Satellite Internet access

Last updated
Satellite Internet
Satellite Internet Characteristics
Medium Air or Vacuum
License ITU
Maximum downlink rate1000 Gbit/s
Maximum uplink rate1000 Mbit/s
Average downlink rate1 Mbit/s
Average uplink rate256 kbit/s
Latency Average 638 ms [1]
Frequency bands L, C, Ku, Ka
Coverage100–6,000 km
Additional services VoIP, SDTV, HDTV, VOD, Datacast
Average CPE price€300 (modem + satellite dish)

Satellite Internet access is Internet access provided through communications satellites. Modern consumer grade satellite Internet service is typically provided to individual users through geostationary satellites that can offer relatively high data speeds, [2] with newer satellites using Ku band to achieve downstream data speeds up to 506 Mbit/s. [3]

Internet access individual connection to the internet

Internet access is the ability of individuals and organizations to connect to the Internet using computer terminals, computers, and other devices; and to access services such as email and the World Wide Web. Internet access is sold by Internet service providers (ISPs) delivering connectivity at a wide range of data transfer rates via various networking technologies. Many organizations, including a growing number of municipal entities, also provide cost-free wireless access.

Communications satellite artificial satellite designed for telecommunications

A communications satellite is an artificial satellite that relays and amplifies radio telecommunications signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. There are 2,134 communications satellites in Earth’s orbit, used by both private and government organizations. Many are in geostationary orbit 22,200 miles (35,700 km) above the equator, so that the satellite appears stationary at the same point in the sky, so the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track it.

The Ku band is the portion of the electromagnetic spectrum in the microwave range of frequencies from 12 to 18 gigahertz (GHz). The symbol is short for "K-under", because it is the lower part of the original NATO K band, which was split into three bands because of the presence of the atmospheric water vapor resonance peak at 22.24 GHz, (1.35 cm) which made the center unusable for long range transmission. In radar applications, it ranges from 12-18 GHz according to the formal definition of radar frequency band nomenclature in IEEE Standard 521-2002.


History of satellite Internet

Following the launch of the first satellite, Sputnik 1, by the Soviet Union in October 1957, the US successfully launched the Explorer 1 satellite in 1958. The first commercial communications satellite was Telstar 1, built by Bell Labs and launched in July 1962.

Sputnik 1 first artificial Earth satellite

Sputnik 1 was the first artificial Earth satellite. The Soviet Union launched it into an elliptical low Earth orbit on 4 October 1957, orbiting for three weeks before its batteries died, then silently for two more months before falling back into the atmosphere. It was a 58 cm (23 in) diameter polished metal sphere, with four external radio antennas to broadcast radio pulses. Its radio signal was easily detectable even by radio amateurs, and the 65° inclination and duration of its orbit made its flight path cover virtually the entire inhabited Earth. This surprise success precipitated the American Sputnik crisis and triggered the Space Race, a part of the Cold War. The launch was the beginning of a new era of political, military, technological, and scientific developments.

Soviet Union 1922–1991 country in Europe and Asia

The Soviet Union, officially the Union of Soviet Socialist Republics (USSR), was a socialist state in Eurasia that existed from 1922 to 1991. Nominally a union of multiple national Soviet republics, its government and economy were highly centralized. The country was a one-party state, governed by the Communist Party with Moscow as its capital in its largest republic, the Russian Soviet Federative Socialist Republic. Other major urban centres were Leningrad, Kiev, Minsk, Alma-Ata, and Novosibirsk. It spanned over 10,000 kilometres east to west across 11 time zones, and over 7,200 kilometres north to south. It had five climate zones: tundra, taiga, steppes, desert and mountains.

Explorer 1 first satellite of the United States

Explorer 1 was the first satellite launched by the United States, and was part of the U.S. participation in the International Geophysical Year. The mission followed the first two satellites the previous year; the Soviet Union's Sputnik 1 and 2, beginning the Cold War Space Race between the two nations.

The idea of a geosynchronous satellite—one that could orbit the Earth above the equator and remain fixed by following the Earth's rotation—was first proposed by Herman Potočnik in 1928 and popularised by the science fiction author Arthur C. Clarke in a paper in Wireless World in 1945. [4] The first satellite to successfully reach geostationary orbit was Syncom3, built by Hughes Aircraft for NASA and launched on August 19, 1963. Succeeding generations of communications satellites featuring larger capacities and improved performance characteristics were adopted for use in television delivery, military applications and telecommunications purposes. Following the invention of the Internet and the World Wide Web, geostationary satellites attracted interest as a potential means of providing Internet access.

Geosynchronous satellite satellite in geosynchronous orbit

A geosynchronous satellite is a satellite in geosynchronous orbit, with an orbital period the same as the Earth's rotation period. Such a satellite returns to the same position in the sky after each sidereal day, and over the course of a day traces out a path in the sky that is typically some form of analemma. A special case of geosynchronous satellite is the geostationary satellite, which has a geostationary orbit – a circular geosynchronous orbit directly above the Earth's equator. Another type of geosynchronous orbit used by satellites is the Tundra elliptical orbit.

Herman Potočnik Slovenian inventor

Herman Potočnik was a Slovene rocket engineer and pioneer of astronautics. He is chiefly remembered for his work addressing the long-term human habitation of space.

Arthur C. Clarke British science fiction writer, science writer, inventor, undersea explorer, and television series host

Sir Arthur Charles Clarke was a British science fiction writer, science writer and futurist, inventor, undersea explorer, and television series host.

A significant enabler of satellite-delivered Internet has been the opening up of the Ka band for satellites. In December 1993, Hughes Aircraft Co. filed with the Federal Communications Commission for a license to launch the first Ka-band satellite, Spaceway. In 1995, the FCC issued a call for more Ka-band satellite applications, attracting applications from 15 companies. Among those were EchoStar, Lockheed Martin, GE-Americom, Motorola and KaStar Satellite, which later became WildBlue.

The Ka band is a portion of the microwave part of the electromagnetic spectrum defined as frequencies in the range 26.5–40 gigahertz (GHz), i.e. wavelengths from slightly over one centimeter down to 7.5 millimeters. The band is called Ka, short for "K-above" because it is the upper part of the original NATO K band, which was split into three bands because of the presence of the atmospheric water vapor resonance peak at 22.24 GHz, (1.35 cm) which made the center unusable for long range transmission. The 30/20 GHz band is used in communications satellite uplinks in either the 27.5 GHz and 31 GHz bands, and high-resolution, close-range targeting radars aboard military airplanes. Some frequencies in this radio band are used for vehicle speed detection by law enforcement. The Kepler Mission used this frequency range to downlink the scientific data collected by the space telescope.

Federal Communications Commission Independent agency of the U.S. Government

The Federal Communications Commission (FCC) is an independent agency of the United States government created by statute to regulate interstate communications by radio, television, wire, satellite, and cable. The FCC serves the public in the areas of broadband access, fair competition, radio frequency use, media responsibility, public safety, and homeland security.

The SPACEWAY system was originally envisioned as a global Ka band communications system by Hughes Electronics. When the project to build the system was taken over by Hughes Network Systems, a subsidiary of Hughes Electronics, it was transformed into a phased deployment initially only launching a North American satellite system. This is in comparison to other more ambitious systems such as Teledesic and Astrolink which retained their full global nature and which subsequently failed to complete their systems. Hughes Network Systems working with Hughes Electronics subsidiary Hughes Space and Communications completed and built the North American SPACEWAY system meant to provide broadband capabilities of up to 512 kbit/s, 2 Mbit/s, and 16 Mbit/s uplink data communication rates with fixed Ka-band satellite terminal antennas sized as small as 74 cm (29 in). The broadband SPACEWAY system was standardized by Telecommunications Industry Association and European Telecommunications Standards Institute as the Regenerative Satellite Mesh - A Air Interface.

Among prominent aspirants in the early-stage satellite Internet sector was Teledesic, an ambitious and ultimately failed project funded in part by Microsoft that ended up costing more than $9 billion. Teledesic's idea was to create a broadband satellite constellation of hundreds of low-orbiting satellites in the Ka-band frequency, providing inexpensive Internet access with download speeds of up to 720 Mbit/s. The project was abandoned in 2003. Teledesic's failure, coupled with the bankruptcy filings of the satellite communications providers Iridium Communications Inc. and Globalstar, dampened marketplace enthusiasm for satellite Internet development. It wasn’t until September 2003 when the first Internet-ready satellite for consumers was launched by Eutelsat. [5]

Teledesic satellite company

Teledesic was a company founded in the 1990s to build a commercial broadband satellite constellation for Internet services. Using low-Earth-orbiting satellites small antennas could be used to provide uplinks of as much as 100 Mbit/s and downlinks of up to 720 Mbit/s. The original 1994 proposal was extremely ambitious, costing over 9 billion USD and originally planning 840 active satellites with in-orbit spares at an altitude of 700 km. In 1997, the plan was scaled back to 288 active satellites at 1400 km.

Microsoft U.S.-headquartered technology company

Microsoft Corporation is an American multinational technology company with headquarters in Redmond, Washington. It develops, manufactures, licenses, supports and sells computer software, consumer electronics, personal computers, and related services. Its best known software products are the Microsoft Windows line of operating systems, the Microsoft Office suite, and the Internet Explorer and Edge Web browsers. Its flagship hardware products are the Xbox video game consoles and the Microsoft Surface lineup of touchscreen personal computers. As of 2016, it is the world's largest software maker by revenue, and one of the world's most valuable companies. The word "Microsoft" is a portmanteau of "microcomputer" and "software". Microsoft is ranked No. 30 in the 2018 Fortune 500 rankings of the largest United States corporations by total revenue.

In telecommunications, broadband is wide bandwidth data transmission which transports multiple signals and traffic types. The medium can be coaxial cable, optical fiber, radio or twisted pair.

In 2004, with the launch of Anik F2, the first high throughput satellite, a class of next-generation satellites providing improved capacity and bandwidth became operational. More recently, high throughput satellites such as ViaSat's ViaSat-1 satellite in 2011 and HughesNet's Jupiter in 2012 have achieved further improvements, elevating downstream data rates from 1–3 Mbit/s up to 12–15Mbit/s and beyond. Internet access services tied to these satellites are targeted largely to rural residents as an alternative to Internet service via dial-up, ADSL or classic FSSes. [6]

Since 2014, a rising number of companies announced working on internet access using satellite constellations in low Earth orbit. SpaceX, OneWeb and Amazon all plan to launch more than 1000 satellites each. OneWeb alone raised $1.7 billion by February 2017 for the project, [7] and SpaceX raised over one billion in the first half of 2019 alone [8] and expected more than $30 billion in revenue by 2025 from its satellite constellation. [9] [10] Many planned constellations employ laser communication for inter-satellite links to effectively create a space-based internet backbone.

As of 2017, airlines such as Delta and American have been introducing satellite internet as a means of combating limited bandwidth on airplanes and offering passengers usable internet speeds. [11]

WildBlue satellite Internet dish on the side of a house WildBlueDish.jpg
WildBlue satellite Internet dish on the side of a house

Companies and market

Companies providing home internet service include ViaSat, through its Exede brand, and EchoStar, through subsidiary HughesNet. [12]


Satellite Internet generally relies on three primary components: a satellite, typically in geostationary orbit (sometimes referred to as a geosynchronous Earth orbit, or GEO), a number of ground stations known as gateways that relay Internet data to and from the satellite via radio waves (microwave), and a small antenna at the subscriber's location, often a VSAT (very-small-aperture terminal) dish antenna with a transceiver. Other components of a satellite Internet system include a modem at the user end which links the user's network with the transceiver, and a centralized network operations center (NOC) for monitoring the entire system. Working in concert with a broadband gateway, the satellite operates a Star network topology where all network communication passes through the network's hub processor, which is at the center of the star. With this configuration, the number of remote VSATs that can be connected to the hub is virtually limitless.


Marketed as the center of the new broadband satellite networks are a new generation of high-powered GEO satellites positioned 35,786 kilometres (22,236 mi) above the equator, operating in Ka-band (18.3–30 GHz) mode. [13] These new purpose-built satellites are designed and optimized for broadband applications, employing many narrow spot beams, [14] which target a much smaller area than the broad beams used by earlier communication satellites. This spot beam technology allows satellites to reuse assigned bandwidth multiple times which can enable them to achieve much higher overall capacity than conventional broad beam satellites. The spot beams can also increase performance and consequential capacity by focusing more power and increased receiver sensitivity into defined concentrated areas. Spot beams are designated as one of two types: subscriber spot beams, which transmit to and from the subscriber-side terminal, and gateway spot beams, which transmit to/from a service provider ground station. Note that moving off the tight footprint of a spotbeam can degrade performance significantly. Also, spotbeams can make impossible the use of other significant new technologies including 'Carrier in Carrier' modulation.

In conjunction with the satellite's spot-beam technology, a bent-pipe architecture has traditionally been employed in the network in which the satellite functions as a bridge in space, connecting two communication points on the ground. The term "bent-pipe" is used to describe the shape of the data path between sending and receiving antennas, with the satellite positioned at the point of the bend. Simply put, the satellite's role in this network arrangement is to relay signals from the end user's terminal to the ISP's gateways, and back again without processing the signal at the satellite. The satellite receives, amplifies, and redirects a carrier on a specific radio frequency through a signal path called a transponder. [15]

Some proposed satellite constellations in LEO such as SpaceX's Starlink, Telesat's constellation and LeoSat will employ laser communication equipment for high-throughput optical inter-satellite links. The interconnected satellites allow for direct routing of user data from satellite to satellite and effectively create a space-based optical mesh network that will enable seamless network management and continuity of service. [16]

The satellite has its own set of antennas to receive communication signals from Earth and to transmit signals to their target location. These antennas and transponders are part of the satellite's "payload", which is designed to receive and transmit signals to and from various places on Earth. What enables this transmission and reception in the payload transponders is a repeater subsystem (RF (radio frequency) equipment) used to change frequencies, filter, separate, amplify and group signals before routing them to their destination address on Earth. The satellite's high-gain receiving antenna passes the transmitted data to the transponder which filters, translates and amplifies them, then redirects them to the transmitting antenna on board. The signal is then routed to a specific ground location through a channel known as a carrier. Beside the payload, the other main component of a communications satellite is called the bus, which comprises all equipment required to move the satellite into position, supply power, regulate equipment temperatures, provide health and tracking information, and perform numerous other operational tasks. [15]


Along with dramatic advances in satellite technology over the past decade, ground equipment has similarly evolved, benefiting from higher levels of integration and increasing processing power, expanding both capacity and performance boundaries. The Gateway—or Gateway Earth Station (its full name)—is also referred to as a ground station, teleport or hub. The term is sometimes used to describe just the antenna dish portion, or it can refer to the complete system with all associated components. In short, the gateway receives radio wave signals from the satellite on the last leg of the return or upstream payload, carrying the request originating from the end-user's site. The satellite modem at the gateway location demodulates the incoming signal from the outdoor antenna into IP packets and sends the packets to the local network. Access server/gateways manage traffic transported to/from the Internet. Once the initial request has been processed by the gateway's servers, sent to and returned from the Internet, the requested information is sent back as a forward or downstream payload to the end-user via the satellite, which directs the signal to the subscriber terminal. Each Gateway provides the connection to the Internet backbone for the gateway beam(s) it serves. The system of gateways comprising the satellite ground system provides all network services for satellite and corresponding terrestrial connectivity. Each gateway provides a multiservice access network for subscriber terminal connections to the Internet. In the continental United States, because it is north of the equator, all gateway and subscriber dish antenna must have an unobstructed view of the southern sky. Because of the satellite's geostationary orbit, the gateway antenna can stay pointed at a fixed position.

Antenna dish and modem

For the customer-provided equipment (i.e. PC and router) to access the broadband satellite network, the customer must have additional physical components installed:

Outdoor unit (ODU)

At the far end of the outdoor unit is typically a small (2–3-foot diameter), reflective dish-type radio antenna. The VSAT antenna must also have an unobstructed view of the sky to allow for proper line-of-sight (L-O-S) to the satellite. There are three physical characteristic settings used to ensure that the antenna is configured correctly at the satellite, which are: azimuth, elevation, polarization, and skew. The combination of these settings gives the outdoor unit a L-O-S to the chosen satellite and makes data transmission possible. These parameters are generally set at the time the equipment is installed, along with a beam assignment (Ka-band only); these steps must all be taken prior to the actual activation of service. Transmit and receive components are typically mounted at the focal point of the antenna which receives/sends data from/to the satellite. The main parts are:

  • Feed – This assembly is part of the VSAT receive and transmit chain, which consists of several components with different functions, including the feed horn at the front of the unit, which resembles a funnel and has the task of focusing the satellite microwave signals across the surface of the dish reflector. The feed horn both receives signals reflected off the dish's surface and transmits outbound signals back to the satellite.
  • Block upconverter (BUC) – This unit sits behind the feed horn and may be part of the same unit, but a larger (higher wattage) BUC could be a separate piece attached to the base of the antenna. Its job is to convert the signal from the modem to a higher frequency and amplify it before it is reflected off the dish and towards the satellite.
  • Low-noise block downconverter (LNB) – This is the receiving element of the terminal. The LNB's job is to amplify the received satellite radio signal bouncing off the dish and filter out the noise, which is any signal not carrying valid information. The LNB passes the amplified, filtered signal to the satellite modem at the user's location.

Indoor unit (IDU)

The satellite modem serves as an interface between the outdoor unit and customer-provided equipment (i.e. PC, router) and controls satellite transmission and reception. From the sending device (computer, router, etc.) it receives an input bitstream and converts or modulates it into radio waves, reversing that order for incoming transmissions, which is called demodulation. It provides two types of connectivity:

  • Coaxial cable (COAX) connectivity to the satellite antenna. The cable carrying electromagnetic satellite signals between the modem and the antenna generally is limited to be no more than 150 feet in length.
  • Ethernet connectivity to the computer, carrying the customer's data packets to and from the Internet content servers.

Consumer grade satellite modems typically employ either the DOCSIS (Data Over Cable Service Interface Specification) or WiMAX (World Interoperability for Microwave Access) telecommunication standard to communicate with the assigned gateway.

Challenges and limitations

Signal latency

Latency (commonly referred to as "ping time") is the delay between requesting data and the receipt of a response, or in the case of one-way communication, between the actual moment of a signal's broadcast and the time it is received at its destination.

A radio signal takes about 120 milliseconds to reach a geostationary satellite and then 120 milliseconds to reach the ground station, so nearly 1/4 of a second overall. Typically, during perfect conditions, the physics involved in satellite communications account for approximately 550 milliseconds of latency round-trip time.

The longer latency is the primary difference between a standard terrestrial-based network and a geostationary satellite-based network. The round-trip latency of a geostationary satellite communications network can be more than 12 times that of a terrestrial based network. [17] [18]

Geostationary orbits

A geostationary orbit (or geostationary Earth orbit/GEO) is a geosynchronous orbit directly above the Earth's equator (0° latitude), with a period equal to the Earth's rotational period and an orbital eccentricity of approximately zero (i.e. a "circular orbit"). An object in a geostationary orbit appears motionless, at a fixed position in the sky, to ground observers. Launchers often place communications satellites and weather satellites in geostationary orbits, so that the satellite antennas that communicate with them do not have to move to track them, but can point permanently at the position in the sky where the satellites stay. Due to the constant 0° latitude and circularity of geostationary orbits, satellites in GEO differ in location by longitude only.

Compared to ground-based communication, all geostationary satellite communications experience higher latency due to the signal having to travel 35,786 km (22,236 mi) to a satellite in geostationary orbit and back to Earth again. Even at the speed of light (about 300,000 km/s or 186,000 miles per second), this delay can appear significant. If all other signaling delays could be eliminated, it still takes a radio signal about 250 milliseconds (ms), or about a quarter of a second, to travel to the satellite and back to the ground. [19] The absolute minimum total amount of delay varies, due to the satellite staying in one place in the sky, while ground-based users can be directly below (with a roundtrip latency of 239.6 ms), or far to the side of the planet near the horizon (with a roundtrip latency of 279.0 ms). [20]

For an Internet packet, that delay is doubled before a reply is received. That is the theoretical minimum. Factoring in other normal delays from network sources gives a typical one-way connection latency of 500–700 ms from the user to the ISP, or about 1,000–1,400 ms latency for the total round-trip time (RTT) back to the user. This is more than most dial-up users experience at typically 150–200 ms total latency, and much higher than the typical 15–40 ms latency experienced by users of other high-speed Internet services, such as cable or VDSL. [21]

For geostationary satellites, there is no way to eliminate latency, but the problem can be somewhat mitigated in Internet communications with TCP acceleration features that shorten the apparent round trip time (RTT) per packet by splitting ("spoofing") the feedback loop between the sender and the receiver. Certain acceleration features are often present in recent technology developments embedded in satellite Internet equipment.

Latency also impacts the initiation of secure Internet connections such as SSL which require the exchange of numerous pieces of data between web server and web client. Although these pieces of data are small, the multiple round-trips involved in the handshake produce long delays compared to other forms of Internet connectivity, as documented by Stephen T. Cobb in a 2011 report published by the Rural Mobile and Broadband Alliance. [22] This annoyance extends to entering and editing data using some Software as a Service or SaaS applications as well as in other forms of online work.

One should thoroughly test the functionality of live interactive access to a distant computer—such as virtual private networks. Many TCP protocols were not designed to work in high-latency environments.

Medium and Low Earth Orbits

Medium Earth orbit (MEO) and low Earth orbit (LEO) satellite constellations do not have such great delays, as the satellites are closer to the ground. For example:

  • The current LEO constellations of Globalstar and Iridium satellites have delays of less than 40 ms round trip, but their throughput is less than broadband at 64 kbit/s per channel. The Globalstar constellation orbits 1,420 km above the Earth and Iridium orbits at 670 km altitude.
  • The O3b Networks MEO constellation orbits at 8,062 km, with RTT latency of approximately 125 ms. [23] The proposed new network is also designed for much higher throughput with links well in excess of 1 Gbit/s (Gigabits per second).

Unlike geostationary satellites, low- and medium-Earth orbit satellites do not stay in a fixed position in the sky. Consequently, ground-based antennas cannot easily lock into communication with any one specific satellite. As with GPS, for a receiver the satellites are only visible for a part of their orbit, therefore multiple satellites are necessary to establish a permanent internet connection, with low-Earth orbits needing more satellites than medium-Earth orbits. The network has to switch data transfer between satellites to keep a connection to a customer.

One can communicate with MEO or LEO satellites that move in the sky in three ways, using:

  • more diffuse or completely omnidirectional ground antennas capable of communicating with one or more satellites visible in the sky at the same time, but at significantly higher transmit power than fixed geostationary dish antennas (due to the lower gain), and with much poorer signal-to-noise ratios for receiving the signal
  • motorized antenna mounts with high-gain, narrow beam antennas tracking individual satellites
  • phased array antennas that can steer the beam electronically, together with software that can predict the path of each satellite in the constellation

Ultralight atmospheric aircraft as satellites

A proposed alternative to relay satellites is a special-purpose solar-powered ultralight aircraft, which would fly along a circular path above a fixed ground location, operating under autonomous computer control at a height of approximately 20,000 meters.

For example, the United States Defense Advanced Research Projects Agency Vulture project envisaged an ultralight aircraft capable of station-keeping over a fixed area for a period of up to five years, and able to provide both continuous surveillance to ground assets as well as to service extremely low-latency communications networks. [24] This project was cancelled[ by whom? ] in 2012 before it became operational.[ citation needed ]

Onboard batteries would charge during daylight hours through solar panels covering the wings, and would provide power to the plane during night. Ground-based satellite internet dishes would relay signals to and from the aircraft, resulting in a greatly reduced round-trip signal latency of only 0.25 milliseconds. The planes could potentially run for long periods without refueling. Several such schemes involving various types of aircraft have been proposed in the past.


A foldable Bigpond satellite Internet dish Bigpond internet Satellite.jpg
A foldable Bigpond satellite Internet dish

Satellite communications are affected by moisture and various forms of precipitation (such as rain or snow) in the signal path between end users or ground stations and the satellite being utilized. This interference with the signal is known as rain fade. The effects are less pronounced on the lower frequency 'L' and 'C' bands, but can become quite severe on the higher frequency 'Ku' and 'Ka' band. For satellite Internet services in tropical areas with heavy rain, use of the C band (4/6 GHz) with a circular polarisation satellite is popular [25] . Satellite communications on the Ka band (19/29 GHz) can use special techniques such as large rain margins, adaptive uplink power control and reduced bit rates during precipitation.

Rain margins are the extra communication link requirements needed to account for signal degradations due to moisture and precipitation, and are of acute importance on all systems operating at frequencies over 10 GHz. [26]

The amount of time during which service is lost can be reduced by increasing the size of the satellite communication dish so as to gather more of the satellite signal on the downlink and also to provide a stronger signal on the uplink. In other words, increasing antenna gain through the use of a larger parabolic reflector is one way of increasing the overall channel gain and, consequently, the signal-to-noise (S/N) ratio, which allows for greater signal loss due to rain fade without the S/N ratio dropping below its minimum threshold for successful communication.

Modern consumer-grade dish antennas tend to be fairly small, which reduces the rain margin or increases the required satellite downlink power and cost. However, it is often more economical to build a more expensive satellite and smaller, less expensive consumer antennas than to increase the consumer antenna size to reduce the satellite cost.

Large commercial dishes of 3.7 m to 13 m diameter can be used to achieve increased rain margins and also to reduce the cost per bit by allowing for more efficient modulation codes. Alternately, larger aperture antennae can require less power from the satellite to achieve acceptable performance. Satellites typically use photovoltaic solar power, so there is no expense for the energy itself, but a more powerful satellite will require larger, more powerful solar panels and electronics, often including a larger transmitting antenna. The larger satellite components not only increase materials costs but also increase the weight of the satellite, and in general, the cost to launch a satellite into an orbit is directly proportional to its weight. (In addition, since satellite launch vehicles [i.e. rockets] have specific payload size limits, making parts of the satellite larger may require either more complex folding mechanisms for parts of the satellite like solar panels and high-gain antennas, or upgrading to a more expensive launch vehicle that can handle a larger payload.)

Modulated carriers can be dynamically altered in response to rain problems or other link impairments using a process called adaptive coding and modulation, or "ACM". ACM allows the bit rates to be increased substantially during normal clear sky conditions, increasing the number of bits per Hz transmitted, and thus reducing overall cost per bit. Adaptive coding requires some sort of a return or feedback channel which can be via any available means, satellite or terrestrial.

Line of sight

Fresnel zone. D is the distance between the transmitter and the receiver, r is the radius of the Fresnel zone. FresnelSVG.svg
Fresnel zone. D is the distance between the transmitter and the receiver, r is the radius of the Fresnel zone.

An object is in your line of sight if you can draw a straight line between yourself and the object without any interference, such as a mountain or a bend in a road. An object beyond the horizon is below the line of sight and, therefore, can be difficult to communicate with.

Typically a completely clear line of sight between the dish and the satellite is required for the system to work optimally. In addition to the signal being susceptible to absorption and scattering by moisture, the signal is similarly impacted by the presence of trees and other vegetation in the path of the signal. As the radio frequency decreases, to below 900 MHz, penetration through vegetation increases, but most satellite communications operate above 2 GHz making them sensitive to even minor obstructions such as tree foliage. A dish installation in the winter must factor in plant foliage growth that will appear in the spring and summer.

Fresnel zone

Even if there is a direct line of sight between the transmitting and receiving antenna, reflections from objects near the path of the signal can decrease apparent signal power through phase cancellations. Whether and how much signal is lost from a reflection is determined by the location of the object in the Fresnel zone of the antennas.

Two-way satellite-only communication

The back panel of a satellite modem, with coaxial connections for both incoming and outgoing signals, and an Ethernet port for connection WildBlueSatelliteModemBack.JPG
The back panel of a satellite modem, with coaxial connections for both incoming and outgoing signals, and an Ethernet port for connection

Home or consumer grade two-way satellite Internet service involves both sending and receiving data from a remote very-small-aperture terminal (VSAT) via satellite to a hub telecommunications port (teleport), which then relays data via the terrestrial Internet. The satellite dish at each location must be precisely pointed to avoid interference with other satellites. At each VSAT site the uplink frequency, bit rate and power must be accurately set, under control of the service provider hub.

There are several types of two way satellite Internet services, including time division multiple access (TDMA) and single channel per carrier (SCPC). Two-way systems can be simple VSAT terminals with a 60–100 cm dish and output power of only a few watts intended for consumers and small business or larger systems which provide more bandwidth. Such systems are frequently marketed as "satellite broadband" and can cost two to three times as much per month as land-based systems such as ADSL. The modems required for this service are often proprietary, but some are compatible with several different providers. They are also expensive, costing in the range of USD $600 to $2000.

The two-way "iLNB" used on the SES Broadband. ASTRA2Connect LNB.jpg
The two-way "iLNB" used on the SES Broadband.

The two-way "iLNB" used on the SES Broadband terminal dish has a transmitter and single-polarity receive LNB, both operating in the Ku band. Pricing for SES Broadband modems range from €299 to €350. These types of system are generally unsuitable for use on moving vehicles, although some dishes may be fitted to an automatic pan and tilt mechanism to continuously re-align the dish—but these are more expensive. The technology for SES Broadband was delivered by a Belgian company called Newtec.


Consumer satellite Internet customers range from individual home users with one PC to large remote business sites with several hundred PCs.

Home users tend to use shared satellite capacity to reduce the cost, while still allowing high peak bit rates when congestion is absent. There are usually restrictive time-based bandwidth allowances so that each user gets their fair share, according to their payment. When a user exceeds their allowance, the company may slow down their access, deprioritise their traffic or charge for the excess bandwidth used. For consumer satellite Internet, the allowance can typically range from 200  MB per day to 25  GB per month. [27] [28] [29] A shared download carrier may have a bit rate of 1 to 40 Mbit/s and be shared by up to 100 to 4,000 end users.

The uplink direction for shared user customers is normally time division multiple access (TDMA), which involves transmitting occasional short packet bursts in between other users (similar to how a cellular phone shares a cell tower).

Each remote location may also be equipped with a telephone modem; the connections for this are as with a conventional dial-up ISP. Two-way satellite systems may sometimes use the modem channel in both directions for data where latency is more important than bandwidth, reserving the satellite channel for download data where bandwidth is more important than latency, such as for file transfers.

In 2006, the European Commission sponsored the UNIC project which aims at developing an end-to-end scientific test bed for the distribution of new broadband interactive TV-centric services delivered over low-cost two-way satellite to actual end-users in the home. The UNIC architecture employs DVB-S2 standard for downlink and DVB-RCS standard for uplink.

Normal VSAT dishes (1.2–2.4 m diameter) are widely used for VoIP phone services. A voice call is sent by means of packets via the satellite and Internet. Using coding and compression techniques the bit rate needed per call is only 10.8 kbit/s each way.

Portable satellite Internet

Portable satellite modem

Portable Satellite Internet Modem and Antenna deployed with the Red Cross in South Sudan. Portable Satellite Internet Modem and Antenna.jpg
Portable Satellite Internet Modem and Antenna deployed with the Red Cross in South Sudan.

These usually come in the shape of a self-contained flat rectangular box that needs to be pointed in the general direction of the satellite—unlike VSAT the alignment need not be very precise and the modems have built in signal strength meters to help the user align the device properly. The modems have commonly used connectors such as Ethernet or Universal Serial Bus (USB). Some also have an integrated Bluetooth transceiver and double as a satellite phone. The modems also tend to have their own batteries so they can be connected to a laptop without draining its battery. The most common such system is INMARSAT's BGAN—these terminals are about the size of a briefcase and have near-symmetric connection speeds of around 350–500 kbit/s. Smaller modems exist like those offered by Thuraya but only connect at 444 kbit/s in a limited coverage area. INMARSAT now offer the IsatHub, a paperback book sized satellite modem working in conjunction with the users mobile phone and other devices. The cost has been reduced to $3 per MB and the device itself is on sale for about $1300. [30]

Using such a modem is extremely expensive—data transfer costs between $5 and $7 per megabyte. The modems themselves are also expensive, usually costing between $1,000 and $5,000. [31]

Internet via satellite phone

For many years[ when? ] satellite phones have been able to connect to the Internet. Bandwidth varies from about 2400 bit/s for Iridium network satellites and ACeS based phones to 15 kbit/s upstream and 60 kbit/s downstream for Thuraya handsets. Globalstar also provides Internet access at 9600 bit/s—like Iridium and ACeS a dial-up connection is required and is billed per minute, however both Globalstar and Iridium are planning to launch new satellites offering always-on data services at higher rates. With Thuraya phones the 9,600 bit/s dial-up connection is also possible, the 60 kbit/s service is always-on and the user is billed for data transferred (about $5 per megabyte). The phones can be connected to a laptop or other computer using a USB or RS-232 interface. Due to the low bandwidths involved it is extremely slow to browse the web with such a connection, but useful for sending email, Secure Shell data and using other low-bandwidth protocols. Since satellite phones tend to have omnidirectional antennas no alignment is required as long as there is a line of sight between the phone and the satellite.

One-way receive, with terrestrial transmit

One-way terrestrial return satellite Internet systems are used with conventional dial-up Internet access, with outbound (upstream) data traveling through a telephone modem, but downstream data sent via satellite at a higher rate. In the U.S., an FCC license is required for the uplink station only; no license is required for the users.

Another type of 1-way satellite Internet system uses General Packet Radio Service (GPRS) for the back-channel. [32] Using standard GPRS or Enhanced Data Rates for GSM Evolution (EDGE), costs are reduced for higher effective rates if the upload volume is very low, and also because this service is not per-time charged, but charged by volume uploaded. GPRS as return improves mobility when the service is provided by a satellite that transmits in the field of 100-200 kW.[ citation needed ] Using a 33 cm wide satellite dish, a notebook and a normal GPRS equipped GSM phone, users can get mobile satellite broadband.

System components

The transmitting station has two components, consisting of a high speed Internet connection to serve many customers at once, and the satellite uplink to broadcast requested data to the customers. The ISP's routers connect to proxy servers which can enforce quality of service (QoS) bandwidth limits and guarantees for each customer's traffic.

Often, nonstandard IP stacks are used to address the latency and asymmetry problems of the satellite connection. As with one-way receive systems, data sent over the satellite link is generally also encrypted, as otherwise it would be accessible to anyone with a satellite receiver.

Many IP-over-satellite implementations use paired proxy servers at both endpoints so that certain communications between clients and servers [33] need not to accept the latency inherent in a satellite connection. For similar reasons, there exist special Virtual private network (VPN) implementations designed for use over satellite links because standard VPN software cannot handle the long packet travel times.

Upload speeds are limited by the user's dial-up modem, while download speeds can be very fast compared to dial-up, using the modem only as the control channel for packet acknowledgement.

Latency is still high, although lower than full two-way geostationary satellite Internet, since only half of the data path is via satellite, the other half being via the terrestrial channel.

One-way broadcast, receive only

One-way broadcast satellite Internet systems are used for Internet Protocol (IP) broadcast-based data, audio and video distribution. In the U.S., a Federal Communications Commission (FCC) license is required only for the uplink station and no license is required for users. Note that most Internet protocols will not work correctly over one-way access, since they require a return channel. However, Internet content such as web pages can still be distributed over a one-way system by "pushing" them out to local storage at end user sites, though full interactivity is not possible. This is much like TV or radio content which offers little user interface.

The broadcast mechanism may include compression and error correction to help ensure the one-way broadcast is properly received. The data may also be rebroadcast periodically, so that receivers that did not previously succeed will have additional chances to try downloading again.

The data may also be encrypted, so that while anyone can receive the data, only certain destinations are able to actually decode and use the broadcast data. Authorized users only need to have possession of either a short decryption key or an automatic rolling code device that uses its own highly accurate independent timing mechanism to decrypt the data.

System hardware components

Similar to one-way terrestrial return, satellite Internet access may include interfaces to the public switched telephone network for squawk box applications. An Internet connection is not required, but many applications include a File Transfer Protocol (FTP) server to queue data for broadcast.

System software components

Most one-way broadcast applications require custom programming at the remote sites. The software at the remote site must filter, store, present a selection interface to and display the data. The software at the transmitting station must provide access control, priority queuing, sending, and encapsulating of the data.


Emerging commercial services in this area include:

Efficiency increases

2013 FCC report cites big jump in satellite performance

In its report released in February, 2013, the Federal Communications Commission noted significant advances in satellite Internet performance. The FCC's Measuring Broadband America report also ranked the major ISPs by how close they came to delivering on advertised speeds. In this category, satellite Internet topped the list, with 90% of subscribers seeing speeds at 140% or better than what was advertised. [34]

Reducing satellite latency

Much of the slowdown associated with satellite Internet is that for each request, many roundtrips must be completed before any useful data can be received by the requester. [35] Special IP stacks and proxies can also reduce latency through lessening the number of roundtrips, or simplifying and reducing the length of protocol headers. Optimization technologies include TCP acceleration, HTTP pre-fetching and DNS caching among many others. See the Space Communications Protocol Specifications standard (SCPS), developed by NASA and adopted widely by commercial and military equipment and software providers in the market space.

Satellites launched

The WINDS satellite was launched on February 23, 2008. The WINDS satellite is used to provide broadband Internet services to Japan and locations across the Asia-Pacific region. The satellite to provides a maximum speed of 155 Mbit/s down and 6 Mbit/s up to residences with a 45 cm aperture antenna and a 1.2 Gbit/s connection to businesses with a 5-meter antenna. [36] It has reached the end of its design life expectancy.

SkyTerra-1 was launched in mid-November 2010, providing North America, while Hylas-1 was launched in November 2010, targeting Europe. [37]

On December 26, 2010, Eutelsat's KA-SAT was launched. It covers the European continent with 80 spot beams—focused signals that cover an area a few hundred kilometers across Europe and the Mediterranean. Spot beams allow for frequencies to be effectively reused in multiple regions without interference. The result is increased capacity. Each of the spot beams has an overall capacity of 900 Mbit/s and the entire satellite will has a capacity of 70 Gbit/s. [37]

ViaSat-1, the highest capacity communications satellite in the world, [38] was launched Oct. 19, 2011 from Baikonur, Kazakhstan, offering 140 Gbit/s of total throughput capacity, through the Exede Internet service.

Passengers aboard JetBlue Airways can use this service since 2015. [39] The service has also been expanded to United Airlines, American Airlines, Scandinavian Airlines, Virgin America and Qantas. [40] [41] [42]

The EchoStar XVII satellite was launched July 5, 2012 by Arianespace and was placed in its permanent geosynchronous orbital slot of 107.1° West longitude, servicing HughesNet. This Ka-band satellite has over 100 Gbit/s of throughput capacity. [43]

Since 2013, the O3b satellite constellation claims an end-to-end round-trip latency of 238 ms for data services.

In 2015 and 2016, the Australian Government launched two satellites to provide internet to regional Australians and residents of External Territories, such as Norfolk Island and Christmas Island.

See also

Related Research Articles

Satellite constellation group of artificial satellites working in concert

A satellite constellation is a group of artificial satellites working in concert. Such a constellation can be considered to be a number of satellites with coordinated ground coverage, operating together under shared control, synchronized so that they overlap well in coverage, the period in which a satellite or other spacecraft is visible above the local horizon.

Very-small-aperture terminal

A very small aperture terminal (VSAT) is a two-way satellite ground station with a dish antenna that is smaller than 3.8 meters. The majority of VSAT antennas range from 75 cm to 1.2 m. Data rates, in most cases, range from 4 kbit/s up to 16 Mbit/s. VSATs access satellites in geosynchronous orbit or geostationary orbit to relay data from small remote Earth stations (terminals) to other terminals or master Earth station "hubs".

Satellite phone type of mobile phone

A satellite telephone, satellite phone or satphone is a type of mobile phone that connects to other phones or the telephone network by radio through orbiting satellites instead of terrestrial cell sites, as cellphones do. The advantage of a satphone is that its use is not limited to areas covered by cell towers; it can be used in most or all geographic locations on the Earth's surface.

StarBand was a two-way satellite broadband Internet service available in the U.S. from 2000–2015.

Datacasting is the broadcasting of data over a wide area via radio waves. It most often refers to supplemental information sent by television stations along with digital terrestrial television, but may also be applied to digital signals on analog TV or radio. It generally does not apply to data which is inherent to the medium, such as PSIP data which defines virtual channels for DTT or direct broadcast satellite systems; or to things like cable modem or satellite modem, which use a completely separate channel for data.

Broadband Global Area Network

The Broadband Global Area Network (BGAN) is a global satellite network with telephony using portable terminals. The terminals are normally used to connect a laptop computer to broadband Internet in remote locations, although as long as line-of-sight to the satellite exists, the terminal can be used anywhere. The value of BGAN terminals is that, unlike other satellite Internet services which require bulky and heavy satellite dishes to connect, a BGAN terminal is about the size of a laptop and thus can be carried easily. The network is provided by Inmarsat and uses three geostationary satellites called I-4 to provide almost global coverage.

Thuraya is a United Arab Emirates-based regional mobile-satellite service (MSS) provider. The company operates two geostationary satellites and provides telecommunications coverage in more than 161 countries in Europe, the Middle East, North, Central and East Africa, Asia and Australia. Thuraya’s L-band network delivers voice and data services

Anik (satellite)

The Anik satellites are a series of geostationary communications satellites launched by Telesat Canada for television in Canada, from 1972 through 2013. Some of the later satellites in the series remain operational in orbit, while others have been retired and are derelict. The naming of the satellite was determined by a national contest, and was won by Julie-Frances Czapla of St. Leonard, Quebec. In Inuktitut, Anik means "little brother".

Inmarsat company

Inmarsat plc is a British satellite telecommunications company, offering global mobile services. It provides telephone and data services to users worldwide, via portable or mobile terminals which communicate with ground stations through thirteen geostationary telecommunications satellites. Inmarsat's network provides communications services to a range of governments, aid agencies, media outlets and businesses with a need to communicate in remote regions or where there is no reliable terrestrial network. The company is listed on the London Stock Exchange, is a constituent of the FTSE 250 Index, and is a financial and technical sponsor of Télécoms Sans Frontières.

Radio Technology of using radio waves to carry information

Radio is the technology of signaling or communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications. In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking and satellite communication among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location. In radio navigation systems such as GPS and VOR, a mobile receiver receives radio signals from navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device.

SES Broadband company

SES Broadband is a two-way satellite broadband Internet service available across Europe, which launched in March 2007, and uses the Astra series of geostationary satellites.

O3b (satellite) satellite constellation designed for telecommunications and data backhaul from remote locations

O3b is a satellite constellation designed for telecommunications and data backhaul from remote locations.


Tooway satellite broadband Internet service available across Europe. The first version of the service was launched in 2007 via two Eutelsat geostationary satellites, Hot Bird 6 and Eurobird 3, respectively at the 13° and 33° East orbital positions.

KA-SAT communications satellite

KA-SAT is a high-throughput telecommunications satellite owned by Eutelsat. The satellite provides broadband Internet access services across Europe and also a small area of the Middle East, and additionally the Saorsat TV service to Ireland. It is positioned at 9°E, joining the Eurobird 9A Ku band satellite. KA-SAT was manufactured by EADS Astrium, based on the Eurostar E3000 platform, with a total weight of 6 tons. It was launched by Proton in December 2010. The satellite is named after the Ka band frequency, which is used on the spacecraft.

Space segment spacecraft and its communication links

The space segment of an artificial satellite system is one of its three operational components. It comprises the satellite or satellite constellation and the uplink and downlink satellite links.

SES Broadband for Maritime

SES Broadband for Maritime is a two-way satellite broadband Internet service for use on private boats and commercial ships throughout European waters.

SwiftBroadband is an IP-based packet-switched communications network that provides a symmetric ‘always-on’ data connection of up to 650 kbit/s per channel for aircraft globally except for the polar regions, using the Inmarsat satellite constellation.

ViaSat-1 is a high throughput communications satellite owned by ViaSat Inc. and Telesat Canada. Launched October 19, 2011 aboard a Proton rocket, it held the Guinness record for the world's highest capacity communications satellite with a total capacity in excess of 140 Gbit/s, more than all the satellites covering North America combined, at the time of its launch.

Starlink (satellite constellation) Satellite constellation; space-based internet communication system

Starlink is a satellite constellation development project underway by American company SpaceX, to develop a low-cost, high-performance satellite bus and requisite customer ground transceivers to implement a new space-based Internet communication system. SpaceX also plans to sell satellites that use a satellite bus that may be used for military, scientific or exploratory purposes.


  1. Brodkin, Jon (2013-02-15). "Satellite Internet faster than advertised, but latency still awful". Ars Technica. Retrieved 2013-08-29.
  2. "Satellite Internet: 15 Mbps, no matter where you live in the U.S." Ars Technica. Retrieved 5 September 2013.
  3. End-to-End Efficiency for Trunking Networks, Newtec IP Trunking, 2013
  4. "Extra-Terrestrial Relays—Can Rocket Stations Give Worldwide Radio Coverage?" (PDF). Arthur C. Clark. October 1945. Archived from the original (PDF) on 2006-07-15. Retrieved 2009-03-04.
  5. "First Internet Ready Satellite Launched". Space Daily. 2003-09-29. Retrieved 2013-08-29.
  6. Fitchard, Kevin (2012-10-01). "With new satellite tech, rural dwellers get access to true broadband". Gigaom. Retrieved 2013-08-29.
  7. "OneWeb weighing 2,000 more satellites -". 24 February 2017. Retrieved 15 April 2018.
  8. "Elon Musk's SpaceX raises over $1 billion this year as internet satellite production ramps up". May 24, 2019.
  9. Winkler, Rolfe; Pasztor, Andy (2017-01-13). "Exclusive Peek at SpaceX Data Shows Loss in 2015, Heavy Expectations for Nascent Internet Service". Wall Street Journal. ISSN   0099-9660 . Retrieved 2018-02-09.
  10. Etherington, Darrell. "SpaceX hopes satellite Internet business will pad thin rocket launch margins". TechCrunch. Retrieved 2018-02-09.
  11. A.W. (17 October 2017). "More airlines are offering free Wi-Fi for messaging services". The Economist .
  12. "Satellite broadband takes off, attracts users beyond rural areas – Denver Business Journal". Denver Business Journal. Retrieved 2016-01-18.
  13. "Ka-band Permitted Space Station List". Federal Communications Commission. 2009-01-25. Archived from the original on 2012-04-21. Retrieved 2013-08-29.
  15. 1 2 "How broadband satellite Internet works". VSAT Systems. Retrieved 2013-08-29.
  16. "Elon Musk is about to launch the first of 11,925 proposed SpaceX internet satellites — more than all spacecraft that orbit Earth today". Business Insider. Retrieved 15 April 2018.
  17. Golding, Joshua. "Q: What is the difference between terrestrial (land based) Internet and satellite Internet". Network Innovation Associates. Retrieved 8 May 2013.
  18. "Latency- why is it a big deal for Satellite Internet?". VSAT Systems. Retrieved 10 April 2017.
  19. "Data Communications Protocol Performance on Geo-stationary Satellite Links (Hans Kruse, Ohio University, 1996)" (PDF). Retrieved 28 March 2018.
  20. Roundtrip latency numbers are from RFC 2488, Section 2: Satellite Characteristics
  21. See Comparative Latency of Internet Connections in Satellite Internet Connection for Rural Broadband, page 7 (RuMBA White Paper, Stephen Cobb, 2011)
  22. Stephen Cobb. "RuMBA White Paper: Satellite Internet Connection for Rural Broadband". RuMBA – Rural Mobile & Broadband Alliance. Archived from the original on 2012-07-29. Retrieved 22 March 2019.CS1 maint: Unfit url (link)
  23. Revisiting elliptical satellite orbits to enhance the O3b constellation, L. Wood et al., Journal of the British Interplanetary Society, March 2014.
  24. Press release, DARPA's Vulture Program Enters Phase II, September 15, 2010, "Archived copy". Archived from the original on 2012-10-17. Retrieved 2012-11-03.CS1 maint: Archived copy as title (link) retrieved 11/03/2012
  25. "C Band Ku Band Comparison". Technical. Link Communications Systems. 2004-07-30. Retrieved 2018-02-10.
  26. Takashi Iida Satellite Communications: System and Its Design Technology, IOS Press, 2000, ISBN   4-274-90379-6, ISBN   978-4-274-90379-3
  27. HughesNet Fair Access Policy FAQ
  28. "WildBlue: High Speed Satellite Internet Provider". Official web site. Archived from the original on August 18, 2009. Retrieved July 17, 2011.
  29. "Exede: High Speed Satellite Internet Provider". Official web site. Retrieved December 11, 2012.
  30. "Security - Communications - Geopolitical - Consultancy". Security - Communications - Geopolitical - Consultancy. Retrieved 28 March 2018.
  31. "Inmarsat BGAN". GMPCS. Retrieved 2013-08-29.
  32. Archived April 9, 2008, at the Wayback Machine
  34. "Measuring Broadband America – February 2013". Federal Communications Commission. Retrieved 2013-08-29.
  35. TCP is bound by the low latency of a three-way handshake. See Transmission Control Protocol.
  36. "JAXA - Wideband InterNetworking engineering test and Demonstration Satellite "KIZUNA"(WINDS)". Retrieved 28 March 2018.
  37. 1 2 Martyn Williams (December 27, 2010). "European broadband-Internet satellite launched". Network World. Archived from the original on March 8, 2012. Retrieved July 17, 2011.
  38. "Highest-capacity communications satellite". Guinness World Records. 2011-10-19. Retrieved 2013-08-29.
  39. "JetBlue adds free Wi-Fi, says it can handle streaming video". Retrieved 28 March 2018.
  40. Galbraith, Craig (August 15, 2016). "ViaSat's Exede Business Talks Up Sky-High Broadband Contracts". Channel Partners. Retrieved October 3, 2016.
  41. de Selding, Peter B. (Feb 12, 2014). "ViaSat Gears Up for Loral Trial, Reports Slower Exede Growth". SpaceNews. Retrieved 4 May 2014.
  42. Freeman, Mike (September 9, 2016). "ViaSat Lands Another Airline For Inflight Wi-Fi". The San Diego Union-Tribune. Retrieved September 1, 2017.
  43. "Home". 17 January 2011. Archived from the original on 17 January 2011. Retrieved 28 March 2018.