discovered in 2008 and three more in 2012. One of them, HD 40307 g, is a potential super-Earth in the habitable zone, with an orbital period of about 200 days. This object might be capable of supporting liquid water on its surface, although much more information must be acquired before its habitability can be assessed.
An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 24 July 2024, there are 7,026 confirmed exoplanets in 4,949 planetary systems, with 1007 systems having more than one planet. This is a list of the most notable discoveries.
Kepler-62f is a super-Earth exoplanet orbiting within the habitable zone of the star Kepler-62, the outermost of five such planets discovered around the star by NASA's Kepler space telescope. It is located about 982 light-years from Earth in the constellation of Lyra.
Kepler-90h is an exoplanet orbiting within the habitable zone of the early G-type main sequence star Kepler-90, the outermost of eight such planets discovered by NASA's Kepler spacecraft. It is located about 2,840 light-years, from Earth in the constellation Draco. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.
Kepler-186 is a main-sequence M1-type dwarf star, located 177.5 parsecs away in the constellation of Cygnus. The star is slightly cooler than the sun, with roughly half its metallicity. It is known to have five planets, including the first Earth-sized world discovered in the habitable zone: Kepler-186f. The star hosts four other planets discovered so far, though they all orbit interior to the habitable zone.
Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,206 light-years (370 pc) from Earth in the constellation of Lyra.
A superhabitable world is a hypothetical type of planet or moon that is better suited than Earth for the emergence and evolution of life. The concept was introduced in a 2014 paper by René Heller and John Armstrong, in which they criticized the language used in the search for habitable exoplanets and proposed clarifications. The authors argued that knowing whether a world is located within the star's habitable zone is insufficient to determine its habitability, that the principle of mediocrity cannot adequately explain why Earth should represent the archetypal habitable world, and that the prevailing model of characterization was geocentric or anthropocentric in nature. Instead, they proposed a biocentric approach that prioritized astrophysical characteristics affecting the abundance and variety of life on a world's surface.
Kepler-1649c is an Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf star Kepler-1649, the outermost planet of the planetary system discovered by Kepler’s space telescope. It is located about 301 light-years (92 pc) away from Earth, in the constellation of Cygnus.
Habitability of G V stars of G V stars systems defines the suitability for life of exoplanets belonging to yellow dwarf stars. These systems are the object of study among the scientific community because they are considered the most suitable for harboring living organisms, together with those belonging to K-type stars.
The habitability of F-type main-sequence starsystems is disputed due to the shorter lifetimes and higher levels of UV radiation. Indeed, F0 stars are considered by many scientists as the hottest and most massive stars capable of supporting habitable planets. A planet orbiting an F-type star at the Earth boundary within the HZ would receive 2.5 to 7.1 times the UV that Earth gets from the sun.
A Habitable Zone for Complex Life (HZCL) is a range of distances from a star suitable for complex aerobic life. Different types of limitations preventing complex life give rise to different zones. Conventional habitable zones are based on compatibility with water. Most zones start at a distance from the host star and then end at a distance farther from the star. A planet would need to orbit inside the boundaries of this zone. With multiple zonal constraints, the zones would need to overlap for the planet to support complex life. The requirements for bacterial life produce much larger zones than those for complex life, which requires a very narrow zone.