ASTERIA (spacecraft)

Last updated
ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics)
ASTERIA CubeSat space telescope.jpg
ASTERIA during testing. It is a 6U CubeSat space telescope for the detection of exoplanets
NamesExoplanetSat (2011)
Mission typeTechnology demonstrator
Operator NASA
COSPAR ID 1998-067NH OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 43020
Website www.jpl.nasa.gov/cubesat/missions/asteria.php
Mission durationNominal: 90 days
Extension: up to 1 year
Achieved: 2 years, 15 days
Spacecraft properties
SpacecraftASTERIA
Bus 6U CubeSat
Manufacturer JPL and MIT
Launch mass12 kg (26 lb)
Dimensions10 cm × 20 cm × 30 cm (0.33 ft × 0.66 ft × 0.98 ft)
Start of mission
Launch dateAugust 14, 2017 (2017-08-14), 16:31 UTC
deployed: 20 November 2017
Rocket Falcon-9
Launch site Kennedy LC-39A
Contractor SpaceX
End of mission
Last contact5 December 2019
Decay date24 April 2020
Orbital parameters
Reference system Geocentric
Regime Low Earth
Perigee altitude 402.7 kilometres (250.2 miles)
Apogee altitude 406.7 kilometres (252.7 miles)
Inclination 51.6°
Period 92.5 minutes
Main
Wavelengths visible spectrum: 390–700 nm
 

ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics) was a miniaturized space telescope technology demonstration and opportunistic science mission to conduct astrophysical measurements using a CubeSat. It was designed in collaboration between the Massachusetts Institute of Technology (MIT) and NASA's Jet Propulsion Laboratory. ASTERIA was the first JPL-built CubeSat to have been successfully operated in space. Originally envisioned as a project for training early career scientists and engineers, ASTERIA's technical goal was to achieve arcsecond-level line-of-sight pointing error and highly stable focal plane temperature control. These technologies are important for precision photometry, i.e., the measurement of stellar brightness over time. Precision photometry, in turn, provides a way to study stellar activity, transiting exoplanets, and other astrophysical phenomena.

Contents

ASTERIA was launched on 14 August 2017 and deployed into low Earth orbit from the International Space Station on 20 November 2017. [1] The primary mission lasted 90 days, but the satellite continued operations for 745 days through three extended missions until last successful communications were made on December 5, 2019. [2] The satellite decayed 24 April 2020. The Principal Investigator was Canadian-American astronomer and planetary scientist Sara Seager, from the Massachusetts Institute of Technology. [3]

Overview

The Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA) was a six-unit (6U) CubeSat space telescope deployed from the International Space Station (ISS) with the goal of testing new technologies for the detection of exoplanets using the transit method. [1] [4] [5] The program was funded at JPL through the Phaeton Program for training early career employees. [1] Its target mission lasted for 90 days, [1] after which it was extended until the loss of contact with the spacecraft. [6] [2]

ASTERIA's capabilities enabled precision photometry to be performed on an opportunistic basis to study stellar activity, transiting exoplanets, and other astrophysical phenomena. The technological objectives of the mission were "to achieve arcsecond-level line of sight pointing error, and highly stable focal plane temperature control for precision photometry" as a way to detect transiting exoplanets, and characterize their host stars. [4] The pointing stability was demonstrated over 20-minute observations. Pointing repeatability would be determined over a minimum of five observations over eight or more days, with the target star being returned to the same position on the focal plane by adjusting the spacecraft orientation and focal plane position. [4]

This mission may serve as a pathfinder for a fleet of low-cost space telescopes observing multiple targets at once to refine long-term mission goals by identifying new objects for other telescopes to observe. The miniaturization of a photometric detection system into a CubeSat could enable a constellation of multiple orbiting observatories for a continuous study of the brightest Sun-like stars which is not possible by conventional space observatories given their cost. [7] Having one or more CubeSats pointed at a target star for extended duration could reveal long-transiting exoplanets. [7] This mission also provided additional information in the design of future space telescopes. [4]

Launch

ASTERIA was launched on board a SpaceX Falcon-9 rocket (mission SpaceX CRS-12 [5] ) on 14 August 2017 and it was deployed to low Earth orbit from the International Space Station in November 2017. [1] A crew member in the ISS transferred the satellite from the cargo vehicle to the Japanese Experiment Module (JEM) airlock for transfer outside the ISS.

Design

lens ASTERIA CubeSAt lens alignment.jpg
lens

The ASTERIA concept was a follow-on to the proposed 3U CubeSat mission called ExoplanetSat that was designed in the early 2010s. [4] [8] The ASTERIA telescope is a 6U CubeSat measuring 10 × 20 × 30 cm, and has a mass of 12 kg (26 lb). [1] [7] Power was supplied by deployable fixed solar panels and rechargeable batteries. [5]

Commercial reaction wheels provided coarse orientation (attitude control), while fine pointing control was achieved by tracking a set of guide stars on the active pixel sensor (CMOS) and moving the piezoelectric positioning stage to compensate for residual pointing errors. [1] The goal was to maintain the target star image to within a fraction of a detector pixel over long durations, [4] with a pointing accuracy better than 60 arcsecond, and optimally as precise as 5 arcsecond [9] over a period of 20 minutes. The gain of each pixel was temperature sensitive, so the second objective of ASTERIA was to demonstrate milliKelvin-level temperature stability of the imaging detector. [4]

ASTERIA demonstrated the ability to collect photometric data, and process photometric light curves from a CubeSat. Secondary applications included measuring stellar rotation periods, characterizing stellar activity of exoplanet hosts, and supporting ground-based radial velocity measurements with simultaneous photometry. After the success of its 90-day planned mission, ASTERIA's extended mission targeted bright stars (luminosity Vmag < 8) with known low-mass planets discovered by the radial velocity method, that are not yet known to transit. [4]

Scientific payload

The telescope payload consisted of a lens and baffle assembly, a CMOS imager, and a two-axis piezoelectric positioning stage on which the focal plane was mounted. [4] The optics section was composed of a f/1.4 85 mm Zeiss lens with a 28.6-degree field of view and six elements, focusing an image 43 mm in diameter onto the focal plane. The focal plane array housed two active detector areas – one larger CMOS detector that fulfilled the science function, and a smaller CMOS sensor to acted as a rapid-cadence star camera to provide orientation data to the attitude control system. [6]

In April 2018 NASA's JPL reported that ASTERIA "has accomplished all of its primary mission objectives, demonstrating that the miniaturized technologies on board can operate in space as expected." [10]

Related Research Articles

<span class="mw-page-title-main">CoRoT</span> European space telescope that operated between 2006 - 2014

CoRoT was a space telescope mission which operated from 2006 to 2013. The mission's two objectives were to search for extrasolar planets with short orbital periods, particularly those of large terrestrial size, and to perform asteroseismology by measuring solar-like oscillations in stars. The mission was led by the French Space Agency (CNES) in conjunction with the European Space Agency (ESA) and other international partners.

<span class="mw-page-title-main">Spitzer Space Telescope</span> Infrared space telescope - 2003 to Jan 2020

The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), was an infrared space telescope launched in 2003. Operations ended on 30 January 2020. Spitzer was the third space telescope dedicated to infrared astronomy, following IRAS (1983) and ISO (1995–1998). It was the first spacecraft to use an Earth-trailing orbit, later used by the Kepler planet-finder.

<i>Gaia</i> (spacecraft) European optical space observatory for astrometry

Gaia is a space observatory of the European Space Agency (ESA), launched in 2013 and expected to operate until 2025. The spacecraft is designed for astrometry: measuring the positions, distances and motions of stars with unprecedented precision, and the positions of exoplanets by measuring attributes about the stars they orbit such as their apparent magnitude and color. The mission aims to construct by far the largest and most precise 3D space catalog ever made, totalling approximately 1 billion astronomical objects, mainly stars, but also planets, comets, asteroids and quasars, among others.

<span class="mw-page-title-main">Kepler space telescope</span> NASA satellite for exoplanetology (2009–2018)

The Kepler space telescope is a disused space telescope launched by NASA in 2009 to discover Earth-sized planets orbiting other stars. Named after astronomer Johannes Kepler, the spacecraft was launched into an Earth-trailing heliocentric orbit. The principal investigator was William J. Borucki. After nine and a half years of operation, the telescope's reaction control system fuel was depleted, and NASA announced its retirement on October 30, 2018.

<span class="mw-page-title-main">Coronagraph</span> Telescopic attachment designed to block out the direct light from a star

A coronagraph is a telescopic attachment designed to block out the direct light from a star or other bright object so that nearby objects – which otherwise would be hidden in the object's bright glare – can be resolved. Most coronagraphs are intended to view the corona of the Sun, but a new class of conceptually similar instruments are being used to find extrasolar planets and circumstellar disks around nearby stars as well as host galaxies in quasars and other similar objects with active galactic nuclei (AGN).

<span class="mw-page-title-main">NuSTAR</span> NASA X-ray space telescope of the Explorer program

NuSTAR is a NASA space-based X-ray telescope that uses a conical approximation to a Wolter telescope to focus high energy X-rays from astrophysical sources, especially for nuclear spectroscopy, and operates in the range of 3 to 79 keV.

<span class="mw-page-title-main">Sara Seager</span> Canadian astronomer

Sara Seager is a Canadian-American astronomer and planetary scientist. She is a professor at the Massachusetts Institute of Technology and is known for her work on extrasolar planets and their atmospheres. She is the author of two textbooks on these topics, and has been recognized for her research by Popular Science, Discover Magazine, Nature, and TIME Magazine. Seager was awarded a MacArthur Fellowship in 2013 citing her theoretical work on detecting chemical signatures on exoplanet atmospheres and developing low-cost space observatories to observe planetary transits.

<span class="mw-page-title-main">Transiting Exoplanet Survey Satellite</span> NASA satellite of the Explorer program

Transiting Exoplanet Survey Satellite is a space telescope for NASA's Explorer program, designed to search for exoplanets using the transit method in an area 400 times larger than that covered by the Kepler mission. It was launched on 18 April 2018, atop a Falcon 9 launch vehicle and was placed into a highly elliptical 13.70-day orbit around the Earth. The first light image from TESS was taken on 7 August 2018, and released publicly on 17 September 2018.

<span class="mw-page-title-main">Nancy Grace Roman Space Telescope</span> NASA infrared space telescope scheduled to launch in 2027

The Nancy Grace Roman Space Telescope is a NASA infrared space telescope in development and scheduled to launch by May 2027.

<span class="mw-page-title-main">CHEOPS</span> Optical space telescope (launched in 2019)

CHEOPS is a European space telescope. Its objective is to determine the size of known extrasolar planets, which will allow the estimation of their mass, density, composition and their formation. Launched on 18 December 2019, it is the first Small-class mission in ESA's Cosmic Vision science programme.

<span class="mw-page-title-main">Neutron Star Interior Composition Explorer</span> NASA telescope on International Space Station

The Neutron Star Interior Composition ExploreR (NICER) is a NASA telescope on the International Space Station, designed and dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear physics environments embodied by neutron stars, exploring the exotic states of matter where density and pressure are higher than in atomic nuclei. As part of NASA's Explorer program, NICER enabled rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena, and the mechanisms that underlie the most powerful cosmic particle accelerators known. NICER achieved these goals by deploying, following the launch, and activation of X-ray timing and spectroscopy instruments. NICER was selected by NASA to proceed to formulation phase in April 2013.

<span class="mw-page-title-main">NIRSpec</span> Spectrograph on the James Webb Space Telescope

The NIRSpec is one of the four scientific instruments flown on the James Webb Space Telescope (JWST). The JWST is the follow-on mission to the Hubble Space Telescope (HST) and is developed to receive more information about the origins of the universe by observing infrared light from the first stars and galaxies. In comparison to HST, its instruments will allow looking further back in time and will study the so-called Dark Ages during which the universe was opaque, about 150 to 800 million years after the Big Bang.

<span class="mw-page-title-main">Miniature X-ray Solar Spectrometer CubeSat</span>

The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat was the first launched National Aeronautics and Space Administration Science Mission Directorate CubeSat with a science mission. It was designed, built, and operated primarily by students at the University of Colorado Boulder with professional mentorship and involvement from professors, scientists, and engineers in the Aerospace Engineering Sciences department and the Laboratory for Atmospheric and Space Physics, as well as Southwest Research Institute, NASA Goddard Space Flight Center, and the National Center for Atmospheric Research's High Altitude Observatory. The mission principal investigator is Dr. Thomas N. Woods and co-investigators are Dr. Amir Caspi, Dr. Phil Chamberlin, Dr. Andrew Jones, Rick Kohnert, Professor Xinlin Li, Professor Scott Palo, and Dr. Stanley Solomon. The student lead was Dr. James Paul Mason, who has since become a Co-I for the second flight model of MinXSS.

<span class="mw-page-title-main">Habitable Exoplanet Imaging Mission</span> Proposed space observatory to characterize exoplanets atmospheres

The Habitable Exoplanet Observatory (HabEx) is a space telescope concept that would be optimized to search for and image Earth-size habitable exoplanets in the habitable zones of their stars, where liquid water can exist. HabEx would aim to understand how common terrestrial worlds beyond the Solar System may be and determine the range of their characteristics. It would be an optical, UV and infrared telescope that would also use spectrographs to study planetary atmospheres and eclipse starlight with either an internal coronagraph or an external starshade.

<span class="mw-page-title-main">Lynx X-ray Observatory</span> Proposed NASA space telescope

The Lynx X-ray Observatory (Lynx) is a NASA-funded Large Mission Concept Study commissioned as part of the National Academy of Sciences 2020 Astronomy and Astrophysics Decadal Survey. The concept study phase is complete as of August 2019, and the Lynx final report has been submitted to the Decadal Survey for prioritization. If launched, Lynx would be the most powerful X-ray astronomy observatory constructed to date, enabling order-of-magnitude advances in capability over the current Chandra X-ray Observatory and XMM-Newton space telescopes.

Contribution to ARIEL Spectroscopy of Exoplanets (CASE) is a detector subsystem contribution to an infrared spectrometer instrument for the planned European ARIEL space telescope. It is being developed by NASA as a contribution to the European Space Agency (ESA) project to add scientific capabilities to the space telescope to observe the chemical composition of the atmospheres of exoplanets, as well exoplanetary metallicities. The ARIEL spacecraft with CASE on board is planned to launch in 2029.

<span class="mw-page-title-main">SPHEREx</span> NASA near-infrared space observatory

SPHEREx is a future near-infrared space observatory that will perform an all-sky survey to measure the near-infrared spectra of approximately 450 million galaxies. In February 2019, SPHEREx was selected by NASA for its next Medium-Class Explorers mission, beating out two competing mission concepts: Arcus and FINESSE. As of August 2022, SPHEREx is targeted to launch no earlier than April 2025 on a Falcon 9 launch vehicle from Vandenberg Space Force Base. The principal investigator is James Bock at California Institute of Technology (Caltech) in Pasadena, California.

SPARCS is an American ultraviolet space nano-telescope in the CubeSat 6U format whose objective is to study the near and far ultraviolet radiation of stars of the M of our galaxy. The mission selected by NASA is developed and managed by Arizona State University with the participation of the Jet Propulsion Laboratory (JPL) which provides the telescope and its detectors.

References

  1. 1 2 3 4 5 6 7 Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA). Jon Nelson, Jet Propulsion Laboratory, NASA.
  2. 1 2 "Tiny Satellite for Studying Distant Planets Goes Quiet". JPL.
  3. Seager, Sara (Jan/Feb. 2021). "My satellite would fit in a small suitcase. But it could help us find other worlds" (excerpt from book The Smallest Lights in the Universe (2020).) MIT News, pp. 12-17. Retrieved 20 May 2023.
  4. 1 2 3 4 5 6 7 8 9 ISS - ASTERIA. Victor M. Escobedo Jr. NASA News, October 2017.
  5. 1 2 3 ASTERIA. Gunter Krebs, Gunter's Space Page. 14 August 2017.
  6. 1 2 ASTERIA Satellite. Spaceflight 101 18 November 2017.
  7. 1 2 3 Sara Seager- Exoplanet Space Missions Archived 2018-12-07 at the Wayback Machine . 2017.
  8. ExoplanetSat: A Nanosatellite Space Telescope for Detecting Transiting Exoplanets Archived 2014-08-12 at the Wayback Machine (PDF). Matthew W. Smith, Sara Seager, Christopher M. Pong, SungyungLim, Matthew W. Knutson, Timothy C. Henderson, Joel N. Villaseñor, Nicholas K. Borer, David W. Miller, Shawn Murphy. Massachusetts Institute of Technology. CubeSat Developers' Workshop. April 20–22, 2011. San Luis Obispo, CA
  9. Characterization of CubeSat Reaction Wheel Assemblies (PDF). Joel Shields, Christopher Pong, Kevin Lo, Laura Jones, Swati Mohan, Chava Marom, Ian McKinley, William Wilson and Luis Andrade. Journal of Small Satellites, Vol. 6, No. 1, pp. 565–580. 2017.
  10. Astrophysics CubeSat Demonstrates Big Potential in a Small Package. Jet Propulsion Laboratory, NASA. 12 April 2018.