WiMAX

Last updated
WiMAX (Worldwide Interoperability for Microwave Access)
WiMAX Forum logo.svg
WiMAX base station equipment with a sector antenna and wireless modem on top WiMAX equipment.jpg
WiMAX base station equipment with a sector antenna and wireless modem on top

WiMAX (Worldwide Interoperability for Microwave Access) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide multiple physical layer (PHY) and Media Access Control (MAC) options.

Wireless broadband

Wireless broadband is telecommunications technology that provides high-speed wireless Internet access or computer networking access over a wide area. The term comprises both fixed and mobile broadband.

IEEE 802.16 series of wireless broadband standards

IEEE 802.16 is a series of wireless broadband standards written by the Institute of Electrical and Electronics Engineers (IEEE). The IEEE Standards Board established a working group in 1999 to develop standards for broadband for wireless metropolitan area networks. The Workgroup is a unit of the IEEE 802 local area network and metropolitan area network standards committee.

Contents

The name "WiMAX" was created by the WiMAX Forum, which was formed in June 2001 to promote conformity and interoperability of the standard, including the definition of predefined system profiles for commercial vendors. [1] The forum describes WiMAX as "a standards-based technology enabling the delivery of last mile wireless broadband access as an alternative to cable and DSL". [2] IEEE 802.16m or WirelessMAN-Advanced was a candidate for the 4G, in competition with the LTE Advanced standard.

The last mile or last kilometer is a phrase widely used in the telecommunications, cable television and internet industries to refer to the final leg of the telecommunications networks that deliver telecommunication services to retail end-users (customers). More specifically, the last mile means the portion of the telecommunications network chain that physically reaches the end-user's premises. Examples are the copper wire subscriber lines connecting landline telephones to the local telephone exchange; coaxial cable service drops carrying cable television signals from utility poles to subscribers' homes, and cell towers linking local cell phones to the cellular network. The word "mile" is used metaphorically; the length of the last mile link may be more or less than a mile. Because the last mile of a network to the user is conversely the first mile from the user's premises to the outside world when the user is sending data, the term first mile is also alternatively used.

Cable modem networking device

A cable modem is a type of network bridge that provides bi-directional data communication via radio frequency channels on a hybrid fibre-coaxial (HFC), radio frequency over glass (RFoG) and coaxial cable infrastructure. Cable modems are primarily used to deliver broadband Internet access in the form of cable Internet, taking advantage of the high bandwidth of a HFC and RFoG network. They are commonly deployed in the Americas, Asia, Australia, and Europe.

Digital subscriber line is a family of technologies that are used to transmit digital data over telephone lines. In telecommunications marketing, the term DSL is widely understood to mean asymmetric digital subscriber line (ADSL), the most commonly installed DSL technology, for Internet access.

WiMAX was initially designed to provide 30 to 40 megabit-per-second data rates, [3] with the 2011 update providing up to 1 Gbit/s [3] for fixed stations.

The latest version of WiMAX, WiMAX release 2.1, popularly branded as/known as WiMAX 2+, is a smooth, backwards-compatible transition from previous WiMAX generations. It is compatible and inter-operable with TD-LTE.

Terminology

WiMAX refers to interoperable implementations of the IEEE 802.16 family of wireless-networks standards ratified by the WiMAX Forum. (Similarly, Wi-Fi refers to interoperable implementations of the IEEE 802.11 Wireless LAN standards certified by the Wi-Fi Alliance.) WiMAX Forum certification allows vendors to sell fixed or mobile products as WiMAX certified, thus ensuring a level of interoperability with other certified products, as long as they fit the same profile.

Wi-Fi wireless local area network technology based on IEEEs 802.11 standards

Wi-Fi is a family of radio technologies commonly used for wireless local area networking (WLAN) of devices. It is based on the IEEE 802.11 family of standards. Wi‑Fi is a trademark of the Wi-Fi Alliance, which restricts the use of the term Wi-Fi Certified to products that successfully complete interoperability certification testing. The Wi-Fi Alliance includes 3Com, Aironet, Harris Semiconductor, Lucent, Nokia and Symbol Technologies.

IEEE 802.11 set of media access control (MAC) and physical layer (PHY) specifications

IEEE 802.11 is part of the IEEE 802 set of LAN protocols, and specifies the set of media access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) Wi-Fi computer communication in various frequencies, including but not limited to 2.4, 5, and 60 GHz frequency bands.

Wi-Fi Alliance a non-profit organization that promotes Wi-Fi technology and certifies Wi-Fi products

Wi-Fi Alliance is a non-profit organization that promotes Wi-Fi technology and certifies Wi-Fi products for conformity to certain standards of interoperability. Not every IEEE 802.11-compliant device is submitted for certification to the Wi-Fi Alliance, sometimes because of costs associated with the certification process. The lack of the Wi-Fi logo does not necessarily imply a device is incompatible with Wi-Fi devices.

The original IEEE 802.16 standard (now called "Fixed WiMAX") was published in 2001. WiMAX adopted some of its technology from WiBro, a service marketed in Korea. [4]

WiBro

WiBro is a wireless broadband Internet technology developed by the South Korean telecoms industry. WiBro is the South Korean service name for IEEE 802.16e international standard. By the end of 2012, the Korean Communications Commission intends to increase WiBro broadband connection speeds to 10Mbit/s, around ten times the 2009 speed, which will complement their 1Gbit/sec fibre-optic network. The WiBro networks were shut down at the end of 2018.

Mobile WiMAX (originally based on 802.16e-2005) is the revision that was deployed in many countries and is the basis for future revisions such as 802.16m-2011.

WiMAX was sometimes referred to as "Wi-Fi on steroids" [5] and can be used for a number of applications including broadband connections, cellular backhaul, hotspots, etc. It is similar to Long-range Wi-Fi, but it can enable usage at much greater distances. [6]

Uses of WiMAX

The scalable physical layer architecture that allows for data rate to scale easily with available channel bandwidth and range of WiMAX make it suitable for the following potential applications:

Internet access

WiMAX can provide at-home or mobile Internet access across whole cities or countries. In many cases, this has resulted in competition in markets which typically only had access through an existing incumbent DSL (or similar) operator.

Additionally, given the relatively low costs associated with the deployment of a WiMAX network (in comparison with 3G, HSDPA, xDSL, HFC or FTTx), it is now economically viable to provide last-mile broadband Internet access in remote locations.

Middle-mile backhaul to fiber networks

Mobile WiMAX was a replacement candidate for cellular phone technologies such as GSM and CDMA, or can be used as an overlay to increase capacity. Fixed WiMAX is also considered as a wireless backhaul technology for 2G, 3G, and 4G networks in both developed and developing nations. [7] [8]

In North America, backhaul for urban operations is typically provided via one or more copper wire line connections, whereas remote cellular operations are sometimes backhauled via satellite. In other regions, urban and rural backhaul is usually provided by microwave links. (The exception to this is where the network is operated by an incumbent with ready access to the copper network.) WiMAX has more substantial backhaul bandwidth requirements than legacy cellular applications. Consequently, the use of wireless microwave backhaul is on the rise in North America and existing microwave backhaul links in all regions are being upgraded. [9] Capacities of between 34 Mbit/s and 1 Gbit/s [10] are routinely being deployed with latencies in the order of 1 ms.

In many cases, operators are aggregating sites using wireless technology and then presenting traffic on to fiber networks where convenient. WiMAX in this application competes with microwave radio, E-line and simple extension of the fiber network itself.

Triple-play

WiMAX directly supports the technologies that make triple-play service offerings possible (such as quality of service and multicasting). These are inherent to the WiMAX standard rather than being added on as carrier Ethernet is to Ethernet.

On May 7, 2008 in the United States, Sprint Nextel, Google, Intel, Comcast, Bright House, and Time Warner announced a pooling of an average of 120 MHz of spectrum and merged with Clearwire to market the service. The new company hoped to benefit from combined services offerings and network resources as a springboard past its competitors. The cable companies were expected to provide media services to other partners while gaining access to the wireless network as a Mobile virtual network operator to provide triple-play services.

Some wireless industry analysts, such as Ken Dulaney and Todd Kort at Gartner, were skeptical how the deal would work out: Although fixed-mobile convergence had been a recognized factor in the industry, prior attempts to form partnerships among wireless and cable companies had generally failed to lead to significant benefits for the participants. Other analysts at IDC favored the deal, pointing out that as wireless progresses to higher bandwidth, it inevitably competes more directly with cable, DSL and fiber, inspiring competitors into collaboration. Also, as wireless broadband networks grow denser and usage habits shift, the need for increased backhaul and media services accelerate, therefore the opportunity to leverage high bandwidth assets was expected to increase.

Aviation

The Aeronautical Mobile Airport Communication System (AeroMACS) is a wireless broadband network for the airport surface intended to link the control tower, aircraft, and fixed assets. In 2007, AeroMACS obtained a worldwide frequency allocation in the 5GHz aviation band. As of 2018, there were 25 AeroMACS deployments in 8 countries, with at least another 25 deployments planned. [11]

Support for TDD and FDD

IEEE 802.16REVd and IEEE 802.16e standards support both Time Division Duplexing and Frequency Division Duplexing as well as a half duplex FDD, that allows for a low cost implementation.

Connecting

A WiMAX USB modem for mobile access to the Internet Mobile wimax usb.jpg
A WiMAX USB modem for mobile access to the Internet

Devices that provide connectivity to a WiMAX network are known as subscriber stations (SS).

Portable units include handsets (similar to cellular smartphones); PC peripherals (PC Cards or USB dongles); and embedded devices in laptops, which are now available for Wi-Fi services. In addition, there is much emphasis by operators on consumer electronics devices such as Gaming consoles, MP3 players and similar devices. WiMAX is more similar to Wi-Fi than to other 3G cellular technologies.

The WiMAX Forum website provides a list of certified devices. However, this is not a complete list of devices available as certified modules are embedded into laptops, MIDs (Mobile Internet devices), and other private labeled devices.

Gateways

WiMAX gateway devices are available as both indoor and outdoor versions from several manufacturers including Vecima Networks, Alvarion, Airspan, ZyXEL, Huawei, and Motorola. The list of deployed WiMAX networks and WiMAX Forum membership list [12] provide more links to specific vendors, products and installations. The list of vendors and networks is not comprehensive and is not intended as an endorsement of these companies above others.

Many of the WiMAX gateways that are offered by manufactures such as these are stand-alone self-install indoor units. Such devices typically sit near the customer's window with the best signal, and provide:

Indoor gateways are convenient, but radio losses mean that the subscriber may need to be significantly closer to the WiMAX base station than with professionally installed external units.

Outdoor units are roughly the size of a laptop PC, and their installation is comparable to the installation of a residential satellite dish. A higher-gain directional outdoor unit will generally result in greatly increased range and throughput but with the obvious loss of practical mobility of the unit.

External modems

Airstream 1200 USB Modem Airstream tm 1200 USB Modem--IMG 8653.jpg
Airstream 1200 USB Modem

USB can provide connectivity to a WiMAX network through a dongle. Generally these devices are connected to a notebook or net book computer. Dongles typically have omnidirectional antennas which are of lower gain compared to other devices. As such these devices are best used in areas of good coverage.

Mobile phones

HTC announced the first WiMAX enabled mobile phone, the Max 4G, on November 12, 2008. [13] The device was only available to certain markets in Russia on the Yota network until 2010. [14]

HTC and Sprint Nextel released the second WiMAX enabled mobile phone, the EVO 4G, March 23, 2010 at the CTIA conference in Las Vegas. The device, made available on June 4, 2010, [15] is capable of both EV-DO(3G) and WiMAX(pre-4G) as well as simultaneous data & voice sessions. Sprint Nextel announced at CES 2012 that it will no longer be offering devices using the WiMAX technology due to financial circumstances, instead, along with its network partner Clearwire, Sprint Nextel will roll out a 4G network deciding to shift and utilize LTE 4G technology instead.

Technical information

The IEEE 802.16 Standard

WiMAX is based upon IEEE Std 802.16e-2005, [16] approved in December 2005. It is a supplement to the IEEE Std 802.16-2004, [17] and so the actual standard is 802.16-2004 as amended by 802.16e-2005. Thus, these specifications need to be considered together.

IEEE 802.16e-2005 improves upon IEEE 802.16-2004 by:

SOFDMA (used in 802.16e-2005) and OFDM256 (802.16d) are not compatible thus equipment will have to be replaced if an operator is to move to the later standard (e.g., Fixed WiMAX to Mobile WiMAX).

Physical layer

The original version of the standard on which WiMAX is based (IEEE 802.16) specified a physical layer operating in the 10 to 66 GHz range. 802.16a, updated in 2004 to 802.16-2004, added specifications for the 2 to 11 GHz range. 802.16-2004 was updated by 802.16e-2005 in 2005 and uses scalable orthogonal frequency-division multiple access [18] (SOFDMA), as opposed to the fixed orthogonal frequency-division multiplexing (OFDM) version with 256 sub-carriers (of which 200 are used) in 802.16d. More advanced versions, including 802.16e, also bring multiple antenna support through MIMO. (See WiMAX MIMO) This brings potential benefits in terms of coverage, self installation, power consumption, frequency re-use and bandwidth efficiency. WiMax is the most energy-efficient pre-4G technique among LTE and HSPA+. [19]

Media access control layer

The WiMAX MAC uses a scheduling algorithm for which the subscriber station needs to compete only once for initial entry into the network. After network entry is allowed, the subscriber station is allocated an access slot by the base station. The time slot can enlarge and contract, but remains assigned to the subscriber station, which means that other subscribers cannot use it. In addition to being stable under overload and over-subscription, the scheduling algorithm can also be more bandwidth efficient. The scheduling algorithm also allows the base station to control Quality of Service (QoS) parameters by balancing the time-slot assignments among the application needs of the subscriber station.

Specifications

As a standard intended to satisfy needs of next-generation data networks (4G), WiMAX is distinguished by its dynamic burst algorithm modulation adaptive to the physical environment the RF signal travels through. Modulation is chosen to be more spectrally efficient (more bits per OFDM/SOFDMA symbol). That is, when the bursts have a high signal strength and a high carrier to noise plus interference ratio (CINR), they can be more easily decoded using digital signal processing (DSP). In contrast, operating in less favorable environments for RF communication, the system automatically steps down to a more robust mode (burst profile) which means fewer bits per OFDM/SOFDMA symbol; with the advantage that power per bit is higher and therefore simpler accurate signal processing can be performed.

Burst profiles are used inverse (algorithmically dynamic) to low signal attenuation; meaning throughput between clients and the base station is determined largely by distance. Maximum distance is achieved by the use of the most robust burst setting; that is, the profile with the largest MAC frame allocation trade-off requiring more symbols (a larger portion of the MAC frame) to be allocated in transmitting a given amount of data than if the client were closer to the base station.

The client's MAC frame and their individual burst profiles are defined as well as the specific time allocation. However, even if this is done automatically then the practical deployment should avoid high interference and multipath environments. The reason for which is obviously that too much interference causes the network to function poorly and can also misrepresent the capability of the network.

The system is complex to deploy as it is necessary to track not only the signal strength and CINR (as in systems like GSM) but also how the available frequencies will be dynamically assigned (resulting in dynamic changes to the available bandwidth.) This could lead to cluttered frequencies with slow response times or lost frames.

As a result, the system has to be initially designed in consensus with the base station product team to accurately project frequency use, interference, and general product functionality.

The Asia-Pacific region has surpassed the North American region in terms of 4G broadband wireless subscribers. There were around 1.7 million pre-WiMAX and WiMAX customers in Asia – 29% of the overall market – compared to 1.4 million in the USA and Canada. [20]

Integration with an IP-based network

The WiMAX Forum architecture WiMAXArchitecture.svg
The WiMAX Forum architecture

The WiMAX Forum has proposed an architecture that defines how a WiMAX network can be connected with an IP based core network, which is typically chosen by operators that serve as Internet Service Providers (ISP); Nevertheless, the WiMAX BS provide seamless integration capabilities with other types of architectures as with packet switched Mobile Networks.

The WiMAX forum proposal defines a number of components, plus some of the interconnections (or reference points) between these, labeled R1 to R5 and R8:

It is important to note that the functional architecture can be designed into various hardware configurations rather than fixed configurations. For example, the architecture is flexible enough to allow remote/mobile stations of varying scale and functionality and Base Stations of varying size – e.g. femto, pico, and mini BS as well as macros.

Spectrum allocation

There is no uniform global licensed spectrum for WiMAX, however the WiMAX Forum published three licensed spectrum profiles: 2.3 GHz, 2.5 GHz and 3.5 GHz, in an effort to drive standardisation and decrease cost.

In the USA, the biggest segment available was around 2.5 GHz, [22] and is already assigned, primarily to Sprint Nextel and Clearwire. Elsewhere in the world, the most-likely bands used will be the Forum approved ones, with 2.3 GHz probably being most important in Asia. Some countries in Asia like India and Indonesia will use a mix of 2.5 GHz, 3.3 GHz and other frequencies. Pakistan's Wateen Telecom uses 3.5 GHz.

Analog TV bands (700 MHz) may become available, but await the complete digital television transition, and other uses have been suggested for that spectrum. In the USA the FCC auction for this spectrum began in January 2008 and, as a result, the biggest share of the spectrum went to Verizon Wireless and the next biggest to AT&T. [23] Both of these companies stated their intention of supporting LTE, a technology which competes directly with WiMAX. EU commissioner Viviane Reding has suggested re-allocation of 500–800 MHz spectrum for wireless communication, including WiMAX. [24]

WiMAX profiles define channel size, TDD/FDD and other necessary attributes in order to have inter-operating products. The current fixed profiles are defined for both TDD and FDD profiles. At this point, all of the mobile profiles are TDD only. The fixed profiles have channel sizes of 3.5 MHz, 5 MHz, 7 MHz and 10 MHz. The mobile profiles are 5 MHz, 8.75 MHz and 10 MHz. (Note: the 802.16 standard allows a far wider variety of channels, but only the above subsets are supported as WiMAX profiles.)

Since October 2007, the Radio communication Sector of the International Telecommunication Union (ITU-R) has decided to include WiMAX technology in the IMT-2000 set of standards. [25] This enables spectrum owners (specifically in the 2.5–2.69 GHz band at this stage) to use WiMAX equipment in any country that recognizes the IMT-2000.

Spectral efficiency and advantages

One of the significant advantages of advanced wireless systems such as WiMAX is spectral efficiency. For example, 802.16-2004 (fixed) has a spectral efficiency of 3.7 (bit/s)/Hertz, and other 3.5–4G wireless systems offer spectral efficiencies that are similar to within a few tenths of a percent. The notable advantage of WiMAX comes from combining SOFDMA with smart antenna technologies. This multiplies the effective spectral efficiency through multiple reuse and smart network deployment topologies. The direct use of frequency domain organization simplifies designs using MIMO-AAS compared to CDMA/WCDMA methods, resulting in more effective systems.

Another advantages of WiMAX, is a relatively new technology that enables communication over a maximum distance of 30 miles – compared to 300 feet for WiFi. Of course, the longer the distance, the slower the speed, but it is still faster and has a longer range than WiFi. Ideally, speeds of around 10 MBps could be achieved with a range of 1 – 6 miles (1.6 – 9.7 km).

The reason why some telecommunication providers are quite excited about the prospects for WiMAX is that mobile users could use it as a faster and longer range alternative to WiFi and corporate or home users could use it in a fixed environment as a replacement or backup to DSL.

Companies will begin to use WiMAX to communicate from office to office, relatively near to each other and provide campus wide wireless connectivity to employees. Employee's computers will need to use new WiMAX cards to connect to these new networks. Next, or at the same time, public places such as airports, parks and coffee shops will be outfitted with WiMAX access points. WiMAX has been very successful as it is easy to use, low cost, and relatively fast.

While WiMAX has its benefits, as people download more and larger files, upload more data (such as voice calls, images and videos) and have longer distance needs – the limits of WiFi are apparent.

Inherent limitations

WiMAX cannot deliver 70  Mbit/s over 50 km (31 mi). Like all wireless technologies, WiMAX can operate at higher bitrates or over longer distances but not both. Operating at the maximum range of 50 km (31 mi) increases bit error rate and thus results in a much lower bitrate. Conversely, reducing the range (to under 1 km) allows a device to operate at higher bitrates.

A citywide deployment of WiMAX in Perth, Australia demonstrated that customers at the cell-edge with an indoor Customer-premises equipment (CPE) typically obtain speeds of around 1–4 Mbit/s, with users closer to the cell site obtaining speeds of up to 30 Mbit/s.[ citation needed ]

Like all wireless systems, available bandwidth is shared between users in a given radio sector, so performance could deteriorate in the case of many active users in a single sector. However, with adequate capacity planning and the use of WiMAX's Quality of Service, a minimum guaranteed throughput for each subscriber can be put in place. In practice, most users will have a range of 4–8 Mbit/s services and additional radio cards will be added to the base station to increase the number of users that may be served as required.

Silicon implementations

Picture of a WiMAX MIMO board Pmc wizird.jpg
Picture of a WiMAX MIMO board

A number of specialized companies produced baseband ICs and integrated RFICs for WiMAX Subscriber Stations in the 2.3, 2.5 and 3.5 GHz bands (refer to 'Spectrum allocation' above). These companies include, but are not limited to, Beceem, Sequans, and PicoChip.

Comparison

Comparisons and confusion between WiMAX and Wi-Fi are frequent, because both are related to wireless connectivity and Internet access. [26]

Although Wi-Fi and WiMAX are designed for different situations, they are complementary. WiMAX network operators typically provide a WiMAX Subscriber Unit that connects to the metropolitan WiMAX network and provides Wi-Fi connectivity within the home or business for computers and smartphones. This enables the user to place the WiMAX Subscriber Unit in the best reception area, such as a window, and have date access throughout their property.

Conformance testing

TTCN-3 test specification language is used for the purposes of specifying conformance tests for WiMAX implementations. The WiMAX test suite is being developed by a Specialist Task Force at ETSI (STF 252). [27]

Associations

WiMAX Forum

The WiMAX Forum is a non profit organization formed to promote the adoption of WiMAX compatible products and services. [28]

A major role for the organization is to certify the interoperability of WiMAX products. [29] Those that pass conformance and interoperability testing achieve the "WiMAX Forum Certified" designation, and can display this mark on their products and marketing materials. Some vendors claim that their equipment is "WiMAX-ready", "WiMAX-compliant", or "pre-WiMAX", if they are not officially WiMAX Forum Certified.

Another role of the WiMAX Forum is to promote the spread of knowledge about WiMAX. In order to do so, it has a certified training program that is currently offered in English and French. It also offers a series of member events and endorses some industry events.

WiSOA logo WiSOA Logo 80px.jpg
WiSOA logo

WiMAX Spectrum Owners Alliance

WiSOA was the first global organization composed exclusively of owners of WiMAX spectrum with plans to deploy WiMAX technology in those bands. WiSOA focused on the regulation, commercialisation, and deployment of WiMAX spectrum in the 2.3–2.5 GHz and the 3.4–3.5 GHz ranges. WiSOA merged with the Wireless Broadband Alliance in April 2008. [30]

Telecommunications Industry Association

In 2011, the Telecommunications Industry Association released three technical standards (TIA-1164, TIA-1143, and TIA-1140) that cover the air interface and core networking aspects of Wi-Max High-Rate Packet Data (HRPD) systems using a Mobile Station/Access Terminal (MS/AT) with a single transmitter. [31]

Competing technologies

Within the marketplace, WiMAX's main competition came from existing, widely deployed wireless systems such as Universal Mobile Telecommunications System (UMTS), CDMA2000, existing Wi-Fi, mesh networking and eventually 4G (LTE).

Speed vs. mobility of wireless systems: Wi-Fi, High Speed Packet Access (HSPA), Universal Mobile Telecommunications System (UMTS), GSM Wimax.svg
Speed vs. mobility of wireless systems: Wi-Fi, High Speed Packet Access (HSPA), Universal Mobile Telecommunications System (UMTS), GSM

In the future, competition will be from the evolution of the major cellular standards to 4G, high-bandwidth, low-latency, all-IP networks with voice services built on top. The worldwide move to 4G for GSM/UMTS and AMPS/TIA (including CDMA2000) is the 3GPP Long Term Evolution (LTE) effort.

The LTE Standard was finalized in December 2008, with the first commercial deployment of LTE carried out by TeliaSonera in Oslo and Stockholm in December, 2009. Henceforth, LTE saw rapidly increasing adoption by mobile carriers around the world.

Although WiMax was much earlier to market than LTE, LTE was an upgrade and extension of previous 3G (GSM and CDMA) standards, whereas WiMax was a relatively new and different technology without a large user base. Ultimately, LTE won the war to become the 4G standard because mobile operators such as Verizon, AT&T, Vodafone, NTT, and Deutsche Telekom chose to extend their investments in know-how, equipment and spectrum from 3G to LTE, rather than adopt a new technology standard. It would never have been cost-effective for WiMax network operators to compete against fixed-line broadband networks based on 4G technologies. By 2009, most mobile operators began to realize that mobile connectivity (not fixed 802.16e) was the future, and that LTE was going to become the new worldwide mobile connectivity standard, so they chose to wait for LTE to develop rather than switch from 3G to WiMax.

WiMax was a superior technology in terms of speed (roughly 25Mbps) for a few years (2005-2009), and it pioneered some new technologies such as MIMO. But the mobile version of WiMax (802.16m), intended to compete with GSM and CDMA technologies, was too little/too late in getting established, and by the time the LTE standard was finalized in December 2008, the fate of WiMax as a mobile solution was doomed and it was clear that LTE (not WiMax) would become the world's new 4G standard. The largest wireless broadband partner using WiMax, Clearwire, announced in 2008 that they would begin overlaying their existing WiMax network with LTE technology, which was necessary for Clearwire to obtain investments they needed to stay in business.

In some areas of the world, the wide availability of UMTS and a general desire for standardization meant spectrum was not allocated for WiMAX: in July 2005, the EU-wide frequency allocation for WiMAX was blocked.[ citation needed ]

Harmonization

Early WirelessMAN standards, The European standard HiperMAN and Korean standard WiBro were harmonized as part of WiMAX and are no longer seen as competition but as complementary. All networks now being deployed in South Korea, the home of the WiBro standard, are now WiMAX.

Comparison with other mobile Internet standards

The following table only shows peak rates which are potentially very misleading. In addition, the comparisons listed are not normalized by physical channel size (i.e., spectrum used to achieve the listed peak rates); this obfuscates spectral efficiency and net through-put capabilities of the different wireless technologies listed below.

Comparison of mobile Internet access methods
Common
Name
FamilyPrimary UseRadio Tech Downstream
(Mbit/s)
Upstream
(Mbit/s)
Notes
HSPA+ 3GPP Mobile Internet CDMA/FDD
MIMO
21
42
84
672
5.8
11.5
22
168
HSPA+ is widely deployed. Revision 11 of the 3GPP states that HSPA+ is expected to have a throughput capacity of 672 Mbit/s.
LTE 3GPP Mobile Internet OFDMA/MIMO/SC-FDMA 100 Cat3
150 Cat4
300 Cat5
(in 20 MHz FDD) [32]
50 Cat3/4
75 Cat5
(in 20 MHz FDD) [32]
LTE-Advanced update expected to offer peak rates up to 1 Gbit/s fixed speeds and 100 Mb/s to mobile users.
WiMax rel 1 802.16 WirelessMAN MIMO-SOFDMA 37 (10 MHz TDD)17 (10 MHz TDD)With 2x2 MIMO. [33]
WiMax rel 1.5 802.16-2009 WirelessMAN MIMO-SOFDMA 83 (20 MHz TDD)
141 (2x20 MHz FDD)
46 (20 MHz TDD)
138 (2x20 MHz FDD)
With 2x2 MIMO.Enhanced with 20 MHz channels in 802.16-2009 [33]
WiMAX rel 2.0 802.16m WirelessMAN MIMO-SOFDMA 2x2 MIMO
110 (20 MHz TDD)
183 (2x20 MHz FDD)
4x4 MIMO
219 (20 MHz TDD)
365 (2x20 MHz FDD)
2x2 MIMO
70 (20 MHz TDD)
188 (2x20 MHz FDD)
4x4 MIMO
140 (20 MHz TDD)
376 (2x20 MHz FDD)
Also, low mobility users can aggregate multiple channels to get a download throughput of up to 1 Gbit/s [33]
Flash-OFDM Flash-OFDMMobile Internet
mobility up to 200 mph (350 km/h)
Flash-OFDM 5.3
10.6
15.9
1.8
3.6
5.4
Mobile range 30 km (18 miles)
extended range 55 km (34 miles)
HIPERMAN HIPERMANMobile Internet OFDM 56.9
Wi-Fi 802.11
(11n)
Wireless LAN OFDM/MIMO 288.8 (using 4x4 configuration in 20 MHz bandwidth) or 600 (using 4x4 configuration in 40 MHz bandwidth)

Antenna, RF front end enhancements and minor protocol timer tweaks have helped deploy long range P2P networks compromising on radial coverage, throughput and/or spectra efficiency (310 km & 382 km)

iBurst 802.20 Mobile Internet HC-SDMA/TDD/MIMO 9536Cell Radius: 3–12 km
Speed: 250 km/h
Spectral Efficiency: 13 bits/s/Hz/cell
Spectrum Reuse Factor: "1"
EDGE Evolution GSM Mobile Internet TDMA/FDD 1.60.5 3GPP Release 7
UMTS W-CDMA
HSPA (HSDPA+HSUPA)
UMTS/3GSM Mobile Internet CDMA/FDD

CDMA/FDD/MIMO
0.384
14.4
0.384
5.76
HSDPA is widely deployed. Typical downlink rates today 2 Mbit/s, ~200 kbit/s uplink; HSPA+ downlink up to 56 Mbit/s.
UMTS-TDD UMTS/3GSMMobile Internet CDMA/TDD 16Reported speeds according to IPWireless using 16QAM modulation similar to HSDPA+HSUPA
EV-DO  Rel. 0
EV-DO Rev.A
EV-DO Rev.B
CDMA2000Mobile Internet CDMA/FDD 2.45
3.1
4.9xN
0.15
1.8
1.8xN
Rev B note: N is the number of 1.25 MHz carriers used. EV-DO is not designed for voice, and requires a fallback to 1xRTT when a voice call is placed or received.

Notes: All speeds are theoretical maximums and will vary by a number of factors, including the use of external antennas, distance from the tower and the ground speed (e.g. communications on a train may be poorer than when standing still). Usually the bandwidth is shared between several terminals. The performance of each technology is determined by a number of constraints, including the spectral efficiency of the technology, the cell sizes used, and the amount of spectrum available. For more information, see Comparison of wireless data standards .

For more comparison tables, see bit rate progress trends, comparison of mobile phone standards, spectral efficiency comparison table and OFDM system comparison table.

Development

The IEEE 802.16m-2011 standard [34] was the core technology for WiMAX 2. The IEEE 802.16m standard was submitted to the ITU for IMT-Advanced standardization. [35] IEEE 802.16m is one of the major candidates for IMT-Advanced technologies by ITU. Among many enhancements, IEEE 802.16m systems can provide four times faster[ clarification needed ] data speed than the WiMAX Release 1.

WiMAX Release 2 provided backward compatibility with Release 1. WiMAX operators could migrate from release 1 to release 2 by upgrading channel cards or software. The WiMAX 2 Collaboration Initiative was formed to help this transition. [36]

It was anticipated that using 4X2 MIMO in the urban microcell scenario with only a single 20 MHz TDD channel available system wide, the 802.16m system can support both 120 Mbit/s downlink and 60 Mbit/s uplink per site simultaneously. It was expected that the WiMAX Release 2 would be available commercially in the 2011–2012 timeframe. [37]

WiMAX Release 2.1 was released in early-2010s which have broken compatibility with earlier WiMAX networks. Significant number of operators have migrated to the new standard that is compatible with TD-LTE by the end of 2010s.

Interference

A field test conducted in 2007 by SUIRG (Satellite Users Interference Reduction Group) with support from the U.S. Navy, the Global VSAT Forum, and several member organizations yielded results showing interference at 12 km when using the same channels for both the WiMAX systems and satellites in C-band. [38]

Deployments

As of October 2010, the WiMAX Forum claimed over 592 WiMAX (fixed and mobile) networks deployed in over 148 countries, covering over 621 million people. [39] By February 2011, the WiMAX Forum cited coverage of over 823 million people, and estimated coverage to over 1 billion people by the end of the year. Note that coverage means the offer of availability of WiMAX service to populations within various geographies, not the number of WiMAX subscribers. [40]

South Korea launched a WiMAX network in the second quarter of 2006. By the end of 2008 there were 350,000 WiMAX subscribers in Korea. [41]

Worldwide, by early 2010 WiMAX seemed to be ramping quickly relative to other available technologies, though access in North America lagged. [42] Yota, the largest WiMAX network operator in the world in 4Q 2009, [43] [44] announced in May 2010 that it would move new network deployments to LTE and, subsequently, change its existing networks as well. [45]

A study published in September 2010 by Blycroft Publishing estimated 800 management contracts from 364 WiMAX operations worldwide offering active services (launched or still trading as opposed to just licensed and still to launch). [46] The WiMAX Forum announced on Aug 16, 2011 that there were more than 20 million WiMAX subscribers worldwide, the high-water mark for this technology. http://wimaxforum.org/Page/News/PR/20110816_WiMAX_Subscriptions_Surpass_20_Million_Globally

See also

Notes

  1. Pinola, Jarno; Kostas Pentikousis (2008). "Mobile WiMAX". The Internet Protocol Journal (IPJ). Cisco. Archived from the original on 2016-08-21. Retrieved 2016-08-05.
  2. "WiMax Forum – Technology". Archived from the original on July 22, 2008. Retrieved 2008-07-22.
  3. 1 2 Carl Weinschenk (April 16, 2010). "Speeding Up WiMax". IT Business Edge. Archived from the original on 2011-09-05. Retrieved August 31, 2011. Today the initial WiMax system is designed to provide 30 to 40 megabit-per-second data rates.
  4. Roger Marks (June 29, 2006). "IEEE 802.16 WirelessMAN Standard: Myths and Facts" (PDF). Presentation at 2006 Wireless Communications Conference. Washington, DC. Archived (PDF) from the original on 2011-06-06. Retrieved August 26, 2011.
  5. Walton, Marsha (2006-03-31). "Is 'Wi-Fi on steroids' really the next big thing?". CNN. Archived from the original on 2010-10-04. Retrieved 2011-02-09.
  6. "Redirecting..." Heinonline.org. Archived from the original on 2018-07-30. Retrieved 30 July 2018.
  7. "Sprint Eyes WiMax Backhaul". Lightreading.com. Archived from the original on 2008-03-12. Retrieved 2008-03-22.
  8. "WiMax signals get stronger in India". Eetimes.com. Archived from the original on 2012-07-13. Retrieved 2008-03-22.
  9. "Overcoming the wire-line bottleneck for 3G wireless services". Supercommnews.com. Archived from the original on 2008-12-02. Retrieved 2009-01-03.
  10. "High-speed Microwave". Wimaxforum.org. Archived from the original on 2008-03-06. Retrieved 2008-03-12.
  11. Rocha, Alessandra (November 22, 2018). AeroMACS Standardized Solution for the Airport Surface (PDF). SAMIG22. Lima, Perú: ICAO.
  12. WiMAX Forum Member Companies Archived 2013-04-16 at Archive.today . Wimaxforum.org. Retrieved on 2013-09-18.
  13. "Scartel And Htc Launch World'S First Integrated Gsm/Wimax Handset". News release. HTC Corporation. November 12, 2008. Archived from the original on November 22, 2008. Retrieved August 26, 2011.
  14. "UPDATE 1-Russia's Yota drops WiMax in favour of LTE". Reuters.com. May 21, 2010. Archived from the original on 2016-12-30. Retrieved 2017-07-03.
  15. "Sprint Newsroom | News Releases". Newsreleases.sprint.com. Archived from the original on 2009-06-22. Retrieved 2010-10-13.
  16. "IEEE 802.16e Task Group (Mobile WirelessMAN)". Ieee802.org. Archived from the original on 2008-02-24. Retrieved 2008-03-12.
  17. "IEEE 802.16 Task Group d". Ieee802.org. Archived from the original on 2008-02-24. Retrieved 2008-03-12.
  18. Orthogonal frequency-division multiplexing (OFDM) is a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, whether wireless or over copper wires, used in applications such as digital television and audio broadcasting.
  19. Deruyck, Margot; Vereecken, Willem; Tanghe, Emmeric; Joseph, Wout; Pickavet, Mario; Martens, Luc; Demeester, Piet (2010). "Comparison of power consumption of mobile WiMAX, HSPA and LTE access networks". IEEE Xplore – Comparison of power consumption of mobile WiMAX, HSPA and LTE access networks. Ieeexplore.ieee.org. pp. 1–7. doi:10.1109/CTTE.2010.5557715. ISBN   978-1-4244-7988-7. Archived from the original on 2013-06-02. Retrieved October 30, 2012.
  20. "Asia takes the lead in the 4G market". Telegeography.com. August 5, 2010. Retrieved October 30, 2012.
  21. "The Access Service Network in WiMAX: The Role of ASN-GW" (PDF). Mustafaergen.com. Archived (PDF) from the original on 2008-02-27. Retrieved 2008-03-12.
  22. "U.S. Frequency Allocation Chart" (PDF). Department of Commerce. Archived (PDF) from the original on 2008-03-09. Retrieved 2008-03-12.
  23. "Auctions Schedule". Federal Communications Commission. Archived from the original on 2008-01-24. Retrieved 2008-01-08.
  24. "European Commission proposes TV spectrum for WiMax". Zdnetasia.com. Archived from the original on 2007-12-14. Retrieved 2008-01-08.
  25. "ITU Radiocommunication Assembly approves new developments for its 3G standards". Itu.int. Archived from the original on 2009-05-19. Retrieved 2008-03-12.
  26. WiMAX vs. WiFi Archived 2010-11-23 at the Wayback Machine . Circleid.com (2008-02-20). Retrieved on 2013-09-18.
  27. "HiperMAN / WiMAX Testing". ETSI. Archived from the original on 2012-07-31. Retrieved 2008-03-28.
  28. "WiMAX Forum Overview". Wimaxforum.org. Archived from the original on 2008-07-28. Retrieved 2008-08-01.
  29. "WiMAX Forum — Frequently Asked Questions". Wimaxforum.org. Archived from the original on 2008-03-06. Retrieved 2008-03-12.
  30. "WBA and WiSOA join efforts on WiMAX global roaming". Archived from the original on 2008-04-26. Retrieved 2008-12-10.
  31. "TIA-1164 : WiMAX-HRPD Interworking: Core Networks Aspects". Global.ihs.com. Archived from the original on 2017-07-08. Retrieved 30 July 2018.
  32. 1 2 "LTE". 3GPP web site. 2009. Retrieved August 20, 2011.
  33. 1 2 3 "WiMAX and the IEEE 802.16m Air Interface Standard" (PDF). WiMax Forum. 4 April 2010. Retrieved 2012-02-07.
  34. "'WiMAX 2' coming in 2011?". Networkworld.com. Archived from the original on 2011-06-13. Retrieved 2010-10-13.
  35. "802.16m submitted to ITU for IMT-Advanced standardization". Archived from the original on 2009-03-03. Retrieved 2009-10-18.
  36. "WiMAX 2 Collaboration Initiative (WCI) Frequently Asked Questions" (PDF). WiMAX Forum. April 12, 2010. Archived from the original (PDF) on 2011-09-04. Retrieved 2011-08-27.
  37. "Global WiMAX network deployments surpass 500". News release. WiMAX Forum. October 6, 2009. Archived from the original on 2011-09-28. Retrieved August 25, 2011.
  38. "SUIRG full interference test report" (PDF). Suirg.org. Archived from the original (PDF) on 2009-03-04. Retrieved 2012-08-22.
  39. "WiMAX Forum". WiMAX Forum. Archived from the original on 2010-10-08. Retrieved 2010-10-13.
  40. "Wimax Forum Industry Research Report" (PDF). Wimaxforum.org. Archived from the original (PDF) on 2011-11-17. Retrieved 2011-09-10.
  41. Ken, Wieland (6 July 2009). "The rise and rise of HSPA". Telecoms.com. Archived from the original on 2014-10-28. Retrieved 30 July 2018.
  42. Larry Dignan (February 15, 2010). "WiMax deployments ramp globally, but U.S. lags". Between the lines blog. ZDNet. Archived from the original on 2010-05-14. Retrieved September 11, 2011.
  43. "Archived copy". Archived from the original on 2010-05-03. Retrieved 2010-04-28.CS1 maint: Archived copy as title (link)
  44. "На одной волне. Как интернет-гигант отстал от стартапа". Unova.ru. 8 February 2010. Archived from the original on 2018-07-30. Retrieved 30 July 2018.
  45. Russia Today, May 21, 2010 – Scartel dropping WiMAX, aiming for LTE – RT – [rt.com/Business/2010-05-21/scartel-dropping-wimax-lte.html]
  46. "WiMAX Directory". Blycroft Ltd. 2010-09-01. Archived from the original on 2011-02-21. Retrieved 2011-02-28.

Related Research Articles

Wireless network any network at least partly not connected by physical cables of any kind

A wireless network is a computer network that uses wireless data connections between network nodes.

Wireless local loop (WLL), is the use of a wireless communications link as the "last mile / first mile" connection for delivering plain old telephone service (POTS) or Internet access to telecommunications customers. Various types of WLL systems and technologies exist.

Wireless Internet service provider

A wireless Internet service provider (WISP) is an Internet service provider with a network based on wireless networking. Technology may include commonplace Wi-Fi wireless mesh networking, or proprietary equipment designed to operate over open 900 MHz, 2.4 GHz, 4.9, 5, 24, and 60 GHz bands or licensed frequencies in the UHF band, LMDS, and other bands from 6Ghz to 80Ghz.

IEEE 802.20 IEEE standard

IEEE 802.20 or Mobile Broadband Wireless Access (MBWA) was a specification by the standard association of the Institute of Electrical and Electronics Engineers (IEEE) for mobile wireless Internet access networks. The main standard was published in 2008. MBWA is no longer being actively developed.

4G is the fourth generation of broadband cellular network technology, succeeding 3G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

HomeRF organization

HomeRF was a wireless networking specification for home devices. It was developed in 1998 by the Home Radio Frequency Working Group, a consortium of mobile wireless companies that included Proxim Wireless, Intel, Siemens AG, Motorola, Philips and more than 100 other companies.

In a hierarchical telecommunications network, the backhaul portion of the network comprises the intermediate links between the core network, or backbone network, and the small subnetworks at the edge of the network.

Mobile VoIP or simply mVoIP is an extension of mobility to a Voice over IP network. Two types of communication are generally supported: cordless/DECT/PCS protocols for short range or campus communications where all base stations are linked into the same LAN, and wider area communications using 3G/4G protocols.

A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.

Mobile broadband

Mobile broadband is the marketing term for wireless Internet access through a portable modem, USB wireless modem, or a tablet/smartphone or other mobile device. The first wireless Internet access became available in 1991 as part of the second generation (2G) of mobile phone technology. Higher speeds became available in 2001 and 2006 as part of the third (3G) and fourth (4G) generations. In 2011, 90% of the world's population lived in areas with 2G coverage, while 45% lived in areas with 2G and 3G coverage. Mobile broadband uses the spectrum of 225 MHz to 3700 MHz.

Unifi Mobile

unifi Mobile is a Malaysian converged telecommunications, broadband and 4G service provider. Originally known as Packet One Networks (P1), the company was founded in 2002 and is a subsidiary of Green Packet Berhad. In March 2007, P1 was one of four companies awarded 2.3 GHz spectrum licenses by the Malaysian Government to deploy 4G WiMAX services throughout Malaysia. In August 2008, P1 became the first company to launch commercial WiMAX services in Malaysia.

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

Super Wi-Fi is a term coined by the United States Federal Communications Commission (FCC) to describe a wireless networking proposal which the FCC plans to use for the creation of longer-distance wireless Internet access. The use of the trademark "Wi-Fi" in the name has been criticized because it is not based on Wi-Fi technology or endorsed by the Wi-Fi Alliance. A trade show has also been called the "Super WiFi Summit" . Various standards such as IEEE 802.22 and IEEE 802.11af have been proposed for this concept.

Bernhard Walke German electrical engineer

Bernhard H. Walke is a pioneer of mobile Internet access and professor emeritus at RWTH Aachen University in Germany. He is a driver of wireless and mobile 2G to 5G cellular radio networks technologies. In 1985 he proposed a local cellular radio network comprising technologies in use today in 2G to 4G and discussed for 5G systems, like self-organization of a radio mesh network, integration of circuit- and packet switching, de-centralized radio resource control, TDMA/spread spectrum data transmission, antenna beam steering, spatial beam multiplexing, interference coordination, S-Aloha based multiple access and demand assigned traffic channels, mobile broadband transmission using mm-waves, and multi-hop communication.

LTE in unlicensed spectrum is a proposed extension of the Long-Term Evolution (LTE) wireless standard intended to allow cellular network operators to offload some of their data traffic by accessing the unlicensed 5 GHz frequency band. LTE-Unlicensed is a proposal, originally developed by Qualcomm, for the use of the 4G LTE radio communications technology in unlicensed spectrum, such as the 5 GHz band used by 802.11a and 802.11ac compliant Wi-Fi equipment. It would serve as an alternative to carrier-owned Wi-Fi hotspots. Currently, there are number of variants of LTE operation in the unlicensed band, namely LTE-U, License Assisted Access (LAA), and MulteFire.

Citizens Broadband Radio Service (CBRS) is a 150 MHz wide broadcast band of the 3.5 GHz band in the United States. Some of this spectrum will continue to be used by the United States government for radar systems, but will be available for others where not needed by the Navy. In 2017, the Federal Communications Commission (FCC) completed a process begun in 2012 to establish rules for commercial use of this band. Wireless carriers using CBRS might be able to deploy 5G mobile networks without having to acquire spectrum licenses.

References