Sub-orbital spaceflight

Last updated
Video of sub-orbital spaceflight of Black Brant IX sounding rocket
Sub-orbital human spaceflight (FAI-defined space border)
NameYearFlightsLocation
Mercury-Redstone 3
Mercury-Redstone 4
19612 Cape Canaveral
X-15 Flight 90
X-15 Flight 91
19632 Edwards AFB
Soyuz 18a 19751 Baikonur Cosmodrome
SpaceShipOne Flight 15P
SpaceShipOne Flight 16P
SpaceShipOne Flight 17P
20043 Mojave Air and Space Port
Blue Origin NS-16 [1]
Blue Origin NS-18
Blue Origin NS-19
20213 Corn Ranch
Blue Origin NS-20
Blue Origin NS-21

Blue Origin NS-22

20223
Blue Origin NS-25
Blue Origin NS-26
20242
Sub-orbital human spaceflight (United States-defined space border; excluding those above)
NameYearFlightsLocation
X-15 Flight 62 19621 Edwards AFB
X-15 Flight 77
X-15 Flight 87
19632
X-15 Flight 138
X-15 Flight 143
X-15 Flight 150
X-15 Flight 153
19654
X-15 Flight 174 19661
X-15 Flight 190
X-15 Flight 191
19672
X-15 Flight 197 19681
Soyuz MS-10 20181 Baikonur Cosmodrome
VSS Unity VP-03 20181 Mojave Air and Space Port
VSS Unity VF-01 20191
VSS Unity Unity21
VSS Unity Unity22
20212 Spaceport America
VSS Unity Unity25
Galactic 01
Galactic 02
Galactic 03
Galactic 04
Galactic 05
20236 Spaceport America
Galactic 06
Galactic 07
20242 Spaceport America

A sub-orbital spaceflight is a spaceflight in which the spacecraft reaches outer space, but its trajectory intersects the surface of the gravitating body from which it was launched. Hence, it will not complete one orbital revolution, will not become an artificial satellite nor will it reach escape velocity.

Contents

For example, the path of an object launched from Earth that reaches the Kármán line (about 83 km [52 mi]100 km [62 mi] [2] above sea level), and then falls back to Earth, is considered a sub-orbital spaceflight. Some sub-orbital flights have been undertaken to test spacecraft and launch vehicles later intended for orbital spaceflight. Other vehicles are specifically designed only for sub-orbital flight; examples include crewed vehicles, such as the X-15 and SpaceShipTwo, and uncrewed ones, such as ICBMs and sounding rockets.

Flights which attain sufficient velocity to go into low Earth orbit, and then de-orbit before completing their first full orbit, are not considered sub-orbital. Examples of this include flights of the Fractional Orbital Bombardment System.

A flight that does not reach space is still sometimes called sub-orbital, but cannot officially be classified as a "sub-orbital spaceflight". Usually a rocket is used, but some experimental sub-orbital spaceflights have also been achieved via the use of space guns. [3]

Altitude requirement

Isaac Newton's Cannonball. Paths A and B depict a sub-orbital trajectory. Newton Cannon.svg
Isaac Newton's Cannonball. Paths A and B depict a sub-orbital trajectory.

By definition, a sub-orbital spaceflight reaches an altitude higher than 100 km (62 mi) above sea level. This altitude, known as the Kármán line, was chosen by the Fédération Aéronautique Internationale because it is roughly the point where a vehicle flying fast enough to support itself with aerodynamic lift from the Earth's atmosphere would be flying faster than orbital speed. [4] The US military and NASA award astronaut wings to those flying above 50 mi (80 km), [5] although the U.S. State Department does not show a distinct boundary between atmospheric flight and spaceflight. [6]

Orbit

During freefall the trajectory is part of an elliptic orbit as given by the orbit equation. The perigee distance is less than the radius of the Earth R including atmosphere, hence the ellipse intersects the Earth, and hence the spacecraft will fail to complete an orbit. The major axis is vertical, the semi-major axis a is more than R/2. The specific orbital energy is given by:

where is the standard gravitational parameter.

Almost always a < R, corresponding to a lower than the minimum for a full orbit, which is

Thus the net extra specific energy needed compared to just raising the spacecraft into space is between 0 and .

Speed, range, and altitude

To minimize the required delta-v (an astrodynamical measure which strongly determines the required fuel), the high-altitude part of the flight is made with the rockets off (this is technically called free-fall even for the upward part of the trajectory). (Compare with Oberth effect.) The maximum speed in a flight is attained at the lowest altitude of this free-fall trajectory, both at the start and at the end of it.[ citation needed ]

If one's goal is simply to "reach space", for example in competing for the Ansari X Prize, horizontal motion is not needed. In this case the lowest required delta-v, to reach 100 km altitude, is about 1.4  km/s. Moving slower, with less free-fall, would require more delta-v.[ citation needed ]

Compare this with orbital spaceflights: a low Earth orbit (LEO), with an altitude of about 300 km, needs a speed around 7.7 km/s, requiring a delta-v of about 9.2 km/s. (If there were no atmospheric drag the theoretical minimum delta-v would be 8.1 km/s to put a craft into a 300-kilometer high orbit starting from a stationary point like the South Pole. The theoretical minimum can be up to 0.46 km/s less if launching eastward from near the equator.)[ citation needed ]

For sub-orbital spaceflights covering a horizontal distance the maximum speed and required delta-v are in between those of a vertical flight and a LEO. The maximum speed at the lower ends of the trajectory are now composed of a horizontal and a vertical component. The higher the horizontal distance covered, the greater the horizontal speed will be. (The vertical velocity will increase with distance for short distances but will decrease with distance at longer distances.) For the V-2 rocket, just reaching space but with a range of about 330 km, the maximum speed was 1.6 km/s. Scaled Composites SpaceShipTwo which is under development will have a similar free-fall orbit but the announced maximum speed is 1.1 km/s (perhaps because of engine shut-off at a higher altitude).[ citation needed ][ needs update ]

For larger ranges, due to the elliptic orbit the maximum altitude can be much more than for a LEO. On a 10,000-kilometer intercontinental flight, such as that of an intercontinental ballistic missile or possible future commercial spaceflight, the maximum speed is about 7 km/s, and the maximum altitude may be more than 1300 km. Any spaceflight that returns to the surface, including sub-orbital ones, will undergo atmospheric reentry. The speed at the start of the reentry is basically the maximum speed of the flight. The aerodynamic heating caused will vary accordingly: it is much less for a flight with a maximum speed of only 1 km/s than for one with a maximum speed of 7 or 8 km/s.[ citation needed ]

The minimum delta-v and the corresponding maximum altitude for a given range can be calculated, d, assuming a spherical Earth of circumference 40000 km and neglecting the Earth's rotation and atmosphere. Let θ be half the angle that the projectile is to go around the Earth, so in degrees it is 45°×d/10000 km. The minimum-delta-v trajectory corresponds to an ellipse with one focus at the centre of the Earth and the other at the point halfway between the launch point and the destination point (somewhere inside the Earth). (This is the orbit that minimizes the semi-major axis, which is equal to the sum of the distances from a point on the orbit to the two foci. Minimizing the semi-major axis minimizes the specific orbital energy and thus the delta-v, which is the speed of launch.) Geometrical arguments lead then to the following (with R being the radius of the Earth, about 6370 km):

The altitude of apogee is maximized (at about 1320 km) for a trajectory going one quarter of the way around the Earth (10000 km). Longer ranges will have lower apogees in the minimal-delta-v solution.

(where g is the acceleration of gravity at the Earth's surface). The Δv increases with range, leveling off at 7.9 km/s as the range approaches 20000 km (halfway around the world). The minimum-delta-v trajectory for going halfway around the world corresponds to a circular orbit just above the surface (of course in reality it would have to be above the atmosphere). See lower for the time of flight.

An intercontinental ballistic missile is defined as a missile that can hit a target at least 5500 km away, and according to the above formula this requires an initial speed of 6.1 km/s. Increasing the speed to 7.9 km/s to attain any point on Earth requires a considerably larger missile because the amount of fuel needed goes up exponentially with delta-v (see Rocket equation).

The initial direction of a minimum-delta-v trajectory points halfway between straight up and straight toward the destination point (which is below the horizon). Again, this is the case if the Earth's rotation is ignored. It is not exactly true for a rotating planet unless the launch takes place at a pole. [7]

Flight duration

In a vertical flight of not too high altitudes, the time of the free-fall is both for the upward and for the downward part the maximum speed divided by the acceleration of gravity, so with a maximum speed of 1 km/s together 3 minutes and 20 seconds. The duration of the flight phases before and after the free-fall can vary.[ citation needed ]

For an intercontinental flight the boost phase takes 3 to 5 minutes, the free-fall (midcourse phase) about 25 minutes. For an ICBM the atmospheric reentry phase takes about 2 minutes; this will be longer for any soft landing, such as for a possible future commercial flight.[ citation needed ] Test flight 4 of the SpaceX 'Starship' performed such a flight with a lift off from Texas and a simulated soft touchdown in the Indian Ocean 66 minutes after liftoff.

Sub-orbital flights can last from just seconds to days. Pioneer 1 was NASA's first space probe, intended to reach the Moon. A partial failure caused it to instead follow a sub-orbital trajectory, reentering the Earth's atmosphere 43 hours after launch. [8]

To calculate the time of flight for a minimum-delta-v trajectory, according to Kepler's third law, the period for the entire orbit (if it did not go through the Earth) would be:

Using Kepler's second law, we multiply this by the portion of the area of the ellipse swept by the line from the centre of the Earth to the projectile:

This gives about 32 minutes for going a quarter of the way around the Earth, and 42 minutes for going halfway around. For short distances, this expression is asymptotic to .

From the form involving arccosine, the derivative of the time of flight with respect to d (or θ) goes to zero as d approaches 20000 km (halfway around the world). The derivative of Δv also goes to zero here. So if d = 19000 km, the length of the minimum-delta-v trajectory will be about 19500 km, but it will take only a few seconds less time than the trajectory for d = 20000 km (for which the trajectory is 20000 km long).

Flight profiles

Profile for the first crewed American sub-orbital flight, 1961. Launch rocket lifts the spacecraft for the first 2:22 minutes. Dashed line: zero gravity. Mr3-flight-timeline-simple.png
Profile for the first crewed American sub-orbital flight, 1961. Launch rocket lifts the spacecraft for the first 2:22 minutes. Dashed line: zero gravity.
Science and Mechanics cover of November 1931, showing a proposed sub-orbital spaceship that would reach an altitude 700 miles (1,100 km) on its one hour trip from Berlin to New York. Science and Mechanics Nov 1931 cover.jpg
Science and Mechanics cover of November 1931, showing a proposed sub-orbital spaceship that would reach an altitude 700 miles (1,100 km) on its one hour trip from Berlin to New York.

While there are a great many possible sub-orbital flight profiles, it is expected that some will be more common than others.

The X-15 (1958-1968) was launched to an altitude of 13.7 km by a B-52 mothership, lifted itself to approximately 100 km, and then glided to the ground. X-15.jpg
The X-15 (1958–1968) was launched to an altitude of 13.7 km by a B-52 mothership, lifted itself to approximately 100 km, and then glided to the ground.

Ballistic missiles

The first sub-orbital vehicles which reached space were ballistic missiles. The first ballistic missile to reach space was the German V-2, the work of the scientists at Peenemünde, on October 3, 1942, which reached an altitude of 53 miles (85 km). [9] Then in the late 1940s the US and USSR concurrently developed missiles all of which were based on the V-2 Rocket, and then much longer range Intercontinental Ballistic Missiles (ICBMs). There are now many countries who possess ICBMs and even more with shorter range Intermediate Range Ballistic Missiles (IRBMs).[ citation needed ]

Tourist flights

Sub-orbital tourist flights will initially focus on attaining the altitude required to qualify as reaching space. The flight path will be either vertical or very steep, with the spacecraft landing back at its take-off site.

The spacecraft will shut off its engines well before reaching maximum altitude, and then coast up to its highest point. During a few minutes, from the point when the engines are shut off to the point where the atmosphere begins to slow down the downward acceleration, the passengers will experience weightlessness.

Megaroc had been planned for sub-orbital spaceflight by the British Interplanetary Society in the 1940s. [10] [11]

In late 1945, a group led by M. Tikhonravov K. and N. G. Chernysheva at the Soviet NII-4 academy (dedicated to rocket artillery science and technology), began work on a stratospheric rocket project, VR-190, aimed at vertical flight by a crew of two pilots, to an altitude of 200 km (65,000 ft) using captured V-2. [12]

In 2004, a number of companies worked on vehicles in this class as entrants to the Ansari X Prize competition. The Scaled Composites SpaceShipOne was officially declared by Rick Searfoss to have won the competition on October 4, 2004, after completing two flights within a two-week period.

In 2005, Sir Richard Branson of the Virgin Group announced the creation of Virgin Galactic and his plans for a 9-seat capacity SpaceShipTwo named VSS Enterprise. It has since been completed with eight seats (one pilot, one co-pilot and six passengers) and has taken part in captive-carry tests and with the first mother-ship WhiteKnightTwo, or VMS Eve. It has also completed solitary glides, with the movable tail sections in both fixed and "feathered" configurations. The hybrid rocket motor has been fired multiple times in ground-based test stands, and was fired in a powered flight for the second time on 5 September 2013. [13] Four additional SpaceShipTwos have been ordered and will operate from the new Spaceport America. Commercial flights carrying passengers were expected in 2014, but became cancelled due to the disaster during SS2 PF04 flight. Branson stated, "[w]e are going to learn from what went wrong, discover how we can improve safety and performance and then move forwards together." [14]

Scientific experiments

A major use of sub-orbital vehicles today is as scientific sounding rockets. Scientific sub-orbital flights began in the 1920s when Robert H. Goddard launched the first liquid fueled rockets, however they did not reach space altitude. In the late 1940s, captured German V-2 ballistic missiles were converted into V-2 sounding rockets which helped lay the foundation for modern sounding rockets. [15] Today there are dozens of different sounding rockets on the market, from a variety of suppliers in various countries. Typically, researchers wish to conduct experiments in microgravity or above the atmosphere.

Sub-orbital transportation

Research, such as that done for the X-20 Dyna-Soar project suggests that a semi-ballistic sub-orbital flight could travel from Europe to North America in less than an hour.

However, the size of rocket, relative to the payload, necessary to achieve this, is similar to an ICBM. ICBMs have delta-v's somewhat less than orbital; and therefore would be somewhat cheaper than the costs for reaching orbit, but the difference is not large. [16]

Due to the high cost of spaceflight, suborbital flights are likely to be initially limited to high value, very high urgency cargo deliveries such as courier flights, military fast-response operations or space tourism.[ opinion ]

The SpaceLiner is a hypersonic suborbital spaceplane concept that could transport 50 passengers from Australia to Europe in 90 minutes or 100 passengers from Europe to California in 60 minutes. [17] The main challenge lies in increasing the reliability of the different components, particularly the engines, in order to make their use for passenger transportation on a daily basis possible.

SpaceX is potentially considering using their Starship as a sub-orbital point-to-point transportation system. [18]

Notable uncrewed sub-orbital spaceflights

Crewed sub-orbital spaceflights

Above 100 km (62.14 mi) in altitude. [a]

Date (GMT)MissionCrewCountryRemarks
11961-05-05 Mercury-Redstone 3 Alan Shepard Flag of the United States (23px).png  United States First crewed sub-orbital spaceflight, first American in space
21961-07-21 Mercury-Redstone 4 Virgil Grissom Flag of the United States (23px).png  United States Second crewed sub-orbital spaceflight, second American in space
31963-07-19 X-15 Flight 90 Joseph A. Walker Flag of the United States (23px).png  United States First winged craft in space
41963-08-22 X-15 Flight 91 Joseph A. WalkerFlag of the United States (23px).png  United States First person and spacecraft to make two flights into space
51975-04-05 Soyuz 18a Vasili Lazarev
Oleg Makarov
Flag of the Soviet Union.svg  Soviet Union Failed orbital launch. Aborted after malfunction during stage separation
62004-06-21 SpaceShipOne flight 15P Mike Melvill Flag of the United States (23px).png  United States First commercial spaceflight
72004-09-29 SpaceShipOne flight 16P Mike MelvillFlag of the United States (23px).png  United States First of two flights to win Ansari X-Prize
82004-10-04 SpaceShipOne flight 17P Brian Binnie Flag of the United States (23px).png  United States Second X-Prize flight, clinching award
92021-07-20 Blue Origin NS-16 Jeff Bezos
Mark Bezos
Wally Funk
Oliver Daemen
Flag of the United States (23px).png  United States First crewed Blue Origin flight
102021-10-13 Blue Origin NS-18 Audrey Powers
Chris Boshuizen
Glen de Vries
William Shatner
Flag of the United States (23px).png  United States Second crewed Blue Origin flight
112021-12-11 Blue Origin NS-19 Laura Shepard Churchley
Michael Strahan
Dylan Taylor
Evan Dick
Lane Bess
Cameron Bess
Flag of the United States (23px).png  United States Third crewed Blue Origin flight
122022-03-31 Blue Origin NS-20 Marty Allen
Sharon Hagle
Marc Hagle
Jim Kitchen
George Nield
Gary Lai
Flag of the United States (23px).png  United States Fourth crewed Blue Origin flight
132022-06-04 Blue Origin NS-21 Evan Dick
Katya Echazarreta
Hamish Harding
Victor Correa Hespanha
Jaison Robinson
Victor Vescovo
Flag of the United States (23px).png  United States Fifth crewed Blue Origin flight
142022-08-04 Blue Origin NS-22 Coby Cotton
Mário Ferreira
Vanessa O'Brien
Clint Kelly III
Sara Sabry
Steve Young
Flag of the United States (23px).png  United States Sixth crewed Blue Origin flight
152024-05-19 Blue Origin NS-25 Mason Angel
Sylvain Chiron
Ed Dwight
Kenneth Hess
Carol Schaller
Gopichand Thotakura
Flag of the United States (23px).png  United States Seventh crewed Blue Origin flight
162024-08-29 Blue Origin NS-26 Nicolina Elrick
Rob Ferl
Eugene Grin
Eiman Jahangir
Karsen Kitchen
Ephraim Rabin
Flag of the United States (23px).png  United States Eighth crewed Blue Origin flight
172024-11-22 Blue Origin NS-28 Henry (Hank) Wolfond
Austin Litteral
James (J.D.) Russell
Sharon Hagle
Marc Hagle
Emily Calandrelli
Flag of the United States (23px).png  United States Ninth crewed Blue Origin flight
Timeline of SpaceShipOne, SpaceShipTwo, CSXT and New Shepard sub-orbital flights. Where booster and capsule achieved different altitudes, the higher is plotted. In the SVG file, hover over a point to show details. Suborbital spaceflight timeline.svg
Timeline of Space­Ship­One, Space­Ship­Two, CSXT and New Shepard sub-orbital flights. Where booster and capsule achieved different altitudes, the higher is plotted. In the SVG file, hover over a point to show details.

Future of crewed sub-orbital spaceflight

Private companies such as Virgin Galactic, Armadillo Aerospace (reinvented as Exos Aerospace), Airbus, [24] Blue Origin and Masten Space Systems are taking an interest in sub-orbital spaceflight, due in part to ventures like the Ansari X Prize. NASA and others are experimenting with scramjet-based hypersonic aircraft which may well be used with flight profiles that qualify as sub-orbital spaceflight. Non-profit entities like ARCASPACE and Copenhagen Suborbitals also attempt rocket-based launches.

Suborbital spaceflight projects

See also

Notes

  1. Flights exceeding 80km but not 100km, including those flown by SpaceShipTwo, are recognized as spaceflight by the United States.

Related Research Articles

<span class="mw-page-title-main">Kepler's laws of planetary motion</span>

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609, describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary velocities vary. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
<span class="mw-page-title-main">Orbit</span> Curved path of an object around a point

In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point. Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits, with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are

<span class="mw-page-title-main">Escape velocity</span> Concept in celestial mechanics

In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming:

<span class="mw-page-title-main">Projectile</span> Object propelled through the air

A projectile is an object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance. Although any objects in motion through space are projectiles, they are commonly found in warfare and sports.

<span class="mw-page-title-main">Hohmann transfer orbit</span> Transfer manoeuvre between two orbits

In astronautics, the Hohmann transfer orbit is an orbital maneuver used to transfer a spacecraft between two orbits of different altitudes around a central body. For example, a Hohmann transfer could be used to raise a satellite's orbit from low Earth orbit to geostationary orbit. In the idealized case, the initial and target orbits are both circular and coplanar. The maneuver is accomplished by placing the craft into an elliptical transfer orbit that is tangential to both the initial and target orbits. The maneuver uses two impulsive engine burns: the first establishes the transfer orbit, and the second adjusts the orbit to match the target.

<span class="mw-page-title-main">Orbital mechanics</span> Field of classical mechanics concerned with the motion of spacecraft

Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.

<span class="mw-page-title-main">Trajectory</span> Path of a moving object

A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously.

<span class="mw-page-title-main">Projectile motion</span> Motion of launched objects due to gravity

Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive.

<span class="mw-page-title-main">Sun-synchronous orbit</span> Type of geocentric orbit

A Sun-synchronous orbit (SSO), also called a heliosynchronous orbit, is a nearly polar orbit around a planet, in which the satellite passes over any given point of the planet's surface at the same local mean solar time. More technically, it is an orbit arranged so that it precesses through one complete revolution each year, so it always maintains the same relationship with the Sun.

<span class="mw-page-title-main">Hyperbolic trajectory</span> Concept in astrodynamics

In astrodynamics or celestial mechanics, a hyperbolic trajectory or hyperbolic orbit is the trajectory of any object around a central body with more than enough speed to escape the central object's gravitational pull. The name derives from the fact that according to Newtonian theory such an orbit has the shape of a hyperbola. In more technical terms this can be expressed by the condition that the orbital eccentricity is greater than one.

In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time. Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance, has an orbit that is a conic section with the central body located at one of the two foci, or the focus.

<span class="mw-page-title-main">Spacecraft flight dynamics</span> Application of mechanical dynamics to model the flight of space vehicles

Spacecraft flight dynamics is the application of mechanical dynamics to model how the external forces acting on a space vehicle or spacecraft determine its flight path. These forces are primarily of three types: propulsive force provided by the vehicle's engines; gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag.

<span class="mw-page-title-main">Gravity train</span> Theoretical means of transportation

A gravity train is a theoretical means of transportation for purposes of commuting between two points on the surface of a sphere, by following a straight tunnel connecting the two points through the interior of the sphere.

A banked turn is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a road or railroad this is usually due to the roadbed having a transverse down-slope towards the inside of the curve. The bank angle is the angle at which the vehicle is inclined about its longitudinal axis with respect to the horizontal.

Angular distance or angular separation is the measure of the angle between the orientation of two straight lines, rays, or vectors in three-dimensional space, or the central angle subtended by the radii through two points on a sphere. When the rays are lines of sight from an observer to two points in space, it is known as the apparent distance or apparent separation.

<span class="mw-page-title-main">Range of a projectile</span>

In physics, a projectile launched with specific initial conditions will have a range. It may be more predictable assuming a flat Earth with a uniform gravity field, and no air resistance. The horizontal ranges of a projectile are equal for two complementary angles of projection with the same velocity.

<span class="mw-page-title-main">Mars cycler</span> Kind of spacecraft trajectory

A Mars cycler is a kind of cycler, a spacecraft with a trajectory that encounters Earth and Mars regularly. The Aldrin cycler is an example of a Mars cycler.

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

In plasma physics and magnetic confinement fusion, neoclassical transport or neoclassical diffusion is a theoretical description of collisional transport in toroidal plasmas, usually found in tokamaks or stellarators. It is a modification of classical diffusion adding in effects of non-uniform magnetic fields due to the toroidal geometry, which give rise to new diffusion effects.

References

  1. Foust, Jeff (20 July 2021). "Blue Origin launches Bezos on first crewed New Shepard flight". SpaceNews . Retrieved 20 Jul 2021.
  2. Reinhardt, Dean N. (2007). "The Vertical Limit of State Sovereignty". Journal of Air Law and Commerce. 72 (1).
  3. "Martlet". Archived from the original on 2010-09-26.
  4. "100 km Altitude Boundary for Astronautics". Fédération Aéronautique Internationale. Archived from the original on 2011-08-09. Retrieved 2017-09-14.
  5. Whelan, Mary (5 June 2013). "X-15 Space Pioneers Now Honored as Astronauts". nasa.gov. Archived from the original on 11 June 2017. Retrieved 4 May 2018.
  6. "85. U.S. Statement, Definition and Delimitation of Outer Space And The Character And Utilization Of The Geostationary Orbit, Legal Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space at its 40th Session in Vienna from April". state.gov. Retrieved 4 May 2018.
  7. Blanco, Philip (September 2020). "Modeling ICBM Trajectories Around a Rotating Globe with Systems Tool Kit". The Physics Teacher. 58 (7): 494–496. Bibcode:2020PhTea..58..494B. doi:10.1119/10.0002070. S2CID   225017449.
  8. "Pioneer 1 - NSSDC ID: 1958-007A". NASA NSSDC.
  9. Germany's V-2 Rocket, Kennedy, Gregory P.
  10. Hollingham, Richard. "How a Nazi rocket could have put a Briton in space". bbc.com. Archived from the original on 14 November 2016. Retrieved 4 May 2018.
  11. "Megaroc". www.bis-space.com. Archived from the original on 30 October 2016. Retrieved 4 May 2018.
  12. Anatoli I. Kiselev; Alexander A. Medvedev; Valery A. Menshikov (December 2012). Astronautics: Summary and Prospects. Translated by V. Sherbakov; N. Novichkov; A. Nechaev. Springer Science & Business Media. pp. 1–2. ISBN   9783709106488.
  13. "Scaled Composites: Projects - Test Logs for SpaceShipTwo". Archived from the original on 2013-08-16. Retrieved 2013-08-14.
  14. "Branson on Virgin Galactic crash: 'Space is hard – but worth it'". CNET. Retrieved August 1, 2015.
  15. "ch2". history.nasa.gov. Archived from the original on 2015-11-29. Retrieved 2015-11-28.
  16. "The Space Review: Point-to-point suborbital transportation: sounds good on paper, but..." www.thespacereview.com. Archived from the original on 1 August 2017. Retrieved 4 May 2018.
  17. Sippel, M. (2010). "Promising roadmap alternatives for the SpaceLiner" (PDF). Acta Astronautica. 66 (11–12): 1652–1658. Bibcode:2010AcAau..66.1652S. doi:10.1016/j.actaastro.2010.01.020.
  18. Ralph, Eric (30 May 2019). "SpaceX CEO Elon Musk wants to use Starships as Earth-to-Earth transports". Teslarati. Retrieved 31 May 2019.
  19. Walter Dornberger, Moewig, Berlin 1984. ISBN   3-8118-4341-9.
  20. "Bumper Project". White Sands Missile Range. Archived from the original on 2008-01-10.
  21. "Fire destroys Starship on its seventh test flight, raining debris from space". Ars Technica.
  22. "SpaceX's Starship explodes in flight test, forcing airlines to divert". Reuters.
  23. "Regulators are investigating reports of property damage from SpaceX Starship's explosion". CNN.
  24. Amos, Jonathan (3 June 2014). "Airbus drops model 'space jet'". BBC News. Archived from the original on 4 May 2018. Retrieved 4 May 2018.