Darwin (spacecraft)

Last updated
Darwin
Mission type Interferometric observatory
Operator ESA
Website www.esa.int/science/darwin
Orbital parameters
Reference system Sun–Earth L2
Regime Halo orbit
Epoch planned
 

Darwin was a suggested ESA Cornerstone mission which would have involved a constellation of four to nine [1] spacecraft designed to directly detect Earth-like planets orbiting nearby stars and search for evidence of life on these planets. The most recent design envisaged three free-flying space telescopes, each three to four metres in diameter, flying in formation as an astronomical interferometer. These telescopes were to redirect light from distant stars and planets to a fourth spacecraft, which would have contained the beam combiner, spectrometers, and cameras for the interferometer array, and which would have also acted as a communications hub. There was also an earlier design, called the "Robin Laurance configuration," which included six 1.5 metre telescopes, a beam combiner spacecraft, and a separate power and communications spacecraft. [2]

Contents

The study of this proposed mission ended in 2007 with no further activities planned. [3] To produce an image, the telescopes would have had to operate in formation with distances between the telescopes controlled to within a few micrometres, and the distance between the telescopes and receiver controlled to within about one nanometre. [4] Several more detailed studies would have been needed to determine whether technology capable of such precision is actually feasible. [1]

Concept

The space telescopes were to observe in the infrared part of the electromagnetic spectrum. As well as studying extrasolar planets, the telescopes would probably have been useful for general purpose imaging, producing very high resolution (i.e. milliarcsecond) infrared images, allowing detailed study of a variety of astrophysical processes.

The infrared region was chosen because in the visible spectrum an Earth-like planet is outshone by its star by a factor of a billion. [2] However, in the infrared, the difference is less by a few orders of magnitude. According to a 2000 ESA bulletin, all spacecraft components in the optical path would have to be passively cooled to 40 kelvins to allow infrared observations to take place. [2]

The planet search would have used a nulling interferometer configuration. In this system, phase shifts would be introduced into the three beams, so that light from the central star would suffer destructive interference and cancel itself out. However, light from any orbiting planets would not cancel out, as the planets are offset slightly from the star's position. This would allow planets to be detected, despite the much brighter signal from the star.

For planet detection, the telescopes would operate in an imaging mode. The detection of an Earth-like planet would require about 10 hours of observation in total, spread out over several months.[ citation needed ] A 2002 design which would have used 1.5 metre mirrors was expected to take about 100 hours to get a spectrum of a possibly Earth-like planet. [5]

Were the Darwin spacecraft to detect a suitable planet, a more detailed study of its atmosphere would have been made by taking an infrared spectrum of the planet. By analyzing this spectrum, the chemistry of the atmosphere could be determined, and this could provide evidence for life on the planet. The presence of oxygen and water vapour in the atmosphere could be evidence for life. Oxygen is very reactive so if large amounts of oxygen exist in a planet's atmosphere some process such as photosynthesis must be continuously producing it.

The presence of oxygen alone, however, is not conclusive evidence for life. Jupiter's moon Europa, for example, has a tenuous oxygen atmosphere thought to be produced by radiolysis of water molecules. Numerical simulations [ citation needed ] have shown that under proper conditions it is possible to build up an oxygen atmosphere via photolysis of carbon dioxide. Photolysis of water vapor and carbon dioxide produces hydroxyl ions and atomic oxygen, respectively, and these in turn produce oxygen in small concentrations, with hydrogen escaping into space. When O2 is produced by H2O photolysis at high altitude, hydrogenous compounds like H+, OH and H2O are produced which attack very efficiently O3 and prevent its accumulation. The only known way to have a significant amount of O3 in the atmosphere is that O2 be produced at low altitude, e.g. by biological photosynthesis, and that little H2O gets to high altitudes where UV is present. For terrestrial planets, the simultaneous presence of O3, H2O and CO2 in the atmosphere appears to be a reliable biosignature, and the Darwin spacecraft would have been capable of detecting these atmospheric components. [5]

Candidate planets

Planet Gliese 581 d, discovered in 2007, was considered a good candidate for the Darwin project. [6] It orbits within the theoretical habitable zone of its star, [7] and scientists surmise that conditions on the planet might be conducive to supporting life.

Similar initiatives

The interferometric version of NASA's Terrestrial Planet Finder mission is similar in concept to Darwin and also has very similar scientific aims. According to NASA's 2007 budget documentation, released on February 6, 2006, [8] the project was deferred indefinitely, [9] and in June 2011 the project was reported as cancelled. Antoine Labeyrie has proposed a much larger space-based astronomical interferometer similar to Darwin, but with the individual telescopes positioned in a spherical arrangement and with an emphasis on interferometric imaging. This Hypertelescope project would be much more expensive and complex than the Darwin and TPF missions, involving many large free-flying spacecraft.

Related Research Articles

Infrared astronomy

Infrared astronomy is the branch of astronomy and astrophysics that studies astronomical objects visible in infrared (IR) radiation. The wavelength of infrared light ranges from 0.75 to 300 micrometers. Infrared falls in between visible radiation, which ranges from 380 to 750 nanometers, and submillimeter waves.

Terrestrial Planet Finder NASA concept study of an array of space telescopes

The Terrestrial Planet Finder (TPF) was a proposed project by NASA to construct a system of space telescopes for detecting extrasolar terrestrial planets. TPF was postponed several times and finally cancelled in 2011. There were two telescope systems under consideration, the TPF-I, which had several small telescopes, and TPF-C, which used one large telescope.

Spitzer Space Telescope Infrared space telescope

The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), is a retired infrared space telescope launched in 2003 and retired on 30 January 2020.

<i>Venus Express</i>

Venus Express (VEX) was the first Venus exploration mission of the European Space Agency (ESA). Launched in November 2005, it arrived at Venus in April 2006 and began continuously sending back science data from its polar orbit around Venus. Equipped with seven scientific instruments, the main objective of the mission was the long term observation of the Venusian atmosphere. The observation over such long periods of time had never been done in previous missions to Venus, and was key to a better understanding of the atmospheric dynamics. It was hoped that such studies can contribute to an understanding of atmospheric dynamics in general, while also contributing to an understanding of climate change on Earth. ESA concluded the mission in December 2014.

Herschel Space Observatory European infrared space observatory for cosmology; medium-class mission in the ESA Science Programme

The Herschel Space Observatory was a space observatory built and operated by the European Space Agency (ESA). It was active from 2009 to 2013, and was the largest infrared telescope ever launched, carrying a 3.5-metre (11.5 ft) mirror and instruments sensitive to the far infrared and submillimetre wavebands (55–672 µm). Herschel was the fourth and final cornerstone mission in the Horizon 2000 programme, following SOHO/Cluster II, XMM-Newton and Rosetta. NASA is a partner in the Herschel mission, with US participants contributing to the mission; providing mission-enabling instrument technology and sponsoring the NASA Herschel Science Center (NHSC) at the Infrared Processing and Analysis Center and the Herschel Data Search at the Infrared Science Archive.

Airglow Faint emission of light by a planetary atmosphere

Airglow is a faint emission of light by a planetary atmosphere. In the case of Earth's atmosphere, this optical phenomenon causes the night sky never to be completely dark, even after the effects of starlight and diffused sunlight from the far side are removed.

Wide-field Infrared Survey Explorer NASA infrared-wavelength space telescope

The Wide-field Infrared Survey Explorer is a NASA infrared-wavelength astronomical space telescope launched in December 2009, and placed in hibernation mode in February 2011. It was re-activated in 2013. WISE discovered thousands of minor planets and numerous star clusters. Its observations also supported the discovery of the first Y Dwarf and Earth trojan asteroid.

An extraterrestrial vortex is a vortex that occurs on planets and natural satellites other than Earth that have sufficient atmospheres. Most observed extraterrestrial vortices have been seen in large cyclones, or anticyclones. However, occasional dust storms have been known to produce vortices on Mars and Titan. Various spacecraft missions have recorded evidence of past and present extraterrestrial vortices. The largest extraterrestrial vortices are found on the gas giants, Jupiter and Saturn, and the ice giants, Uranus and Neptune.

Extraterrestrial atmosphere Active field of research

The study of extraterrestrial atmospheres is an active field of research, both as an aspect of astronomy and to gain insight into Earth's atmosphere. In addition to Earth, many of the other astronomical objects in the Solar System have atmospheres. These include all the gas giants, as well as Mars, Venus, Titan and Pluto. Several moons and other bodies also have atmospheres, as do comets and the Sun. There is evidence that extrasolar planets can have an atmosphere. Comparisons of these atmospheres to one another and to Earth's atmosphere broaden our basic understanding of atmospheric processes such as the greenhouse effect, aerosol and cloud physics, and atmospheric chemistry and dynamics.

PLATO (spacecraft) European optical space observatory for exoplanet discoveries; medium-class mission in the ESA Science Programme

PLAnetary Transits and Oscillations of stars (PLATO) is a space telescope under development by the European Space Agency for launch in 2026. The mission goals are to search for planetary transits across up to one million stars, and to discover and characterize rocky extrasolar planets around yellow dwarf stars, subgiant stars, and red dwarf stars. The emphasis of the mission is on earth-like planets in the habitable zone around sun-like stars where water can exist in liquid state. It is the third medium-class mission in ESA's Cosmic Vision programme and named after the influential Greek philosopher Plato. A secondary objective of the mission is to study stellar oscillations or seismic activity in stars to measure stellar masses and evolution and enabling the precise characterization of the planet host star, including its age.

Fast Infrared Exoplanet Spectroscopy Survey Explorer

Fast Infrared Exoplanet Spectroscopy Survey Explorer (FINESSE) was a NASA mission proposal for a space observatory operating in the Near-infrared spectrum for the Medium-Class Explorers program. The Principal Investigator was Mark Swain of the Jet Propulsion Laboratory in Pasadena, California.

CHEOPS Optical space telescope (launched 2019)

CHEOPS is a European space telescope. Its objective is to determine the size of known extrasolar planets, which will allow the estimation of their mass, density, composition and their formation. Launched on 18 December 2019, it is the first Small-class mission in ESA's Cosmic Vision science programme.

Large Ultraviolet Optical Infrared Surveyor Proposed space telescope in NASAs program of large strategic science missions

The Large Ultraviolet Optical Infrared Surveyor, commonly known as LUVOIR, is a multi-wavelength space telescope concept being developed by NASA under the leadership of a Science and Technology Definition Team. It is one of four large astrophysics space mission concepts being studied in preparation for the National Academy of Sciences 2020 Astronomy and Astrophysics Decadal Survey. While LUVOIR is a concept for a general-purpose observatory, it has the key science goal of characterizing a wide range of exoplanets, including those that might be habitable. An additional goal is to enable a broad range of astrophysics, from the reionization epoch, through galaxy formation and evolution, to star and planet formation. Powerful imaging and spectroscopy observations of Solar System bodies would also be possible. LUVOIR would be a Large Strategic Science Mission and will be considered for a development start sometime after 2020. The LUVOIR Study Team has produced designs for two variants of LUVOIR: one with a 15.1 m diameter telescope mirror (LUVOIR-A) and one with an 8 m diameter mirror (LUVOIR-B). LUVOIR can observe ultraviolet, visible, and near-infrared wavelengths of light. The Final Report on the 5-year LUVOIR mission concept study was publicly released on 26 August 2019.

The Habitable Exoplanet Imaging Mission (HabEx) is a space telescope concept that would be optimized to search for and image Earth-size habitable exoplanets in the habitable zones of their stars, where liquid water can exist. HabEx would aim to understand how common terrestrial worlds beyond the Solar System may be and the range of their characteristics. It would be an optical, UV and infrared telescope that would also use spectrographs to study planetary atmospheres and eclipse starlight with either an internal coronagraph or an external starshade.

Origins Space Telescope Proposed UV space observatory to characterize exoplanets atmospheres

Origins Space Telescope (Origins) is a concept study for a Far-Infrared Surveyor space telescope mission. A preliminary concept in pre-formulation, it was presented to the United States Decadal Survey in 2019 for a possible selection to NASA's large strategic science missions. Origins would provide an array of new tools for studying star formation and the energetics and physical state of the interstellar medium within the Milky Way using infrared radiation and new spectroscopic capabilities.

ARIEL European optical space observatory studying known exoplanets; medium-class mission in the ESA Science Programme

The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL), is a space telescope planned for launch in 2029 as the fourth medium-class mission of the European Space Agency's Cosmic Vision programme. The mission is aimed at observing at least 1000 known exoplanets using the transit method, studying and characterising the planets' chemical composition and thermal structures. Compared to the James Webb Space Telescope, ARIEL will have more observing time available for planet characterisation but a much smaller telescope and it will be launched almost a decade later.

Large Interferometer For Exoplanets

Large Interferometer For Exoplanets (LIFE) is a project started in 2017 to develop the science, technology and a roadmap for a space mission to detect and characterize the atmospheres of dozens of warm, terrestrial extrasolar planets. The current plan is for a nulling interferometer operating in the mid-infrared consisting of several formation flying collector telescopes with a beam combiner spacecraft at their center.

References

  1. 1 2 "Darwin: study ended, no further activities planned". European Space Agency. 2009-10-23. Retrieved 2009-10-27.
  2. 1 2 3 Fridlund, CVM (August 2000). "ESA Bulletin 103: Darwin: The Infrared Space Interferometry Mission" (PDF). ESA. Retrieved 2016-11-07.
  3. "Darwin factsheet: Finding Earth-like planets". European Space Agency. 2009-10-23. Archived from the original on 2008-05-13. Retrieved 2009-10-27.
  4. Penny, Alan J (1999-07-27). "A concept for the 'Free-Flyer' version". Rutherford Appleton Laboratory. Archived from the original on 2005-10-28. Retrieved 2009-10-30.
  5. 1 2 Karlsson, Anders; Malcolm Fridlund (April 2002). "Darwin: The Infrared Space Interferometer". Alcatel. Archived from the original (GIF) on 2005-10-28. Retrieved 2009-10-30.
  6. von Bloh, W.; Bounama, C.; Cuntz, M.; Franck, S. (2007). "The Habitability of Super-Earths in Gliese 581". Astronomy & Astrophysics . 476 (3): 1365–1371. arXiv: 0705.3758 . Bibcode:2007A&A...476.1365V. doi:10.1051/0004-6361:20077939. S2CID   14475537.
  7. Science Daily: Extrasolar planet may indeed be habitable
  8. "NASA budget statement". Planetary Society. 2006-02-06. Retrieved 2006-07-17.
  9. NASA President's FY 2007 Budget Request