This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Alternative names | ATA |
---|---|
Named after | Paul Allen |
Part of | Hat Creek Radio Observatory |
Location(s) | California, Pacific States Region |
Coordinates | 40°49′04″N121°28′24″W / 40.8178°N 121.4733°W |
Organization | Radio Astronomy Laboratory SETI Institute |
Altitude | 986 m (3,235 ft) |
Wavelength | 60, 2.7 cm (500, 11,100 MHz) |
Telescope style | Gregorian telescope radio interferometer |
Number of telescopes | 42 |
Diameter | 6.1 m (20 ft 0 in) |
Secondary diameter | 2.4 m (7 ft 10 in) |
Collecting area | 1,227 m2 (13,210 sq ft) |
Website | www |
Related media on Commons | |
The Allen Telescope Array (ATA), formerly known as the One Hectare Telescope (1hT), is a radio telescope array dedicated to astronomical observations and a simultaneous search for extraterrestrial intelligence (SETI). [1] [2] The array is situated at the Hat Creek Radio Observatory in Shasta County, 290 miles (470 km) northeast of San Francisco, California.
The project was originally developed as a joint effort between the SETI Institute and the Radio Astronomy Laboratory (RAL) at the University of California, Berkeley (UC Berkeley), with funds obtained from an initial US$ 12.5 million donation by the Paul G. Allen Family Foundation and Nathan Myhrvold. [3] The first phase of construction was completed and the ATA finally became operational on 11 October 2007 with 42 antennas (ATA-42), after Paul Allen (co-founder of Microsoft) had pledged an additional $13.5 million to support the construction of the first and second phases. [4] [5]
Although overall Allen has contributed more than $30 million to the project, it has not succeeded in building the 350 6.1 m (20 ft) dishes originally conceived, [6] and the project suffered an operational hiatus due to funding shortfalls between April and August 2011, after which observations resumed. [7] [8] [9] [10] Subsequently, UC Berkeley exited the project, completing divestment in April 2012. The facility is now managed by SRI International (formerly Stanford Research Institute), an independent, nonprofit research institute. [11] As of 2016, the SETI Institute performs observations [12] with the ATA between the hours of 6 pm and 6 am daily.
In August 2014, the installation was threatened by a forest fire in the area and was briefly forced to shut down, but ultimately emerged largely unscathed. [13]
First conceived by SETI pioneer Frank Drake, the idea has been a dream of the SETI Institute for years. However, it was not until early 2001 that research and development began, after a donation of $11.5 million by the Paul G. Allen Family Foundation. In March 2004, following the successful completion of a three-year research and development phase, the SETI Institute unveiled a three-tier construction plan for the telescope. Construction began immediately, thanks to the pledge of $13.5 million by Paul Allen (co-founder of Microsoft) to support the construction of the first and second phases. The SETI Institute named the telescope in Allen's honor. Overall, Paul Allen contributed more than $30 million to the project.
The ATA is a centimeter-wave array which pioneers the Large-Number Small-Diameter concept of building radio telescopes. Compared to a large dish antenna, large numbers of smaller dishes are cheaper for the same collecting area. To get similar sensitivity, the signals from all telescopes must be combined. This requires high-performance electronics, which had been prohibitively expensive. Due to the declining cost of electronic components, the required electronics became practicable, resulting in a large cost-saving over telescopes of more conventional design. This is informally referred to as "replacing steel with silicon".
The ATA has four primary technical capabilities that make it well suited for a range of scientific investigations: a very wide field of view (2.45° at λ = 21 cm, the wavelength of the hydrogen line), complete instantaneous frequency coverage from 0.5 to 11.2 gigahertz (GHz), multiple simultaneous backends, and active interference mitigation. The area of sky which can be instantaneously imaged is 17 times that obtainable by the Very Large Array telescope. The instantaneous frequency coverage of more than four octaves is unprecedented in radio astronomy, and is the result of a unique feed, input amplifier and signal path design. Active interference mitigation will make it possible to observe even at the frequencies of many terrestrial radio emitters.
All-sky surveys are an important part of the science program,[ clarification needed ] and the ATA will have increased efficiency through its ability to conduct extraterrestrial intelligence searches (SETI) and other radio astronomy observations simultaneously. The telescope can do this by splitting the recorded signals in the control room prior to final processing. Simultaneous observations are possible because for SETI, wherever the telescope is pointed, several target stars will lie within the large field of view afforded by the 6 m dishes. By agreement between the UC Berkeley Radio Astronomy Laboratory (RAL) and the SETI Institute, the needs of conventional radio astronomy determined the pointing of the array up until 2012.
The ATA is planned to comprise 350 6 m dishes and will make possible large, deep radio surveys that were not previously feasible. The telescope design incorporates many new features, including hydroformed antenna surfaces, a log-periodic feed covering the entire range of frequencies from 500 megahertz (MHz) to 11.2 GHz, and low-noise, wide-band amplifiers with a flat response over the entire band, thus making it possible to amplify the sky signal directly. This amplified signal, containing the entire received bandwidth, is brought from each antenna to the processing room via optical fiber cables. This means that as electronics improve and wider bandwidths are obtainable, only the central processor needs to change, and not the antennas or feeds.
The instrument was operated and maintained by RAL until development of the array was put on hold in 2011. RAL worked hand in hand with the SETI Institute during design and prototyping and was the primary designer of the feed, antenna surfaces, beamforming, correlator, and imaging system for radio astronomy observations.
The panel for the Astronomy and Astrophysics Decadal Survey in its fifth report, Astronomy and Astrophysics in the New Millennium (2001), endorsed SETI and recognized the ATA (then called the 1-Hectare Telescope) as an important stepping stone towards the building of the Square Kilometer Array telescope (SKA). The most recent Decadal report recommended ending the US's financial support of the SKA, although US participation in SKA precursors such as MeerKAT, the Hydrogen Epoch of Reionization Array and the Murchison Widefield Array.
Although cost estimates of unbuilt projects are always dubious, and the specifications are not identical (conventional telescopes have lower noise temperature, but the ATA has a larger field of view, for example), the ATA has potential promise as a much cheaper radio telescope technology for a given effective aperture. For example, the amount spent on the first ATA-42 phase, including technology development, is roughly one third of the cost of a new copy of a Deep Space Network 34 m antenna of similar collecting area. [14] Similarly, the estimated total cost of building the remaining 308 dishes was estimated (as of October 2007 [update] ) at about $41 million. [4] This is about two times cheaper than the $85 million cost of the last large radio astronomy antenna built in the US, the Green Bank Telescope, of similar collecting area. The contractor filed for a $29 million overrun, but only $4 million of this was allowed. [15]
The ATA aspires to be among the world's largest and fastest observing instruments, and to permit astronomers to search many different target stars simultaneously. If completed as originally envisioned, it will be one of the largest and most powerful telescopes in the world.
Since its inception, the ATA has been a development tool[ clarification needed ] for astronomical interferometer technology (specifically, for the Square Kilometer Array). [16]
The ATA was originally planned to be constructed in four stages, ATA-42, ATA-98, ATA-206 and ATA-350, each number representing the number of dishes in the array at a given time. (See Table 1). The ATA is planned to comprise 350 dishes with a diameter of 6 m each.
Regular operations with 42 dishes started on 11 October 2007. [4] Funding for building additional antennas is currently being sought by the SETI Institute from various sources, including the United States Navy, Defense Advanced Research Projects Agency (DARPA), National Science Foundation (NSF) and private donors.
Simultaneous astronomical and SETI observations are performed with two 32-input dual polarization imaging correlators. [17] Numerous articles reporting conventional radio astronomy observations have been published. [18] [19] [20] [21]
Three phased array beamformers [22] utilizing the Berkeley Emulation Engine 2 (BEE2) were deployed in June 2007 and have been integrated into the system to allow for simultaneous astronomical and SETI observations. [23] [24] As of April 2008, the first pulsar observations were conducted using the beamformer and a purpose-built pulsar spectrometer. [25]
The workhorse SETI search system (SETI on ATA or SonATA) performs fully automated SETI observations. SonATA follows up on detected signals in real time and continues to track them until 1) the signal is shown to have been generated on Earth or rarely, 2) the source sets, which triggers follow up the next day. As of 2016, more than two hundred million signals have been followed up and classified [ citation needed ] using the ATA. Not one of these signals had all the characteristics expected for an ETI signal. The results of SETI Institute's observations are published in a number of papers. [26] [27] [28]
In April 2011, the ATA was put into hibernation owing to funding shortfalls, meaning that it was no longer available for use. [29] Operation of the ATA resumed on 5 December 2011. [10] Efforts are now led by Andrew Siemion. [30]
In 2012, the ATA was funded by a $3.6 million philanthropic donation by Franklin Antonio, cofounder and Chief Scientist of Qualcomm Incorporated. [31] This gift supports upgrades of all the receivers on the ATA dishes to have dramatically greater sensitivity (2 − 10× from 1–8 GHz) than before and support sensitive observations over a wider frequency range, from 1–15 GHz, when initially the radio frequency electronics went to only 11 GHz. By July 2016, the first ten of these receivers had been installed and proven. Full installation on all 42 antennas is planned as of June 2017 [update] . [32] [ needs update ]
In November 2015, the ATA studied the anomalous star KIC 8462852, [33] [34] and in autumn 2017 the Allen Telescope Array examined the interstellar asteroid 'Oumuamua for signs of technology, but detected no unusual radio emissions. [35] [36]
The science goals listed below represent the most important projects to be conducted with the ATA. Each of these goals is associated with one of the four stages of development mentioned earlier. (See Table 1). Also listed is some of the science that it is hoped each will produce.
Array | Status | Beam size (arcsec) | Srms (mJy) | Speed (deg2s−1) | Key science |
---|---|---|---|---|---|
ATA-42 | Dish construction complete; commissioning in progress with 32 input, dual polarization (64 total inputs) correlator | 245 x 118 | 0.54 | 0.02 | FiGSS: 5 GHz Continuum Survey, Galactic Plane Molecular Spectroscopy, SETI Galactic Center Survey |
ATA-98 | Awaiting results ATA-42 for funding | 120 x 80 | 0.2 | 0.11 | ATHIXS† Trial Surveys, HI Stellar Outflows Survey, SETI Targeted Survey: 100 stars |
ATA-206 | Development phase not completed | 75 x 65 | 0.11 | 0.44 | ATHIXS, Map The Magnetized Galactic ISM, Pulsar Timing Array, Deep continuum and transient surveys, SETI Targeted Surveys |
ATA-350 | Development phase not completed | 77 x 66 | 0.065 | 1.40 | ATHIXS, Map The Magnetized Galactic ISM, Pulsar Timing Array Deep continuum and transient surveys, SETI Targeted Surveys |
Note: Beam size and continuum sensitivity (Srms are estimated for a 6-minute, 100 MHz continuum snapshot observation at transit of a source at 40° declination at a wavelength of 21 cm. Speed is given for a survey at 21 cm observations with a bandwidth of 100 MHz that reaches 1 mJy rms. †ATHIXS is an all-sky deep HI extragalactic HI survey. |
Since construction of the array began, a few science goals not specifically drawn up for it have been suggested.
For example, the Allen Telescope Array has offered to provide the mooncast data downlink for any contestants in the Google Lunar X Prize. [37] This is practical, since the array, with no modifications, covers the main space communications bands (S-band and X-band). A telemetry decoder would be the only needed addition.
Also, the ATA was mentioned as a candidate for searching for a new type of radio transient. [38] It is an excellent choice for this owing to its large field of view and wide instantaneous bandwidth. Following this suggestion, Andrew Siemion and an international team of astronomers and engineers developed an instrument called "Fly's Eye" that allowed the ATA to search for bright radio transients, and observations were carried out between February and April 2008. [39]
The ATA-42 configuration will provide a maximum baseline of 300 m (and ultimately for the ATA-350, 900 m). A cooled log-periodic feed on each antenna is designed to provide a system temperature of ~45K from 1–10 GHz, with reduced sensitivity in the ranges of 0.5–1.0 GHz and 10–11.2 GHz. Four separate frequency tunings (IFs) are available to produce 4 x 672 MHz intermediate frequency bands. Two IFs support correlators for imaging; two will support SETI observing. All tunings can produce four dual polarization phased array beams which can be independently pointed within the primary beam and can be used with a variety of detectors. The ATA can therefore synthesize up to 32 phased array beams.
The wide field of view of the ATA gives it an unparalleled capability for large surveys (Fig. 4). The time required for mapping a large area to a given sensitivity is proportional to (ND)2, where N is the number of elements and D is the diameter of the dish. This leads to the surprising result that a large array of small dishes can outperform an array with a smaller number of elements but considerably greater collecting area in the task of large surveys. As a consequence, even the ATA-42 is competitive with much larger telescopes in its capability for both brightness temperature and point source surveys. For point source surveys, the ATA-42 is comparable in speed to Arecibo and the Green Bank Telescope (GBT), but three times slower than the Very Large Array (VLA). The ATA-350, on the other hand, will be one order of magnitude faster than the Very Large Array for point source surveys, and is comparable to the Expanded Very Large Array (EVLA) in survey speed. For surveys up to a specified brightness temperature sensitivity, the ATA-98 will exceed the survey speed of even the VLA-D configuration. The ATA-206 should match the brightness temperature sensitivity of Arecibo and the GBT. The ATA, however, provides better resolution than either of these single-dish telescopes.
The antennas for the ATA are 6.1 x 7.0 meters (20.0 ft x 23.0 ft) hydroformed offset Gregorian telescopes, each with a 2.4 meter sub-reflector with an effective focal length/diameter (f/D) ratio of 0.65. (See DeBoer, 2001). The offset geometry eliminates blockage, which increases efficiency and decreases the side lobes. It also allows for the large sub-reflector, providing good low frequency performance. The hydroforming technology used to make these surfaces is the same as that used by Andersen Manufacturing of Idaho Falls, Idaho to generate low-cost satellite reflectors. The unique interior frame rim-supported compact mount allows excellent performance at low cost. The drive system employs a spring-loaded passive anti-backlash azimuth drive train. Most components designed by Matthew Fleming and manufactured at Minex Engineering Corp. in Antioch, CA.
As with other arrays, the huge amount of incoming sensory information requires real-time array processing capability in order to reduce data volume for storage. For ATA-256, the average data rates and total data volume for the correlator are estimated to be 100 Mbyte/s and 15 Pbytes for the five-year survey period. [40] Experiments such as transient surveys will exceed this rate significantly. The beamformers produce data at a much higher rate (8 gigabytes per second (Gb/s)) but only a very small fraction of this data is archived. In 2009, the signal detection hardware and software was called Prelude, which was composed of rack-mounted PCs augmented by two custom accelerator cards based on digital signal processing (DSP) and field-programmable gate array (FPGA) chips. Each Programmable Detection Module (one of 28 PCs) can analyze 2 MHz of dual-polarization input data to generate spectra with spectral resolution of 0.7 Hz and time samples of 1.4 seconds. [40]
In 2009, the array had a 40 Mbit/s internet connection, adequate for remote access and transferring of data products for ATA-256. An upgrade to 40 Gbit/s was planned, which would enable direct distribution of raw data for offsite computing. [40]
Like other array systems the ATA has a computational complexity and cross-connect which scales as O(N2) with the number of antennas . The computation requirement, for example, for correlating the full ATA bandwidth ( = 11 GHz) for the proposed = 350 dual-polarization antenna build-out, using an efficient frequency-multiply (FX) architecture and a modest 500 kHz channel width (with number of channels = 2200), is given by: [41]
where is an operation. Note that since each dish has a dual polarization antenna, each signal sample is actually a two data set, hence .
The search for extraterrestrial intelligence (SETI) is a collective term for scientific searches for intelligent extraterrestrial life, for example, monitoring electromagnetic radiation for signs of transmissions from civilizations on other planets.
A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency portion of the electromagnetic spectrum emitted by astronomical objects, just as optical telescopes are the main observing instrument used in traditional optical astronomy which studies the light wave portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night.
The Karl G. Jansky Very Large Array (VLA) is a centimeter-wavelength radio astronomy observatory in the southwestern United States. It lies in central New Mexico on the Plains of San Agustin, between the towns of Magdalena and Datil, approximately 50 miles (80 km) west of Socorro. The VLA comprises twenty-eight 25-meter radio telescopes deployed in a Y-shaped array and all the equipment, instrumentation, and computing power to function as an interferometer. Each of the massive telescopes is mounted on double parallel railroad tracks, so the radius and density of the array can be transformed to adjust the balance between its angular resolution and its surface brightness sensitivity. Astronomers using the VLA have made key observations of black holes and protoplanetary disks around young stars, discovered magnetic filaments and traced complex gas motions at the Milky Way's center, probed the Universe's cosmological parameters, and provided new knowledge about the physical mechanisms that produce radio emission.
The Square Kilometre Array (SKA) is an intergovernmental international radio telescope project being built in Australia (low-frequency) and South Africa (mid-frequency). The combining infrastructure, the Square Kilometre Array Observatory (SKAO), and headquarters, are located at the Jodrell Bank Observatory in the United Kingdom. The SKA cores are being built in the southern hemisphere, where the view of the Milky Way galaxy is the best and radio interference is at its least.
The Wow! signal was a strong narrowband radio signal detected on August 15, 1977, by Ohio State University's Big Ear radio telescope in the United States, then used to support the search for extraterrestrial intelligence. The signal appeared to come from the direction of the constellation Sagittarius and bore expected hallmarks of extraterrestrial origin.
The Arcminute Microkelvin Imager (AMI) consists of a pair of interferometric radio telescopes - the Small and Large Arrays - located at the Mullard Radio Astronomy Observatory near Cambridge. AMI was designed, built and is operated by the Cavendish Astrophysics Group. AMI was designed, primarily, for the study of galaxy clusters by observing secondary anisotropies in the cosmic microwave background (CMB) arising from the Sunyaev–Zel'dovich (SZ) effect. Both arrays are used to observe radiation with frequencies between 12 and 18 GHz, and have very similar system designs. The telescopes are used to observe both previously known galaxy clusters, in an attempt to determine, for example, their masses and temperatures, and to carry out surveys, in order to locate previously undiscovered clusters.
The Submillimeter Array (SMA) consists of eight 6-meter (20 ft) diameter radio telescopes arranged as an interferometer for submillimeter wavelength observations. It is the first purpose-built submillimeter interferometer, constructed after successful interferometry experiments using the pre-existing 15-meter (49 ft) James Clerk Maxwell Telescope and 10.4-meter (34.1 ft) Caltech Submillimeter Observatory as an interferometer. All three of these observatories are located at Mauna Kea Observatory on Mauna Kea, Hawaii, and have been operated together as a ten element interferometer in the 230 and 345 GHz bands. The baseline lengths presently in use range from 16 to 508 meters. The radio frequencies accessible to this telescope range from 194–408 gigahertz (1.545–0.735 mm) which includes rotational transitions of dozens of molecular species as well as continuum emission from interstellar dust grains. Although the array is capable of operating both day and night, most of the observations take place at nighttime when the atmospheric phase stability is best.
The Low-Frequency Array (LOFAR) is a large radio telescope, with an antenna network located mainly in the Netherlands, and spreading across 7 other European countries as of 2019. Originally designed and built by ASTRON, the Netherlands Institute for Radio Astronomy, it was first opened by Queen Beatrix of The Netherlands in 2010, and has since been operated on behalf of the International LOFAR Telescope (ILT) partnership by ASTRON.
Owens Valley Radio Observatory (OVRO) is a radio astronomy observatory located near Big Pine, California (US) in Owens Valley. It lies east of the Sierra Nevada, approximately 350 kilometers (220 mi) north of Los Angeles and 20 kilometers (12 mi) southeast of Bishop. It was established in 1956, and is owned and operated by the California Institute of Technology (Caltech). The Owens Valley Solar Array portion of the observatory has been operated by New Jersey Institute of Technology (NJIT) since 1997.
Project Cyclops is a 1971 NASA project that investigated how the search for extraterrestrial intelligence (SETI) should be conducted. As a NASA product the report is in the public domain. The project team created a design for coordinating large numbers of radio telescopes to search for Earth-like radio signals at a distance of up to 1,000 light-years to find intelligent life. The proposed design involving between 1,000 and 2,500 steerable dishes of 100m diameter each was shelved due to costs. However, the report became the basis for much of the SETI work to follow.
The Combined Array for Research in Millimeter-wave Astronomy (CARMA) was an astronomical instrument comprising 23 radio telescopes, dedicated in 2006. These telescopes formed an astronomical interferometer where all the signals are combined in a purpose-built computer to produce high-resolution astronomical images. The telescopes ceased operation in April 2015 and were relocated to the Owens Valley Radio Observatory for storage.
The Hat Creek Radio Observatory (HCRO) is operated by SRI International in the Western United States. The observatory is home to the Allen Telescope Array designed and owned by the SETI Institute in Mountain View, CA.
Astropulse is a volunteer computing project to search for primordial black holes, pulsars, and extraterrestrial intelligence (ETI). Volunteer resources are harnessed through Berkeley Open Infrastructure for Network Computing (BOINC) platform. In 1999, the Space Sciences Laboratory launched SETI@home, which would rely on massively parallel computation on desktop computers scattered around the world. SETI@home utilizes recorded data from the Arecibo radio telescope and searches for narrow-bandwidth radio signals from space, signifying the presence of extraterrestrial technology. It was soon recognized that this same data might be scoured for other signals of value to the astronomy and physics community.
SERENDIP is a Search for Extra-Terrestrial Intelligence (SETI) program originated by the Berkeley SETI Research Center at the University of California, Berkeley.
MeerKAT, originally the Karoo Array Telescope, is a radio telescope consisting of 64 antennas in the Meerkat National Park, in the Northern Cape of South Africa. In 2003, South Africa submitted an expression of interest to host the Square Kilometre Array (SKA) Radio Telescope in Africa, and the locally designed and built MeerKAT was incorporated into the first phase of the SKA. MeerKAT was launched in 2018.
The Australian Square Kilometre Array Pathfinder (ASKAP) is a radio telescope array located at Murchison Radio-astronomy Observatory (MRO) in the Mid West region of Western Australia.
The Radio Astronomy Lab (RAL) is an Organized Research Unit (ORU) within the Astronomy Department at the University of California, Berkeley. It was founded by faculty member Harold Weaver in 1958. Until 2012, RAL maintained a radio astronomy observatory at Hat Creek, near Mt. Lassen. It continues to support on-campus laboratory facilities in Campbell Hall. From 1998 to 2012, the RAL collaborated with the SETI Institute of Mountain View California to design, build and operate the Allen Telescope Array (ATA).
Breakthrough Listen is a project to search for intelligent extraterrestrial communications in the Universe. With $100 million in funding and thousands of hours of dedicated telescope time on state-of-the-art facilities, it is the most comprehensive search for alien communications to date. The project began in January 2016, and is expected to continue for 10 years. It is a component of Yuri Milner's Breakthrough Initiatives program. The science program for Breakthrough Listen is based at Berkeley SETI Research Center, located in the Astronomy Department at the University of California, Berkeley.
HD 164595 is a wide binary star system in the northern constellation of Hercules. The primary component of this pair hosts an orbiting exoplanet. The system is located at a distance of 92 light years from the Sun based on parallax measurements, and is drifting further away with a radial velocity of 2.0 km/s. Although it has an absolute magnitude of +4.81, at that distance it is too faint to be viewed with the naked eye, having an apparent visual magnitude of 7.07. The brighter star can be found with binoculars or a small telescope less than a degree to the east-northeast of Xi Herculis. HD 164595 has a relatively large proper motion, traversing the celestial sphere at an angular rate of 0.222″ yr−1.
The Nançay Radio Observatory, opened in 1956, is part of Paris Observatory, and also associated with the University of Orléans. It is located in the department of Cher in the Sologne region of France. The station consists of several instruments. Most iconic of these is the large decimetric radio telescope, which is one of the largest radio telescopes in the world. Long established are also the radio heliograph, a T-shaped array, and the decametric array operating at wavelengths between 3 m and 30 m.
So far limited observations of ʻOumuamua, using facilities such as the SETI Institute's Allen Telescope Array, have turned up nothing.