Kanopus-V-IK

Last updated

Kanopus-V-IK
Kanopus-V KA Kanopus-V.jpg
Illustration of the Kanopus spacecraft
NamesKanopus-V 2
Mission type Earth observation
Operator Roscosmos
Roshydromet [1]
COSPAR ID 2017-042A [2]
SATCAT no. 42825 [3]
Mission duration5 years (planned)
6 years, 11 months and 11 days (elapsed)
Spacecraft properties
Bus Kanopus
ManufacturerNPO VNIIEM
Launch mass~600 kg (1,300 lb)
Power300W
Start of mission
Launch dateJuly 14, 2017 (2017-07-14)
12:36 West Kazakhstan Time
(06:36 UTC) [1]
Rocket Soyuz-2.1a/Fregat
Launch site Baikonur Cosmodrome Site 31
Orbital parameters
Reference system Geocentric
Regime Low Earth
Semi-major axis 6,884 km (4,278 mi)
Periapsis altitude 512.7 km (318.6 mi)
Apoapsis altitude 515.2 km (320.1 mi)
Inclination 97.4°
Period 94.8 minutes
Instruments
Panchromatic Imaging System, Multispectral Imaging System, Multispectral Scanner Unit-IK-SR [4]
 

Kanopus-V-IK (formerly Kanopus-V 2 [2] ) is a Russian Earth observation satellite developed by the All-Russian Scientific Research Institute of Electromechanics and operated by Roscosmos. It was launched on July 14, 2017, designed for monitoring the environment over a large swath of land, and has an expected service life of 5 years.

Contents

Design

Kanopus-V-IK's mission is to collect data for environmental monitoring and mapping, detection of fires, agricultural planning, and assessing land use. It can also be used to monitor man-made and natural disasters. [4] [5] The satellite uses the Kanopus satellite bus. It was originally built as Kanopus-V 2 but was modified to include an infrared detection capability. [2]

Kanopus-V-IK contains several instruments. The Panchromatic Imaging System (PSS) collects black-and-white images for monitoring the environment and covers a ground swath of 23.3 km (14.5 mi). The Multispectral Imaging System (MSS) covers four spectral bands. The green wavelengths are used for vegetation monitoring and the red to near-infrared wavelengths for fire and hotspot detection. The Multispectral Scanner Unit-IK-SR (MSU-IK-SRM) aids in fire detection over a 2,000 km (1,200 mi) swath of the Earth's surface, while having a minimal revisit time due to the satellite's low orbit. [4] [5]

Launch

Kanopus-V-IK launched from Baikonur Cosmodrome Site 31 on July 14, 2017, at 12:36 local time (06:36 UTC) on board a Soyuz-2.1a rocket. It was launched with over 70 other satellites in a satellite rideshare mission. It contained 48 CubeSats for Planet Labs. [1] [6] They were launched to a low Earth orbit with a perigee of 512.7 km (318.6 mi), an apogee of 515.2 km (320.1 mi), and an inclination of 97.4°. [3]

Related Research Articles

<span class="mw-page-title-main">Weather satellite</span> Type of satellite designed to record the state of the Earths atmosphere

A weather satellite or meteorological satellite is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting, or geostationary.

<span class="mw-page-title-main">SPOT (satellite)</span> Commercial Earth-imaging satellite system operated by the French space agency CNES

SPOT is a commercial high-resolution optical Earth imaging satellite system operating from space. It is run by Spot Image, based in Toulouse, France. It was initiated by the CNES in the 1970s and was developed in association with the SSTC and the Swedish National Space Board (SNSB). It has been designed to improve the knowledge and management of the Earth by exploring the Earth's resources, detecting and forecasting phenomena involving climatology and oceanography, and monitoring human activities and natural phenomena. The SPOT system includes a series of satellites and ground control resources for satellite control and programming, image production, and distribution. Earlier satellites were launched using the European Space Agency's Ariane 2, 3, and 4 rockets, while SPOT 6 and SPOT 7 were launched by the Indian PSLV.

<span class="mw-page-title-main">EUMETSAT</span> European intergovernmental organisation

The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is an intergovernmental organisation created through an international convention agreed by a current total of 30 European Member States.

<span class="mw-page-title-main">Satellite imagery</span> Images taken from an artificial satellite

Satellite images are images of Earth collected by imaging satellites operated by governments and businesses around the world. Satellite imaging companies sell images by licensing them to governments and businesses such as Apple Maps and Google Maps.

QuickBird was a high-resolution commercial Earth observation satellite, owned by DigitalGlobe, launched in 2001 and reentered after orbit decay in 2015. QuickBird used Ball Aerospace's Global Imaging System 2000. The satellite collected panchromatic imagery at 61 centimeter resolution and multispectral imagery at 2.44- to 1.63-meter resolution, as orbit altitude is lowered during the end of mission life.

<span class="mw-page-title-main">GeoEye</span> American commercial satellite imaging company

GeoEye Inc. was an American commercial satellite imagery company based in Herndon, Virginia. GeoEye was merged into the DigitalGlobe corporation on January 29, 2013.

<span class="mw-page-title-main">CBERS-2B</span> Chinese-Brazilian remote sensing satellite

China–Brazil Earth Resources Satellite 2B (CBERS-2B), also known as Ziyuan 1-2B, was a remote sensing satellite operated as part of the China–Brazil Earth Resources Satellite program between the Chinese Center for Resources Satellite Data and Application and Brazilian National Institute for Space Research. The third CBERS satellite to fly, it was launched by China in 2007 to replace CBERS-2.

<span class="mw-page-title-main">Landsat 8</span> American Earth-observing satellite launched in 2013 as part of the Landsat program

Landsat 8 is an American Earth observation satellite launched on 11 February 2013. It is the eighth satellite in the Landsat program; the seventh to reach orbit successfully. Originally called the Landsat Data Continuity Mission (LDCM), it is a collaboration between NASA and the United States Geological Survey (USGS). NASA Goddard Space Flight Center in Greenbelt, Maryland, provided development, mission systems engineering, and acquisition of the launch vehicle while the USGS provided for development of the ground systems and will conduct on-going mission operations. It comprises the camera of the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), which can be used to study Earth surface temperature and is used to study global warming.

<span class="mw-page-title-main">CBERS-1</span> First satellite cooperation program between China and Brazil

China–Brazil Earth Resources Satellite 1 (CBERS-1), also known as Ziyuan I-01 or Ziyuan 1A, is a remote sensing satellite which was operated as part of the China–Brazil Earth Resources Satellite program between the China National Space Administration and Brazil's National Institute for Space Research. The first CBERS satellite to fly, it was launched by China in 1999.

<span class="mw-page-title-main">Sentinel-1</span> Earth observation satellite

Sentinel-1 is the first of the Copernicus Programme satellite constellations conducted by the European Space Agency. The mission was originally composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B, which shared the same orbital plane. Two more satellites, Sentinel-1C and Sentinel-1D are in development. Sentinel-1B was retired following a power supply issue on December 23, 2021, leaving Sentinel-1A the only satellite of the constellation currently operating. Sentinel-1C is currently planned to launch in the final quarter of 2024.

<span class="mw-page-title-main">Sentinel-2</span> Earth observation mission

Sentinel-2 is an Earth observation mission from the Copernicus Programme that acquires optical imagery at high spatial resolution over land and coastal waters. The mission's Sentinel-2A and Sentinel-2B satellites are to be joined in orbit in 2024 by a third, Sentinel-2C.

<span class="mw-page-title-main">CBERS-2</span> Second satellite cooperation program between China and Brazil

China–Brazil Earth Resources Satellite 2 (CBERS-2), also known as Ziyuan I-02 or Ziyuan 1B, was a remote sensing satellite operated as part of the China–Brazil Earth Resources Satellite program between the Chinese Center for Resources Satellite Data and Application and Brazilian National Institute for Space Research. The second CBERS satellite to fly, it was launched by China in 2003 to replace CBERS-1.

<span class="mw-page-title-main">ADEOS I</span> Derelict Japanese Earth observation satellite

ADEOS I was an Earth observation satellite launched by NASDA in 1996. The mission's Japanese name, Midori means "green". The mission ended in July 1997 after the satellite sustained structural damage to the solar panel. Its successor, ADEOS II, was launched in 2002. Like the first mission, it ended after less than a year, also following solar panel malfunctions.

<span class="mw-page-title-main">Suomi NPP</span> Earth Weather Satellite

The Suomi National Polar-orbiting Partnership, previously known as the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) and NPP-Bridge, is a weather satellite operated by the United States National Oceanic and Atmospheric Administration (NOAA). It was launched in 2011 and is currently in operation.

<span class="mw-page-title-main">Visible Infrared Imaging Radiometer Suite</span>

The Visible Infrared Imaging Radiometer Suite (VIIRS) is a sensor designed and manufactured by the Raytheon Company on board the polar-orbiting Suomi National Polar-orbiting Partnership, NOAA-20, and NOAA-21 weather satellites. VIIRS is one of five key instruments onboard Suomi NPP, launched on October 28, 2011. VIIRS is a whiskbroom scanner radiometer that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in the visible and infrared bands of the electromagnetic spectrum.

<span class="mw-page-title-main">Planet Labs</span> American company specializing in satellite imaging of Earth

Planet Labs PBC is a publicly trading American Earth imaging company based in San Francisco, California. Their goal is to image the entirety of the Earth daily to monitor changes and pinpoint trends.

<span class="mw-page-title-main">Sentinel-2A</span> European optical imaging satellite

Sentinel-2A is a European optical imaging satellite launched in 2015. It is the first Sentinel-2 satellite launched as part of the European Space Agency's Copernicus Programme. The satellite carries a wide swath high-resolution multispectral imager with 13 spectral bands. Its observations support services such as forest monitoring, land cover change-detection, natural disaster management and water quality monitoring.

<span class="mw-page-title-main">Gaofen</span> Chinese satellites

Gaofen is a series of Chinese high-resolution Earth imaging satellites launched as part of the China High-resolution Earth Observation System (CHEOS) program. CHEOS is a state-sponsored, civilian Earth-observation program used for agricultural, disaster, resource, and environmental monitoring. Proposed in 2006 and approved in 2010, the CHEOS program consists of the Gaofen series of space-based satellites, near-space and airborne systems such as airships and UAVs, ground systems that conduct data receipt, processing, calibration, and taskings, and a system of applications that fuse observation data with other sources to produce usable information and knowledge.

<span class="mw-page-title-main">Resurs-P</span> Series of Russian commercial Earth observation satellites

Resurs-P is a series of Russian commercial Earth observation satellites capable of acquiring high-resolution hyperspectral (HSI), wide-field multispectral (MSI), and panchromatic imagery. These spacecraft cost over 5 billion rubles and are operated by Roscosmos replacing the Resurs-DK No.1 satellite.

<span class="mw-page-title-main">Jilin-1</span> Chinese commercial satellite system

Jilin-1 is China's first self-developed commercial remote sensing satellite system. The satellites are operated by Chang Guang Satellite Technology Corporation and named after Jilin Province where the company is headquartered. The first set of satellites were launched by Long March 2D in Jiuquan Satellite Launch Center on 7 October 2015, at 04:13 UTC. All launched Jilin-1 satellites are in Sun-synchronous orbit (SSO).

References

  1. 1 2 3 Graham, William (2017-07-14). "Soyuz 2-1A launches with Kanopus-V-IK and over 70 satellites". NASASpaceFlight.com. Archived from the original on 2020-11-09. Retrieved 2021-12-13.
  2. 1 2 3 "Kanopus-V-IK 1". Gunter's Space Page. Archived from the original on 2021-10-27. Retrieved 2021-12-13.
  3. 1 2 "Technical details for satellite KANOPUS-V-IK". N2YO.com - Real Time Satellite Tracking and Predictions. Archived from the original on 2021-04-21. Retrieved 2021-12-13.
  4. 1 2 3 "Kanopus-V-IK 1 - eoPortal Directory - Satellite Missions". directory.eoportal.org. Archived from the original on 2021-10-22. Retrieved 2021-12-13.
  5. 1 2 "Kanopus V-IK – Soyuz – 73 Satellites". spaceflight101.com. 9 August 2017. Archived from the original on 2021-04-19. Retrieved 2021-12-13.
  6. Clark, Stephen. "Soyuz rocket lifts off with 73 satellites – Spaceflight Now". Archived from the original on 2021-11-11. Retrieved 2021-12-13.