Low Earth orbit

Last updated

A low Earth orbit (LEO) is an orbit around Earth with a period of 128 minutes or less (making at least 11.25 orbits per day) and an eccentricity less than 0.25. [1] Most of the artificial objects in outer space are in LEO, with an altitude never more than about one-third of the radius of Earth (or about 2000 kilometers). [2]

Contents

The term LEO region is also used for the area of space below an altitude of 2,000 km (1,200 mi) (about one-third of Earth's radius). [3] Objects in orbits that pass through this zone, even if they have an apogee further out or are sub-orbital, are carefully tracked since they present a collision risk to the many LEO satellites.

No human spaceflights other than the lunar missions of the Apollo program have taken place beyond LEO. All crewed space stations to date have operated within LEO.

Defining characteristics

A wide variety of sources [4] [5] [6] define LEO in terms of altitude. The altitude of an object in an elliptic orbit can vary significantly along the orbit. Even for circular orbits, the altitude above ground can vary by as much as 30 km (19 mi) (especially for polar orbits) due to the oblateness of Earth's spheroid figure and local topography. While definitions based on altitude are inherently ambiguous, most of them fall within the range specified by an orbit period of 128 minutes because, according to Kepler's third law, this corresponds to a semi-major axis of 8,413 km (5,228 mi). For circular orbits, this in turn corresponds to an altitude of 2,042 km (1,269 mi) above the mean radius of Earth, which is consistent with some of the upper altitude limits in some LEO definitions.

The LEO region is defined by some sources as a region in space that LEO orbits occupy. [3] [7] [8] Some highly elliptical orbits may pass through the LEO region near their lowest altitude (or perigee) but are not in a LEO orbit because their highest altitude (or apogee) exceeds 2,000 km (1,243 mi). Sub-orbital objects can also reach the LEO region but are not in a LEO orbit because they re-enter the atmosphere. The distinction between LEO orbits and the LEO region is especially important for analysis of possible collisions between objects which may not themselves be in LEO but could collide with satellites or debris in LEO orbits.

Orbitalaltitudes.svg

Orbital characteristics

The mean orbital velocity needed to maintain a stable low Earth orbit is about 7.8 km/s (4.8 mi/s), which translates to 28,000 km/h (17,000 mph). However, this depends on the exact altitude of the orbit. Calculated for a circular orbit of 200 km (120 mi) the orbital velocity is 7.79 km/s (4.84 mi/s), but for a higher 1,500 km (930 mi) orbit the velocity is reduced to 7.12 km/s (4.42 mi/s). [9] The launch vehicle's delta-v needed to achieve low Earth orbit starts around 9.4 km/s (5.8 mi/s).

The pull of gravity in LEO is only slightly less than on the Earth's surface. This is because the distance to LEO from the Earth's surface is much less than the Earth's radius. However, an object in orbit is in a permanent free fall around Earth, because in orbit the gravitational force and the centrifugal force balance each other out. [lower-alpha 1] As a result, spacecraft in orbit continue to stay in orbit, and people inside or outside such craft continuously experience weightlessness.

Objects in LEO encounter atmospheric drag from gases in the thermosphere (approximately 80–600 km above the surface) or exosphere (approximately 600 km or 400 mi and higher), depending on orbit height. Orbits of satellites that reach altitudes below 300 km (190 mi) decay fast due to atmospheric drag. Objects in LEO orbit Earth between the denser part of the atmosphere and below the inner Van Allen radiation belt.

Equatorial low Earth orbits (ELEO) are a subset of LEO. These orbits, with low inclination to the Equator, allow rapid revisit times over low-latitude locations on Earth. Prograde equatorial LEOs also have lower delta-v launch requirements because they take advantage of the Earth's rotation. Other useful LEO orbits including polar orbits and Sun-synchronous orbits have a higher inclinations to the equator and provide coverage for higher latitudes on Earth. Some of the first generation of Starlink satellites used polar orbits which provide coverage everywhere on Earth. Later Starlink constellations orbit at a lower inclination and provide more coverage for populated areas.

Higher orbits include medium Earth orbit (MEO), sometimes called intermediate circular orbit (ICO), and further above, geostationary orbit (GEO). Orbits higher than low orbit can lead to early failure of electronic components due to intense radiation and charge accumulation.

In 2017, "very low Earth orbits" (VLEO) began to be seen in regulatory filings. These orbits, below about 450 km (280 mi), require the use of novel technologies for orbit raising because they operate in orbits that would ordinarily decay too soon to be economically useful. [10] [11]

Use

Roughly half an orbit of the International Space Station

A low Earth orbit requires the lowest amount of energy for satellite placement. It provides high bandwidth and low communication latency. Satellites and space stations in LEO are more accessible for crew and servicing.

Since it requires less energy to place a satellite into a LEO, and a satellite there needs less powerful amplifiers for successful transmission, LEO is used for many communication applications, such as the Iridium phone system. Some communication satellites use much higher geostationary orbits and move at the same angular velocity as the Earth as to appear stationary above one location on the planet.

Disadvantages

Unlike geosynchronous satellites, satellites in LEO have a small field of view and can only observe and communicate with a fraction of the Earth at a given time. This means that a network (or constellation) of satellites is required to provide continuous coverage. Satellites in lower regions of LEO also suffer from rapid orbital decay, requiring either periodic re-boosting to maintain stable orbits or the launching of replacements for those that re-enter the atmosphere.

Examples

Former

  • The Chinese Tiangong-1 station was in orbit at about 355 kilometres (221 mi), [14] until its de-orbiting in 2018.
  • The Chinese Tiangong-2 station was in orbit at about 370 km (230 mi), until its de-orbiting in 2019.
  • GOCE, another gravimetry mission, orbited at about 255 km (158 mi).

In fiction

Space debris

The LEO environment is becoming congested with space debris because of the frequency of object launches. [16] This has caused growing concern in recent years, since collisions at orbital velocities can be dangerous or deadly. Collisions can produce additional space debris, creating a domino effect known as Kessler syndrome. NASA's Orbital Debris Program tracks over 25,000 objects larger than 10 cm diameter in LEO, while the estimated number between 1 and 10 cm is 500,000, and the number of particles bigger than 1 mm exceeds 100 million. [17] The particles travel at speeds up to 7.8 km/s (28,000 km/h; 17,500 mph), so even a small impact can severely damage a spacecraft. [18]

See also

Notes

  1. It is important to note here that “free fall” by definition requires that gravity is the only force acting on the object. That definition is still fulfilled when falling around Earth, as the other force, the centrifugal force is a fictitious force.

Related Research Articles

<span class="mw-page-title-main">Space elevator</span> Proposed type of space transportation system

A space elevator, also referred to as a space bridge, star ladder, and orbital lift, is a proposed type of planet-to-space transportation system, often depicted in science fiction. The main component would be a cable anchored to the surface and extending into space. An Earth-based space elevator cannot be constructed with a tall tower supported from below due to its immense weight—instead, it would consist of a cable with one end attached to the surface near the equator and the other end attached to a counterweight in space beyond geostationary orbit. The competing forces of gravity, which is stronger at the lower end, and the upward centrifugal force, which is stronger at the upper end, would result in the cable being held up, under tension, and stationary over a single position on Earth. With the tether deployed, climbers (crawlers) could repeatedly climb up and down the tether by mechanical means, releasing their cargo to and from orbit. The design would permit vehicles to travel directly between a planetary surface, such as the Earth's, and orbit, without the use of large rockets.

<span class="mw-page-title-main">Spacecraft</span> Vehicle or machine designed to fly in space

A spacecraft is a vehicle that is designed to fly in outer space and operate there. Spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, planetary exploration, and transportation of humans and cargo. All spacecraft except single-stage-to-orbit vehicles cannot get into space on their own, and require a launch vehicle.

<span class="mw-page-title-main">Geosynchronous orbit</span> Orbit keeping the satellite at a fixed longitude above the equator

A geosynchronous orbit is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds. The synchronization of rotation and orbital period means that, for an observer on Earth's surface, an object in geosynchronous orbit returns to exactly the same position in the sky after a period of one sidereal day. Over the course of a day, the object's position in the sky may remain still or trace out a path, typically in a figure-8 form, whose precise characteristics depend on the orbit's inclination and eccentricity. A circular geosynchronous orbit has a constant altitude of 35,786 km (22,236 mi).

<span class="mw-page-title-main">Geostationary orbit</span> Circular orbit above Earths Equator and following the direction of Earths rotation

A geostationary orbit, also referred to as a geosynchronous equatorial orbit (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator, 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation.

<span class="mw-page-title-main">Communications satellite</span> Artificial satellite that relays radio signals

A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. Many communications satellites are in geostationary orbit 22,236 miles (35,785 km) above the equator, so that the satellite appears stationary at the same point in the sky; therefore the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track the satellite. Others form satellite constellations in low Earth orbit, where antennas on the ground have to follow the position of the satellites and switch between satellites frequently.

<span class="mw-page-title-main">Atmospheric entry</span> Passage of an object through the gases of an atmosphere from outer space

Atmospheric entry is the movement of an object from outer space into and through the gases of an atmosphere of a planet, dwarf planet, or natural satellite. There are two main types of atmospheric entry: uncontrolled entry, such as the entry of astronomical objects, space debris, or bolides; and controlled entry of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing the controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL.

<span class="mw-page-title-main">Hohmann transfer orbit</span> Transfer manoeuvre between two orbits

In astronautics, the Hohmann transfer orbit is an orbital maneuver used to transfer a spacecraft between two orbits of different altitudes around a central body. For example, a Hohmann transfer could be used to raise a satellite's orbit from low Earth orbit to geostationary orbit. In the idealized case, the initial and target orbits are both circular and coplanar. The maneuver is accomplished by placing the craft into an elliptical transfer orbit that is tangential to both the initial and target orbits. The maneuver uses two impulsive engine burns: the first establishes the transfer orbit, and the second adjusts the orbit to match the target.

<span class="mw-page-title-main">Space debris</span> Pollution around Earth by defunct artificial objects

Space debris are defunct human-made objects in space – principally in Earth orbit – which no longer serve a useful function. These include derelict spacecraft, mission-related debris, and particularly-numerous in-Earth orbit fragmentation debris from the breakup of derelict rocket bodies and spacecraft. In addition to derelict human-made objects left in orbit, space debris includes fragments from disintegration, erosion, or collisions; solidified liquids expelled from spacecraft; unburned particles from solid rocket motors; and even paint flecks. Space debris represents a risk to spacecraft.

<span class="mw-page-title-main">Sub-orbital spaceflight</span> Spaceflight where the spacecraft does not go into orbit

A sub-orbital spaceflight is a spaceflight in which the spacecraft reaches outer space, but its trajectory intersects the surface of the gravitating body from which it was launched. Hence, it will not complete one orbital revolution, will not become an artificial satellite nor will it reach escape velocity.

A geocentric orbit, Earth-centered orbit, or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,216 pieces of space debris as tracked by the Goddard Space Flight Center. More than 16,291 objects previously launched have undergone orbital decay and entered Earth's atmosphere.

<span class="mw-page-title-main">Orbital decay</span> Process that leads to gradual decrease of the distance between two orbiting bodies

Orbital decay is a gradual decrease of the distance between two orbiting bodies at their closest approach over many orbital periods. These orbiting bodies can be a planet and its satellite, a star and any object orbiting it, or components of any binary system. If left unchecked, the decay eventually results in termination of the orbit when the smaller object strikes the surface of the primary; or for objects where the primary has an atmosphere, the smaller object burns, explodes, or otherwise breaks up in the larger object's atmosphere; or for objects where the primary is a star, ends with incineration by the star's radiation. Collisions of stellar-mass objects are usually accompanied by effects such as gamma-ray bursts and detectable gravitational waves.

<span class="mw-page-title-main">Orbital spaceflight</span> Spaceflight where spacecraft orbits an astronomical body

An orbital spaceflight is a spaceflight in which a spacecraft is placed on a trajectory where it could remain in space for at least one orbit. To do this around the Earth, it must be on a free trajectory which has an altitude at perigee around 80 kilometers (50 mi); this is the boundary of space as defined by NASA, the US Air Force and the FAA. To remain in orbit at this altitude requires an orbital speed of ~7.8 km/s. Orbital speed is slower for higher orbits, but attaining them requires greater delta-v. The Fédération Aéronautique Internationale has established the Kármán line at an altitude of 100 km (62 mi) as a working definition for the boundary between aeronautics and astronautics. This is used because at an altitude of about 100 km (62 mi), as Theodore von Kármán calculated, a vehicle would have to travel faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself.

Delta-<i>v</i> budget Estimate of total change in velocity of a space mission

In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during the mission. As input to the Tsiolkovsky rocket equation, it determines how much propellant is required for a vehicle of given empty mass and propulsion system.

<span class="mw-page-title-main">Space launch</span> Earliest phase of a flight that reaches space

Space launch is the earliest part of a flight that reaches space. Space launch involves liftoff, when a rocket or other space launch vehicle leaves the ground, floating ship or midair aircraft at the start of a flight. Liftoff is of two main types: rocket launch, and non-rocket spacelaunch.

<span class="mw-page-title-main">Kessler syndrome</span> Theoretical runaway satellite collision cascade that could render parts of Earth orbit unusable

The Kessler syndrome, proposed by NASA scientist Donald J. Kessler in 1978, is a scenario in which the density of objects in low Earth orbit (LEO) due to space pollution is numerous enough that collisions between objects could cause a cascade in which each collision generates space debris that increases the likelihood of further collisions. In 2009, Kessler wrote that modeling results had concluded that the debris environment was already unstable, "such that any attempt to achieve a growth-free small debris environment by eliminating sources of past debris will likely fail because fragments from future collisions will be generated faster than atmospheric drag will remove them". One implication is that the distribution of debris in orbit could render space activities and the use of satellites in specific orbital ranges difficult for many generations.

<span class="mw-page-title-main">Medium Earth orbit</span> Earth-centered orbit above low Earth orbit and below geostationary orbit

A medium Earth orbit (MEO) is an Earth-centered orbit with an altitude above a low Earth orbit (LEO) and below a high Earth orbit (HEO) – between 2,000 and 35,786 km above sea level.

Spacecraft collision avoidance is the implementation and study of processes minimizing the chance of orbiting spacecraft inadvertently colliding with other orbiting objects. The most common subject of spacecraft collision avoidance research and development is for human-made satellites in geocentric orbits. The subject includes procedures designed to prevent the accumulation of space debris in orbit, analytical methods for predicting likely collisions, and avoidance procedures to maneuver offending spacecraft away from danger.

<span class="mw-page-title-main">2020 SO</span> Space junk

2020 SO is a near-Earth object identified to be the Centaur upper stage used on 20 September 1966 to launch the Surveyor 2 spacecraft. The object was discovered by the Pan-STARRS 1 survey at the Haleakala Observatory on 17 September 2020. It was initially suspected to be an artificial object due to its low velocity relative to Earth and later on the noticeable effects of solar radiation pressure on its orbit. Spectroscopic observations by NASA's Infrared Telescope Facility in December 2020 found that the object's spectrum is similar to that of stainless steel, confirming the object's artificial nature. Following the object's confirmation as space debris, the object was removed from the Minor Planet Center's database on 19 February 2021.

Very low Earth orbit is a range of orbital altitudes below 400 km (250 mi), and is of increasing commercial importance in a variety of scenarios and for multiple applications, in both private and government satellite operations. Applications include earth observation, radar, infrared, weather, telecommunications, and rural internet access among others.

References

  1. "Current Catalog Files". Archived from the original on 26 June 2018. Retrieved 13 July 2018. LEO: Mean Motion > 11.25 & Eccentricity < 0.25
  2. Sampaio, Jarbas; Wnuk, Edwin; Vilhena de Moraes, Rodolpho; Fernandes, Sandro (1 January 2014). "Resonant Orbital Dynamics in LEO Region: Space Debris in Focus". Mathematical Problems in Engineering. 2014: Figure 1: Histogram of the mean motion of the cataloged objects. doi: 10.1155/2014/929810 . Archived from the original on 1 October 2021. Retrieved 13 July 2018.
  3. 1 2 "IADC Space Debris Mitigation Guidelines" (PDF). INTER-AGENCY SPACE DEBRIS COORDINATION COMMITTEE: Issued by Steering Group and Working Group 4. September 2007. Archived (PDF) from the original on 17 July 2018. Retrieved 17 July 2018. Region A, Low Earth Orbit (or LEO) Region – spherical region that extends from the Earth's surface up to an altitude (Z) of 2,000 km
  4. "Definition of LOW EARTH ORBIT". Merriam-Webster Dictionary. Archived from the original on 8 July 2018. Retrieved 8 July 2018.
  5. "Frequently Asked Questions". FAA. Archived from the original on 2 June 2020. Retrieved 14 February 2020. LEO refers to orbits that are typically less than 2,400 km (1,491 mi) in altitude.
  6. Campbell, Ashley (10 July 2015). "SCaN Glossary". NASA. Archived from the original on 3 August 2020. Retrieved 12 July 2018. Low Earth Orbit (LEO): A geocentric orbit with an altitude much less than the Earth's radius. Satellites in this orbit are between 80 and 2000 kilometers above the Earth's surface.
  7. "What Is an Orbit?". NASA. David Hitt : NASA Educational Technology Services, Alice Wesson : JPL, J.D. Harrington : HQ;, Larry Cooper : HQ;, Flint Wild : MSFC;, Ann Marie Trotta : HQ;, Diedra Williams : MSFC. 1 June 2015. Archived from the original on 27 March 2018. Retrieved 8 July 2018. LEO is the first 100 to 200 miles (161 to 322 km) of space.{{cite news}}: CS1 maint: others (link)
  8. Steele, Dylan (3 May 2016). "A Researcher's Guide to: Space Environmental Effects". NASA. p. 7. Archived from the original on 17 November 2016. Retrieved 12 July 2018. the low-Earth orbit (LEO) environment, defined as 200–1,000 km above Earth's surface
  9. "LEO parameters". www.spaceacademy.net.au. Archived from the original on 11 February 2016. Retrieved 12 June 2015.
  10. Crisp, N. H.; Roberts, P. C. E.; Livadiotti, S.; Oiko, V. T. A.; Edmondson, S.; Haigh, S. J.; Huyton, C.; Sinpetru, L.; Smith, K. L.; Worrall, S. D.; Becedas, J. (August 2020). "The Benefits of Very Low Earth Orbit for Earth Observation Missions". Progress in Aerospace Sciences . 117: 100619. arXiv: 2007.07699 . Bibcode:2020PrAeS.11700619C. doi:10.1016/j.paerosci.2020.100619. S2CID   220525689.
  11. Messier, Doug (3 March 2017). "SpaceX Wants to Launch 12,000 Satellites". Parabolic Arc. Archived from the original on 22 January 2020. Retrieved 22 January 2018.
  12. "Higher Altitude Improves Station's Fuel Economy". NASA. Archived from the original on 15 May 2015. Retrieved 12 February 2013.
  13. Holli, Riebeek (4 September 2009). "NASA Earth Observatory". earthobservatory.nasa.gov. Archived from the original on 27 May 2018. Retrieved 28 November 2015.
  14. ""天宫一号成功完成二次变轨"". Archived from the original on 13 November 2011. Retrieved 13 October 2020.
  15. "Space station from 2001: A Space Odyssey".
  16. United Nations Office for Outer Space Affairs (2010). "Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space". Inter-Agency Space Debris Coordination Committee (IADC). Retrieved 19 October 2021.
  17. "ARES | Orbital Debris Program Office | Frequently Asked Questions". NASA.gov. Archived from the original on 2 September 2022. Retrieved 2 September 2022.
  18. Garcia, Mark (13 April 2015). "Space Debris and Human Spacecraft". NASA.gov. Archived from the original on 8 September 2022. Retrieved 2 September 2022.

PD-icon.svg This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .