Habitability of K-type main-sequence star systems

Last updated

K-type main-sequence stars, also known as orange dwarfs, may be candidates for supporting extraterrestrial life. These stars are known as "Goldilocks stars" as they emit enough radiation in the non-UV ray spectrum [1] to provide a temperature that allows liquid water to exist on the surface of a planet; they also remain stable in the main sequence longer than the Sun by burning their hydrogen slower, [2] allowing more time for life to form on a planet around a K-type main-sequence star. [3] The planet's habitable zone, ranging from 0.1–0.4 to 0.3–1.3 astronomical units (AU), [4] [ better source needed ] depending on the size of the star, is often far enough from the star so as not to be tidally locked to the star, and to have a sufficiently low solar flare activity not to be lethal to life. In comparison, red dwarf stars have too much solar activity and quickly tidally lock the planets in their habitable zones, making them less suitable for life. The odds of complex life arising may be better on planets around K-type main-sequence stars than around Sun-like stars, given the suitable temperature and extra time available for it to evolve. [5] Some planets around K-type main-sequence stars are potential candidates for extraterrestrial life. [2]

Contents

Habitable zone

A K-type star's habitable zone approximately ranges between 0.1–0.4 to 0.3–1.3 AU from the star. Here, exoplanets will receive only a relatively small amount of ultraviolet radiation, especially so towards the outer edge. This is favorable to support life, as it means that there is enough radiated energy to allow liquid water to exist on the surface, but not so much, especially ionizing radiation, as to destroy life. [4]

The habitable zone is also very stable, lasting for most of the K-type main-sequence star's main sequence phase and with little instability of luminosity during that phase. [6]

Radiation hazard

61 Cygni, a binary K-type star system 61 Cygni Proper Motion.gif
61 Cygni, a binary K-type star system

Despite K-stars' lower total UV output, in order for their planets to have habitable temperatures, they must orbit much nearer to their K-star hosts, offsetting or reversing any advantage of a lower total UV output. There is also growing evidence that K-type dwarf stars emit dangerously high levels of X-rays and far ultraviolet (FUV) radiation for considerably longer into their early main sequence phase than do either heavier G-type stars or lighter early M-type dwarf stars. [7] This prolonged radiation saturation period may sterilise, destroy the atmospheres of, or at least delay the emergence of life for Earth-like planets orbiting inside the habitable zones around K-type dwarf stars. [7] [8]

Potentially habitable planets

The super-Earth HD 40307 g around the K2.5V star HD 40307 orbits in the CHZ, although it has a reasonably elliptical orbit (e=0.22). There may be many more, and the Kepler space telescope (now retired) was one of the main sources of information of these exoplanets. [9] Kepler-62 and Kepler-442 are examples of discoveries by Kepler of systems consisting of a K-type dwarf with potentially habitable planets orbiting it. A super-Earth orbiting a K-type main-sequence star called HD 85512 b was originally thought to have habitability potential, [10] [11] but it is now considered too hot to be potentially habitable.

See also

Related Research Articles

<span class="mw-page-title-main">Exoplanet</span> Planet outside the Solar System

An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of the detection occurred in 1992. A different planet, initially detected in 1988, was confirmed in 2003. As of 1 February 2024, there are 5,606 confirmed exoplanets in 4,136 planetary systems, with 889 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, as well as provide further insight in regard to aspects including their composition, environmental conditions and potential for life.

<span class="mw-page-title-main">Habitable zone</span> Orbits where planets may have liquid surface water

In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

<span class="mw-page-title-main">K-type main-sequence star</span> Stellar classification

A K-type main-sequence star, also referred to as a K-type dwarf, or orange dwarf, is a main-sequence (hydrogen-burning) star of spectral type K and luminosity class V. These stars are intermediate in size between red M-type main-sequence stars and yellow/white G-type main-sequence stars. They have masses between 0.6 and 0.9 times the mass of the Sun and surface temperatures between 3,900 and 5,300 K. These stars are of particular interest in the search for extraterrestrial life due to their stability and long lifespan. Well-known examples include Alpha Centauri B and Epsilon Indi.

<span class="mw-page-title-main">F-type main-sequence star</span> Stellar classification

An F-type main-sequence star is a main-sequence, hydrogen-fusing star of spectral type F and luminosity class V. These stars have from 1.0 to 1.4 times the mass of the Sun and surface temperatures between 6,000 and 7,600 K.Tables VII and VIII. This temperature range gives the F-type stars a whitish hue when observed by the atmosphere. Because a main-sequence star is referred to as a dwarf star, this class of star may also be termed a yellow-white dwarf. Notable examples include Procyon A, Gamma Virginis A and B, and KIC 8462852.

<span class="mw-page-title-main">Exomoon</span> Moon beyond the Solar System

An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.

<span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

HD 85512 is a solitary K-type main-sequence star 36.8 light-years away in the constellation Vela. It is about 1 billion years older than the Sun. It is extremely chromospherically inactive, only slightly more active than Tau Ceti. It exhibits a long-term variability and was thought to host one low-mass planet, although this is now doubtful.

<span class="mw-page-title-main">HD 40307</span> Star in the constellation Pictor

HD 40307 is an orange (K-type) main-sequence star located approximately 42 light-years away in the constellation of Pictor, taking its primary name from its Henry Draper Catalogue designation. It is calculated to be slightly less massive than the Sun. The star has six known planets, three discovered in 2008 and three more in 2012. One of them, HD 40307 g, is a potential super-Earth in the habitable zone, with an orbital period of about 200 days. This object might be capable of supporting liquid water on its surface, although much more information must be acquired before its habitability can be assessed.

<span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 February 2024, there are 5,606 confirmed exoplanets in 4,136 planetary systems, with 889 systems having more than one planet. This is a list of the most notable discoveries.

<span class="mw-page-title-main">HD 85512 b</span> Terrestrial exoplanet orbiting HD 85512

HD 85512 b is a currently-disputed exoplanet orbiting HD 85512, a K-type main-sequence star approximately 37 light-years from Earth in the constellation of Vela.

<span class="mw-page-title-main">Kepler-62f</span> Super-Earth orbiting Kepler-62

Kepler-62f is a super-Earth exoplanet orbiting within the habitable zone of the star Kepler-62, the outermost of five such planets discovered around the star by NASA's Kepler spacecraft. It is located about 980 light-years from Earth in the constellation of Lyra.

<span class="mw-page-title-main">Habitability of red dwarf systems</span> Possible factors for life around red dwarf stars

The theorized habitability of red dwarf systems is determined by a large number of factors. Modern evidence indicates that planets in red dwarf systems are unlikely to be habitable, due to their low stellar flux, high probability of tidal locking and thus likely lack of magnetospheres and atmospheres, small circumstellar habitable zones and the high stellar variation experienced by planets of red dwarf stars. However, the sheer numbers and longevity of red dwarfs could provide ample opportunity to realize any small possibility of habitability.

<span class="mw-page-title-main">Kepler-438b</span> Super-Earth orbiting Kepler-438

Kepler-438b is a confirmed near-Earth-sized exoplanet. It is likely rocky. It orbits on the inner edge of the habitable zone of a red dwarf, Kepler-438, about 472.9 light-years from Earth in the constellation Lyra. It receives 1.4 times our solar flux. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the confirmation of the exoplanet on 6 January 2015.

<span class="mw-page-title-main">Kepler-442b</span> Super-Earth orbiting Kepler-442

Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,206 light-years (370 pc) from Earth in the constellation of Lyra.

<span class="mw-page-title-main">Superhabitable world</span> Hypothetical type of planet or moon that may be better-suited for life than Earth

A superhabitable world is a hypothetical type of planet or moon that is better suited than Earth for the emergence and evolution of life. The concept was introduced in a 2014 paper by René Heller and John Armstrong, in which they criticized the language used in the search for habitable exoplanets and proposed clarifications. The authors argued that knowing whether a world is located within the star's habitable zone is insufficient to determine its habitability, that the principle of mediocrity cannot adequately explain why Earth should represent the archetypal habitable world, and that the prevailing model of characterization was geocentric or anthropocentric in nature. Instead, they proposed a biocentric approach that prioritized astrophysical characteristics affecting the abundance and variety of life on a world's surface.

<span class="mw-page-title-main">Habitability of yellow dwarf systems</span> Likelihood of finding extraterrestrial life in yellow dwarf systems

Habitability of yellow dwarf systems defines the suitability for life of exoplanets belonging to yellow dwarf stars. These systems are the object of study among the scientific community because they are considered the most suitable for harboring living organisms, together with those belonging to K-type stars.

<span class="mw-page-title-main">Habitability of F-type main-sequence star systems</span> Overview of the habitability of F-type main-sequence star systems

The habitability of F-type main-sequence starsystems is disputed due to the shorter lifetimes and higher levels of UV radiation. Indeed, F0 stars are considered by many scientists as the hottest and most massive stars capable of supporting habitable planets. A planet orbiting an F-type star at the Earth boundary within the HZ would receive 2.5 to 7.1 times the UV that Earth gets from the sun.

The origin of life is an ongoing field of research that requires the study of interactions of many physical and biological processes. One of these physical processes has to do with the characteristics of the host star of a planet, and how stellar influences on an origin of life setting can dictate how life evolves, if at all. Life required an energy source at its origin, and scientists have long speculated that this energy source could have been the ultraviolet radiation that rains down on Earth. Though it may potentially be harmful to life, UV has also been shown to trigger important prebiotic reactions that might have taken place on a younger Earth.

References

  1. Grossman, Lisa. "Sun may not be a 'Goldilocks' star". Science News. Archived from the original on 27 December 2021. Retrieved 16 April 2014.
  2. 1 2 Shiga, David. "Orange stars are just right for life". New Scientist. Archived from the original on 13 January 2015. Retrieved 16 April 2014.
  3. Vieru, Tudor. "Life Could Easily Develop Around Orange Dwarfs". Softpedia. Archived from the original on 16 April 2014. Retrieved 16 April 2014.
  4. 1 2 Merchant, David (18 June 2009). "Orange Dwarf Stars and Life – Common?". Archived from the original on 16 April 2014. Retrieved 16 April 2014.
  5. Loeb, Abraham (2017). "Reduced biodiversity of life around Proxima Centauri and TRAPPIST-1". The Astrophysical Journal Letters. 846 (L21): L21. arXiv: 1707.07007 . Bibcode:2017ApJ...846L..21L. doi: 10.3847/2041-8213/aa8860 . S2CID   118880329.
  6. "Kepler's Hunt for Earths Shows Progress at Space Conference" Hadhazy, Adam March 9, 2010 12:00 AM
  7. 1 2 Richey-Yowell, Tyler; Shkolnik, Evgenya L.; Loyd, R.O. Parke; et al. (2022-04-26). "HAZMAT. VIII. A spectroscopic analysis of the ultraviolet evolution of K stars: Additional evidence for K dwarf rotational stalling in the first gigayear". The Astrophysical Journal . American Astronomical Society. 929 (2): 169. arXiv: 2203.15237 . Bibcode:2022ApJ...929..169R. doi: 10.3847/1538-4357/ac5f48 .
  8. Toubet, Georgina (22 April 2022). "What UV radiation from the 'Goldilocks' stars could really mean". slashgear.com. Archived from the original on 2022-05-20. Retrieved 2022-05-14.
  9. Adam Hadhazy Kepler's Hunt for Earths Shows Progress at Space Conference Archived 2010-08-31 at the Wayback Machine , Popular Mechanics, March 9, 2010
  10. Kaltenegger, L; S. Udry; F. Pepe (2011). "A Habitable Planet around HD 85512?". arXiv: 1108.3561v1 [astro-ph.EP].
  11. Pepe, F.; Lovis, C.; Ségransan, D.; Benz, W.; Bouchy, F.; Dumusque, X.; et al. (3 October 2011). "The HARPS search for Earth-like planets in the habitable zone". Astronomy & Astrophysics. 534: A58. arXiv: 1108.3447 . Bibcode:2011A&A...534A..58P. doi:10.1051/0004-6361/201117055. S2CID   15088852.