Systemic (amateur extrasolar planet search project)

Last updated

Systemic is a research project designed to search data for extrasolar planets using amateur astronomers. [1] The project utilizes a downloaded console provided on the Systemic website, allowing users to sort through data sets in search of characteristics which may reveal the presence of a planet within a planetary system.

Contents

Volunteers can choose to search simulated or actual planetary systems. The simulations are used to help Systemic gain a deeper understanding of real extrasolar planets. The real Solar System and the Galilean moons of Jupiter's natural satellites (hidden among the "challenge" data sets) are among the more than 450 data sets of real, and 520 simulated, star systems.

The systemic program itself is programmed in Java for ease in running on multiple operating systems. The program is available as an online applet or for download to be run at home.

The program presents a data set for a system and some tools to help analyze the data and some feedback on the "goodness of fit" and "long term stability" of the currently defined system. The data set is the radial velocity derived from doppler measurements of the star (or similar object) over time. Some data sets look like a sinusoidal curve while others seem far more complex. Any radial velocity is presumed to be from the gravitational tug(s) of possibly multiple bodies who combine to create the specific data curve. The reason the program has to manipulated by the user is that the complexities of multi-body orbits are not solvable to unique answers. While some star systems could be resolved to a simple pair of bodies most will not. The systemic software implements several ways of calculating orbital mechanics – from the simplistic Keplerian laws to an implementation of Runge–Kutta methods.

Results one obtains can be uploaded and are analyzed independently for goodness of fit and stability and are posted among the proposed solutions for that system. If a result is found to be unstable it is removed from the list of candidate solutions, though it is possible a particular system really is in a period of transition and instability (presumed to be a rare condition) so great that planets would be ejected from the system.

Example analysis

The default system the systemic software opens with is "14Her" or 14 Herculis. There are some 20 "unique" posted possible solutions with only a general idea of "goodness of fit" to help decide favored solutions (the best solution posted so far is by user EricFDiaz who has a three-planet system to explain the curve of the velocities of the star over time). It must be understood that results from using systemic are not a discovery, just a possible fit to the data. It could be correct, partially correct, or not even in the ballpark of whatever, if anything, is eventually found.

Team

Systemic is designed, and run by:

See also

Related Research Articles

<span class="mw-page-title-main">Gliese 570</span> Quarternary star system in the constellation Libra

Gliese 570 is a quaternary star system approximately 19 light-years away. The primary star is an orange dwarf star. The other secondary stars are themselves a binary system, two red dwarfs that orbit the primary star. A brown dwarf has been confirmed to be orbiting in the system. In 1998, an extrasolar planet was thought to orbit the primary star, but it was discounted in 2000.

<span class="mw-page-title-main">Gliese 876</span> Red dwarf star in the constellation Aquarius

Gliese 876 is a red dwarf approximately 15 light-years away from Earth in the constellation of Aquarius. It is one of the closest known stars to the Sun confirmed to possess a planetary system with more than two planets, after Gliese 1061, YZ Ceti, Tau Ceti, and Luyten's Star; as of 2018, four extrasolar planets have been found to orbit the star. The planetary system is also notable for the orbital properties of its planets. It is the only known system of orbital companions to exhibit a near-triple conjunction in the rare phenomenon of Laplace resonance. It is also the first extrasolar system around a normal star with measured coplanarity. While planets b and c are located in the system's habitable zone, they are giant planets believed to be analogous to Jupiter.

<span class="mw-page-title-main">OGLE-TR-10b</span> Extrasolar planet in the constellation Sagittarius

OGLE-TR-10b is an extrasolar planet orbiting the star OGLE-TR-10.

<span class="mw-page-title-main">Upsilon Andromedae c</span> Extrasolar planet in the Andromeda constellation

Upsilon Andromedae c, formally named Samh, is an extrasolar planet orbiting the Sun-like star Upsilon Andromedae A every 241.3 days. Its discovery in April 1999 by Geoffrey Marcy and R. Paul Butler made this the first multiple-planet system to be discovered around a main-sequence star, and the first multiple-planet system known in a multiple star system. Upsilon Andromedae c is the second known planet in order of distance from its star.

<span class="mw-page-title-main">Methods of detecting exoplanets</span> Overview of methods of detecting exoplanets

Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported as of April 2014 have been observed directly, with even fewer being resolved from their host star.

<span class="mw-page-title-main">14 Herculis b</span> Extrasolar planet in the constellation Hercules

14 Herculis b or 14 Her b is an exoplanet approximately 58.5 light-years away in the constellation of Hercules. The planet was found orbiting the star 14 Herculis, with a mass that would likely make the planet a Jovian planet roughly the same size as Jupiter but much more massive. It was discovered in July 1998 by the Geneva Extrasolar Planet Search team. At the time of discovery it was the extrasolar planet with the longest orbital period, though longer-period planets have subsequently been discovered.

<span class="mw-page-title-main">Doppler spectroscopy</span> Indirect method for finding extrasolar planets and brown dwarfs

Doppler spectroscopy is an indirect method for finding extrasolar planets and brown dwarfs from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.

<span class="mw-page-title-main">55 Cancri f</span> Extrasolar planet in the constellation Cancer

55 Cancri f, also designated Rho1 Cancri f and formally named Harriot, is an exoplanet approximately 41 light-years away from Earth in the constellation of Cancer. 55 Cancri f is the fourth known planet from the star 55 Cancri and the first planet to have been given the designation of "f".

<span class="mw-page-title-main">Upsilon Andromedae e</span> Extrasolar planet in the Andromeda constellation

Upsilon Andromedae e is the proposed outermost extrasolar planet orbiting the star Upsilon Andromedae in the constellation of Andromeda. If it exists, this planet would be one of the most Jupiter-like exoplanets found in terms of mass and semi-major axis. However, subsequent studies have found that the apparent planetary signal is more likely to be an instrumental artifact.

HD 40307 b is an extrasolar planet orbiting the star HD 40307, located 42 light-years away in the direction of the southern constellation Pictor. The planet was discovered by the radial velocity method, using the European Southern Observatory's HARPS apparatus, in June 2008. It is the second smallest of the planets orbiting the star, after HD 40307 e. The planet is of interest as this star has relatively low metallicity, supporting a hypothesis that different metallicities in protostars determine what kind of planets they will form.

<span class="mw-page-title-main">Steven S. Vogt</span> American astronomer of German descent (born 1949)

Steven Scott Vogt is an American astronomer of German descent whose main interest is the search for extrasolar planets.

The Lick–Carnegie Exoplanet Survey (LCES) is a search for exoplanets using the Keck I optical telescope of the W. M. Keck Observatory in Hawaii. The survey is sponsored by NASA and the National Science Foundation. The survey comprises a decade of observations. The survey is led by Steven Vogt, professor of astronomy and astrophysics at University of California at Santa Cruz, and R. Paul Butler of the Carnegie Institution.

The NASA Star and Exoplanet Database (NStED) is an on-line astronomical stellar and exoplanet catalog and data service that collates and cross-correlates astronomical data and information on exoplanets and their host stars. NStED is dedicated to collecting and serving important public data sets involved in the search for and characterization of exoplanets and their host stars. The data include stellar parameters, exoplanet parameters and discovery/characterization data.

Gliese 3634 b is a super-Earth exoplanet in the orbit of the nearby red dwarf Gliese 3634 at approximately 64.5 light-years in constellation Hydra. The planet is approximately eight times the mass of Earth, and orbits its star every two and a half days at a distance of 0.0287 AU. The planet was the first to be discovered by a group of astronomers searching for exoplanets in the orbit of very-low-mass stars after the team reorganized their strategy, choosing to search for targets that they could also confirm using the transit method. However, a transit event associated with Gliese 3634 b was not detected. The planet's discovery was published in Astronomy and Astrophysics on February 8, 2011.

WASP-44b is a closely orbiting Jupiter-sized planet found in the orbit of the sunlike star WASP-44 by the SuperWASP program, which searches for transiting planets that cross in front of their host stars as seen from Earth. After follow-up observations using radial velocity, the planet was confirmed. Use of another telescope at the same observatory detected WASP-44 transiting its star. The planet completes an orbit around its star every two and a half days, and orbits at roughly 0.03 AU from its host star. WASP-44b's discovery was reported by the Royal Astronomical Society in May 2011.

WASP-44 is a G-type star in the constellation Cetus that is orbited by the Jupiter-size planet WASP-44b. The star is slightly less massive and slightly smaller than the Sun; it is also slightly cooler, but is more metal-rich. The star was observed by SuperWASP, an organization searching for exoplanets, starting in 2009; manual follow-up observations used WASP-44's spectrum and measurements of its radial velocity led to the discovery of the transiting planet WASP-44b. The planet and its star were presented along with WASP-45b and WASP-46b on May 17, 2011 by a team of scientists testing the idea that hot Jupiters tend to have circular orbits, an assumption that is made when the orbital eccentricity of such planets are not well-constrained.

HAT-P-32b is a planet orbiting the G-type or F-type star HAT-P-32, which is approximately 950 light years away from Earth. HAT-P-32b was first recognized as a possible planet by the planet-searching HATNet Project in 2004, although difficulties in measuring its radial velocity prevented astronomers from verifying the planet until after three years of observation. The Blendanal program helped to rule out most of the alternatives that could explain what HAT-P-32b was, leading astronomers to determine that HAT-P-32b was most likely a planet. The discovery of HAT-P-32b and of HAT-P-33b was submitted to a journal on 6 June 2011.

The NASA Exoplanet Archive is an online astronomical exoplanet catalog and data service that collects and serves public data that support the search for and characterization of extra-solar planets (exoplanets) and their host stars. It is part of the Infrared Processing and Analysis Center and is on the campus of the California Institute of Technology (Caltech) in Pasadena, CA. The archive is funded by NASA and was launched in early December 2011 by the NASA Exoplanet Science Institute as part of NASA's Exoplanet Exploration Program. In June 2019, the archive's collection of confirmed exoplanets surpassed 4,000.

<span class="mw-page-title-main">HD 40307 g</span> Exoplanet candidate in the constellation of Pictor

HD 40307 g is an exoplanet candidate suspected to be orbiting in the habitable zone of HD 40307. It is located 42 light-years away in the direction of the southern constellation Pictor. The planet was discovered by the radial velocity method, using the European Southern Observatory's HARPS apparatus by a team of astronomers led by Mikko Tuomi at the University of Hertfordshire and Guillem Anglada-Escude of the University of Göttingen, Germany.

HD 40307 e is an extrasolar planet candidate suspected to be orbiting the star HD 40307. It is located 42 light-years away in the direction of the southern constellation Pictor. The planet was discovered by the radial velocity method, using the European Southern Observatory's HARPS apparatus by a team of astronomers led by Mikko Tuomi at the University of Hertfordshire and Guillem Anglada-Escude of the University of Göttingen, Germany.

References

  1. Bissinger, R. (2007), "Amateur and Professional Astronomer Collaboration – Exoplanet Research Programs and Techniques" (PDF), Symposium on Telescope Science, 26: 17, Bibcode:2007SASS...26...17B , retrieved 2009-08-21[ permanent dead link ]